
MAS 305 Algebraic Structures II

Notes 14 Autumn 2006

Direct products and direct sums
This short section gives a useful construction which can be applied to both groups and
rings.

Direct products of groups
Let (G,◦) and (H,�) be groups. Put

G×H = {(g,h) : g ∈ G, h ∈ H}

with the operation (g1,h1)× (g2,h2) = (g1 ◦g2,h1�h2). Then G×H is a group, with
identity (1G,1H) and (g,h)−1 = (g−1,h−1). It is called the external direct product of
G and H.

Put

G1 = {(g,1H) : g ∈ G}
H1 = {(1G,h) : h ∈ H}

and define φ:G×H → H by (g,h)φ = h. Then φ is a homomorphism, Im(φ) = H
and ker(φ) = G1, so G1 E G×H and (G×H)/G1 ∼= H. Similarly, H1 E G×H and
(G×H)/H1 ∼= G.

If g ∈ G and h ∈ H then (g,1H)(1G,h) = (g,h) = (1G,h)(g,1H), so all elements
of G1 commute with all elements of H1. Obviously, G1H1 = G×H and G1 ∩H1 =
{(1G,1H)}. Therefore G×H is the internal direct product of G1 and H1.

We also have G ∼= G1 and H ∼= H1.

Theorem Let G and H be groups.

(a) If G and H are finite then |G×H|= |G|× |H|.
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(b) If G and H are Abelian then G×H is Abelian.

(c) If G and H are cyclic of coprime order then G×H is cyclic.

(d) If N 6 G and K 6 H then N×K 6 G×H.

(e) If N EG and K EH then N×K EG×H and

(G×H)/(N×K)∼= (G/N)× (H/K).

Proof Exercise.

Given three (or more) groups G1, G2, G3, we have

(G1×G2)×G3 ∼= G1× (G2×G3).

We generally regard both of these as being G1×G2×G3, which is

{(g,h,k) : g ∈ G1, h ∈ G2, k ∈ G3} ,

with coordinatewise multiplication.

Theorem If a finite group G is Abelian then G is the internal direct product of its
Sylow subgroups. (Note that if G is Abelian then all its subgroups are normal so there
is exactly one Sylow p-subgroup for each prime p dividing |G|.)

Proof Suppose that P and Q are Sylow subgroups for different primes. Then |P∩Q|
divides |P| and |Q|, so |P∩Q|= 1, so P∩Q = {1G}. Therefore PQ is a subgroup of G
and is the internal direct product of P and Q. Continue similarly, using PQ and R,
where R is another Sylow subgroup. �

Theorem If a finite Abelian group G has order a power of the prime p then G is a
direct product of cyclic groups, each of which has order a power of p. If ni is the
number of factors in the product which have order pi, then all ways of writing G as a
direct product of cyclic groups have precisely ni factors isomorphic to Cpi .

Proof Beyond the scope of this course.

Corollary If G is a finite Abelian group then G is a direct product of cyclic groups,
each of which has prime-power order. If npi is the number of factors in the product
which have order pi, where p is prime, then all ways of writing G as a direct product
of cyclic groups have precisely npi factors isomorphic to Cpi .
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Direct sums of rings
Given rings R1, . . . , Rn, the external direct sum R1⊕R2⊕·· ·⊕Rn is

{(r1,r2, . . . ,rn) : ri ∈ Ri for 1 6 i 6 n} ,

with addition and multiplication defined by

(r1,r2, . . . ,rn)+(s1,s2, . . . ,sn) = (r1 + s1,r2 + s2, . . . ,rn + sn)

and
(r1,r2, . . . ,rn)× (s1,s2, . . . ,sn) = (r1s1,r2s2, . . . ,rnsn),

where the operation in the i-th coordinate position is the relevant operation in Ri. It
can be checked that this is a ring.

If R1, . . . , Rn are all commutative then so is R1⊕·· ·⊕Rn.
If Ri has an identity 1i for i = 1, . . . , n then R1⊕·· ·⊕Rn has identity (11,12, . . . ,1n).
If at least two of R1, . . . , Rn are not just {0} then R1⊕·· ·⊕Rn has zero-divisors:

(r,02,03, . . . ,0n)× (01,s,03, . . . ,0n) = (01,02, . . . ,0n).

Define φi:R1⊕·· ·⊕Rn → Ri by

(r1,r2, . . . ,rn)φi = ri.

This is a ring homomorphism with Im(φi) = Ri and

ker(φi) = R1⊕·· ·⊕Ri−1⊕{0i}⊕Ri+1⊕·· ·⊕Rn
∼= R1⊕·· ·⊕Ri−1⊕Ri+1⊕·· ·⊕Rn.

Put Ji = {(01, . . . ,0i−1,ri,0i+1, . . . ,0n) : ri ∈ Ri}. Then JiER1⊕·· ·⊕Rn and Ji ∼= Ri.

Theorem If Ii ERi for i = 1, . . . , n, then I1⊕·· ·⊕ In is an ideal of R1⊕·· ·⊕Rn.

Proof (a) Since Ii 6= /0 for i = 1, . . . , n, I1⊕·· ·⊕ In is not empty.

(b) Suppose that (a1, . . . ,an) ∈ I1⊕·· ·⊕ In and (b1, . . . ,bn) ∈ I1⊕·· ·⊕ In. Then ai
and bi are in Ii, so ai−bi ∈ Ii, so

(a1, . . . ,an)− (b1, . . . ,bn) = (a1−b1, . . . ,an−bn) ∈ I1⊕·· ·⊕ In.

(c) Suppose that (a1, . . . ,an) ∈ I1 ⊕ ·· ·⊕ In and (r1, . . . ,rn) ∈ R1 ⊕ ·· ·⊕Rn. Then
riai and airi are both in Ii, so

(r1, . . . ,rn)(a1, . . . ,an) = (r1a1, . . . ,rnan) ∈ R1⊕·· ·⊕Rn

and
(a1, . . . ,an)(r1, . . . ,rn) = (a1r1, . . .anrn) ∈ R1⊕·· ·⊕Rn. �
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Theorem If Ri is a ring with identity 1i, for i = 1, . . . , n, and if J is an ideal of
R1⊕·· ·⊕Rn then there is an ideal Ii of Ri, for i = 1, . . . , n, such that J = I1⊕·· ·⊕ In.

Proof Put Ii = (J)φi. Then Ii is a subring of Ri.
If ai ∈ Ii and r ∈ Ri then (01, . . . ,0i−1,r,0i+1, . . . ,0n) ∈ R1⊕·· ·⊕Rn and there is

some (a1, . . . ,ai, . . . ,an) in J and therefore

(01, . . . ,0i−1,r,0i+1, . . . ,0n)(a1, . . . ,ai, . . . ,an) = (01, . . . ,0i−1,rai,0i+1, . . . ,0n) ∈ J,

so rai ∈ Ii. Similarly, air ∈ Ii. Hence Ii ERi.
Clearly, J ⊆ I1⊕·· ·⊕ In.
Because Ri has an identity 1i, we have (01, . . . ,0i−1,1i,0i+1, . . . ,0n)∈R1⊕·· ·⊕Rn

so if (a1, . . . ,ai, . . . ,an) ∈ J then

(01, . . . ,0i−1,1i,0i+1, . . . ,0n)(a1, . . . ,ai, . . . ,an) = (01, . . . ,0i−1,ai,0i+1, . . . ,0n) ∈ J.

Therefore if ai ∈ Ii for i = 1, . . . , n then (01, . . . ,0i−1,ai,0i+1, . . . ,0n)∈ J for i = 1, . . . ,
n and so (a1, . . . ,an)∈ J. This shows that I1⊕·· ·⊕In ⊆ J, and so J = I1⊕·· ·⊕In. �

Example In 2Z⊕2Z,

{(2n,2m) : n ∈ Z, m ∈ Z, n+m ∈ 2Z}

is an ideal, but it is not of the form I1⊕ I2 for any ideals I1 and I2 of 2Z.
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