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Direct products and direct sums

This short section gives a useful construction which can be applied to both groups and
rings.

Direct products of groups

Let (G,0) and (H,J) be groups. Put
GxH=1{(g,h):g€G, he H}

with the operation (g1,/41) X (g2,h2) = (g1 0g2,h0hy). Then G X H is a group, with
identity (1g,1x) and (g,h)~! = (g~ ', A~ 1). Tt is called the external direct product of
Gand H.

Put

G = {(g1n):g€G}
H = {(1g,l’l>§/’l€H}

and define 0:G x H — H by (g,h)¢ = h. Then ¢ is a homomorphism, Im(¢) = H
and ker(¢) = G1,s0 G1 IG x H and (G x H)/G; = H. Similarly, H <G x H and
(Gx H)/H, ~G.

If g€ Gand h € H then (g,15)(16,h) = (g,h) = (16,h)(g, 1a), so all elements
of G| commute with all elements of H;. Obviously, GiH; = G x H and G N H| =
{(1,1u)}. Therefore G x H is the internal direct product of G and H].

We also have G = G| and H = H,.

Theorem Let G and H be groups.

(a) If G and H are finite then |G x H| = |G| x |H|.
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(b) If G and H are Abelian then G x H is Abelian.
(c) If G and H are cyclic of coprime order then G x H is cyclic.
(d FN<Gand K <Hthen NxK < GXxH.

(e) I N<JGand K<H then N x K<G x H and
(GxH)/(NxK)=(G/N)x (H/K).
Proof Exercise.
Given three (or more) groups G, G2, G3, we have

(G1 X G2) X G3 = Gy x (G2 X G3).

We generally regard both of these as being G| x G, X G3, which is
{(g,h,k): g€ Gy, he Gy, ke G},

with coordinatewise multiplication.

Theorem If a finite group G is Abelian then G is the internal direct product of its
Sylow subgroups. (Note that if G is Abelian then all its subgroups are normal so there
is exactly one Sylow p-subgroup for each prime p dividing |G|.)

Proof Suppose that P and Q are Sylow subgroups for different primes. Then |[PN Q|
divides |P| and |Q], so [PNQ| =1, s0 PNQ = {1¢}. Therefore PQ is a subgroup of G
and is the internal direct product of P and Q. Continue similarly, using PQ and R,
where R is another Sylow subgroup. [

Theorem If a finite Abelian group G has order a power of the prime p then G is a
direct product of cyclic groups, each of which has order a power of p. If n; is the
number of factors in the product which have order p', then all ways of writing G as a
direct product of cyclic groups have precisely n; factors isomorphic to C,,.

Proof Beyond the scope of this course.

Corollary If G is a finite Abelian group then G is a direct product of cyclic groups,
each of which has prime-power order. If n,; is the number of factors in the product
which have order p’, where p is prime, then all ways of writing G as a direct product
of cyclic groups have precisely n); factors isomorphic to C,:.



Direct sums of rings
Given rings Ry, ..., Ry, the external direct sum Ry Ry & --- &R, is
{(r1,r2,...,r) :ri €ER; for 1 <i< n},
with addition and multiplication defined by
(r1,r2y ooy tn) + (51,82, 00080) = (r1 4+ S1,2 452,y 4 5p)

and
(F1yF2y ey Fn) X (81,82, 80) = (F1S1,7282, -+« TuSn),

where the operation in the i-th coordinate position is the relevant operation in R;. It
can be checked that this is a ring.
If Ry, ..., R, are all commutative then sois R{ P --- B R,,.
If R; has anidentity 1;fori=1,...,nthen R ®--- @R, has identity (14, 1,...,1,).
If at least two of Ry, ..., R, are not just {0} then R} & --- @ R, has zero-divisors:

(r,02,03,...,0,) X (01,5,03,...,0,) = (01,02,...,0,).
Define 0;:R1 & --- &R, — R; by
(r1,r2, ..., rn)0; = ri.
This is a ring homomorphism with Im(¢;) = R; and

ker(q)i) = Rl@"'@R,’_l@{oi}@Ri_H@...@Rn
= R - ORi-1DRi-1D--- DRy

Put.]i:{(01,...,0,',1,}’,',0,'“,...,0”):riGRi}. Then J; <R ®---®R,, and J; = R;.
Theorem If /; <R;fori=1,...,n,thenli ®---@®I,isanideal of R{ ®--- DR,,.
Proof (a) Sincel; #0fori=1,...,n, I} ®--- DI, is not empty.

(b) Suppose that (ay,...,a,) €L ®---®1I, and (by,...,b,) €L B --- @ 1I,. Then q;
and b; are in I;, so a; — b; € I;, so

(al,...,an)—(bl,...,bn):(al—bl,...,an—bn)Ell@m@ln.

(c) Suppose that (ay,...,a,) €L & - @I, and (ry,...,r,) ER1 D ---DR,. Then
ria; and a;r; are both in I;, so
(rl,...,rn)(al,...,an) = (rlal,...,rnan) ERID---DPR,

and
(aiy...,an)(r1y...,mm) = (a1r1,...apry) ER1 G- ®R,. O



Theorem If R; is a ring with identity 1;, for i =1, ..., n, and if J is an ideal of
R & -- PR, then thereis anideal [; of R;, fori=1,...,n,suchthatJ =1, 5 ---PI,.

Proof Put I; = (J)¢;. Then I; is a subring of R;.
If a; € I; and r € R; then (0y,...,0;—1,5,0i+1,...,0,) € Ry ®--- DR, and there is
some (aj,...,aj,...,a,) in J and therefore
(01,...,Oi,l,r,Ol-H,...,On)(al,...,ai,...,an) = (01,...,0,-,1,ra,-,01~+1,...,On) eJ,
so ra; € I;. Similarly, a;r € I;. Hence I; <R;.
Clearly, JC L1 &--- P 1,.
Because R; has an identity 1;, we have (01,...,0;-1,1;,0;41,...,0,) ER1 ®---BR,
soif (ay,...,a;,...,a,) € J then
O1,...,0i-1,1;,0i11,...,0,) (a1, - . . @i, . . ,an) = (01,...,0i-1,a;,0i11,...,0,) €J.

Therefore if a; € [; fori=1, ..., nthen (0y,...,0,-1,a;,0i+1,...,0,) € Jfori=1,...,
nandso (ay,...,a,) €J. Thisshows that} &--- &I, CJ,andsoJ =1 D---BL,. O

Example In 27Z & 27,
{2n,2m):n€Z, meZ, n+me 27}

is an ideal, but it is not of the form /; & I, for any ideals /; and I, of 27Z.



