
MAS 305 Algebraic Structures II

Notes 13 Autumn 2006

More about Noetherian rings
Theorem Let R be a Noetherian ring. If I is an ideal of R then R/I is Noetherian.

Proof Let J1⊂ J2⊆ ·· ·⊆ Ji⊆ Ji+1⊆ ·· · be an ascending chain of ideals in R/I. By the
Correspondence Theorem, R has ideals Ki (i = 1, 2, . . . ) such that I ⊆Ki and Ki/I = Ji
and Ki ⊆Ki+1 for all i. Then I⊆K1 ⊆K2 ⊆ ·· · ⊆Ki ⊆Ki+1 ⊆ ·· · is an ascending chain
of ideals of R. Since R is Noetherian, there is some N such that Ki = KN whenever
i > N, so Ji = Ki/I = KN/I = JN for i > N. Hence R/I is Noetherian. �

Corollary If R is Noetherian and φ:R → S is a ring homomorphism then Im(φ) is
Noetherian.

Definition Given a non-empty set S of ideals of a ring, an ideal M is maximal in S if

(a) M ∈ S

(b) if I ∈ S and I ⊇M then I = M.

Note: S may have no maximal elements, or it may have more than one.

Example Let S be the set of all ideals of Z different from Z itself and {0}, so that
S = {nZ : n > 2}. Since nZ ⊆ mZ if and only if m divides n, the maximal elements
of S are pZ for primes p.
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Theorem A ring R is Noetherian if and only if every non-empty set of ideals of R
contains a maximal element.

Proof ⇐= Let I1 ⊆ I2 ⊆ ·· · be an ascending chain of ideals of R. Put S = {I1, I2, . . .}.
If every non-empty set of ideals contains a maximal element then S contains a
maximal element, say IN . If j > N then IN ⊆ I j so I j = IN because IN is maximal
in S . Therefore R is Noetherian.

=⇒ Suppose that R is Noetherian and S is a non-empty set of ideals of R with no
maximal element. Choose any ideal I1 in S . Because I1 is not maximal, we
can choose I2 in S with I1 ⊂ I2 and I1 6= I2. Continuing like this, when we have
chosen In in S we know that In is not maximal so we can choose In+1 in S with
In ⊂ In+1 and In 6= In+1. This gives the infinite ascending chain

I1 ⊂ I2 ⊂ I3 ⊂ ·· · ⊂ In ⊂ In+1 ⊂ ·· · ,

which contradicts ACC. �

Definition An ideal I of a ring R is finitely generated if there is a finite subset A of R
such that I = 〈A〉.

Example Every principal ideal is finitely generated.

Theorem A ring R is Noetherian if and only if every ideal of R is finitely generated.

Proof ⇐= Suppose that I1 ⊆ I2 ⊆ ·· · are ideals of R. Put I =
∞[

n=1

In. Then I is an ideal

of R. If I is finitely generated then there are elements a1, . . . , am of R such that
I = 〈{a1, . . . ,am}〉. For i = 1, . . . , m, ai ∈ I so there is some ni such that ai ∈ Ini .
Put N = max{n1, . . . ,nm}. Then

ni 6 N so ai ∈ Ini ⊆ IN for i = 1, . . . , m

so I ⊆ IN . If j > N then I j ⊆ I ⊆ IN ⊆ I j so I j = IN . Hence ACC is satisfied and
so R is Noetherian.

=⇒ Suppose that R is Noetherian. Let I be an ideal of R, and let

S = {K : K ER, K ⊆ I, K is finitely generated} .

Then {0R} ∈ S , so S is not empty, so S contains a maximal element M. Then
M is finitely generated, so there is a finite subset A of R with M = 〈A〉.
Let x∈ I. Put B = A∪{x} and J = 〈B〉. Then B is finite so J is finitely generated,
and J ⊆ I because B ⊆ I. Therefore J ∈ S . But M ⊆ J, and M is maximal, so
M = J, so x∈M. This is true for all x in I, so I ⊆M. But M ⊆ I, because M ∈ S .
Therefore I = M, so I is finitely generated. �
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Aside on the Axiom of Choice
We can summarize some of the recent proofs as follows.

Noetherian ⇐⇒ sets of ideals have maximal elements

ideals are finitely generated

⇑⇓

factorization in IDs

⇓

PID⇐=

This diagram shows that one of our proofs was redundant! Apart from that, let’s
take another look at two proofs.

In the proof that in a Noetherian integral domain every (reasonable) element can
be factorized as a product of irreducibles, we made the following argument.

For i = 1, 2, . . . , we have ri = ri+1si+1, and at least one of ri+1, si+1 cannot
be factorized, so choose the labelling so that ri+1 cannot be factorized.

In the proof that in a Noetherian ring every non-empty set of ideals contains a
maximal element, we made following argument.

For i = 1, 2, . . . , we have an ideal Ii in S , and Ii is not maximal in S , so
we can choose an ideal Ii+1 in S with Ii ⊂ Ii+1 and Ii 6= Ii+1.

Both arguments use the Axiom of Choice, which states that:

If Fn is a non-empty set for n ∈ N, then we can choose an
element xn in Fn for all n in N.

This axiom is not needed if we make only finitely many choices. It is independent
of the other axioms of set theory—you can make one consistent mathematical theory
by assuming it, or another consistent mathematical theory by assuming that it is not
true. Some mathematicians think that the Axiom of Choice is so intuitively reasonable
that they do assume it. However, the axiom has the consequence that the real numbers
can be put into a total (linear) order in such a way that every subset of the real numbers
has a first element. This consequence seems so intuitively unreasonable that there are
other mathematicians who do not assume the Axiom of Choice.

Here is a nice way of picturing it. I have one drawer with countably infinitely
many pairs of shoes, and another with countably infinitely many pairs of socks. If I
ask you to take out one shoe from each pair you can do it, because you can follow
some specification such as ‘take the left shoe from each pair’. If I ask you to take out
one sock from each pair then you cannot do it without the axiom of choice.
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Noetherian rings and polynomials
Notation Let R be a ring. If I is an ideal of R[x], put

Ln(I) = {an ∈ R : ∃a0,a1, . . . ,an−1 ∈ R with a0 +a1x+ · · ·+anxn ∈ I}

for n > 0.

Lemma If R is a commutative ring with identity and I, J are ideals of R[x] then the
following hold.

(a) Ln(I) is an ideal of R;

(b) Ln(I)⊆ Ln+1(I);

(c) if I ⊆ J then Ln(I)⊆ Ln(J);

(d) if I ⊆ J and Ln(I) = Ln(J) for all n > 0 then I = J.

Proof (a) (i) 0R ∈ Ln(I) because 0+0x+ · · ·+0xn = 0R[x] ∈ I.

(ii) If an and bn are in Ln(I) then there are polynomials a0 + a1x + · · ·+ anxn

and b0 +b1x+ · · ·+bnxn in I. Then

(a0−b0)+(a1−b1)x+ · · ·+(an−bn)xn ∈ I,

so an−bn ∈ Ln(I).

(iii) If an ∈ Ln(I) then there is a polynomial a0 +a1x+ · · ·+anxn in I. If r ∈ R
then r ∈ R[x] and so ra0 + ra1x+ · · ·+ ranxn ∈ I, so ran ∈ Ln(I).

(b) If an ∈ Ln(I) then there is a polynomial a0 + a1x + · · ·+ anxn in I. Since R
has an identity, x ∈ R[x]. Therefore 0R + a0x + a1x2 + · · ·+ anxn+1 ∈ I. Thus
an ∈ Ln+1(I).

(c) If I ⊆ J and a0 + a1x + · · ·+ anxn ∈ I then a0 + a1x + · · ·+ anxn ∈ J, so if an ∈
Ln(I) then an ∈ Ln(J).

(d) Suppose that J ⊃ I but J 6= I. Take a polynomial f (x) of smallest degree in
J \ I. Suppose that f (x) = b0 + b1x + · · ·+ bnxn. Then bn ∈ Ln(J) = Ln(I),
so there is a polynomial g(x) = c0 + c1x + · · ·+ cn−1xn−1 + bnxn in I. Then
g(x) ∈ I ⊂ J so f (x)−g(x) ∈ J. If f (x)−g(x) = 0 then f (x) = g(x) so f (x) ∈ I,
which is a contradiction. Otherwise, f (x)− g(x) has smaller degree than f (x),
so f (x)−g(x) ∈ I, so f (x) ∈ I, which is also a contradition. �
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Hilbert’s Basis Theorem Let R be a commutative ring with identity. If R is Noether-
ian then R[x] is Noetherian.

Proof Let I1 ⊆ I2 ⊆ ·· · be an ascending chain of ideals in R[x]. Put

S = {Ln(Im) : n > 0, m > 1} .

By part (i) of the lemma, this is a non-empty set of ideals of R. Since R is Noetherian,
S has a maximal element, say Lp(Iq).

Part (ii) of the lemma shows that L0(Im) ⊆ L1(Im) ⊆ L2(Im) ⊆ ·· · for all m, and
part (iii) shows that Ln(I1)⊆ Ln(I2)⊆ Ln(I3)⊆ ·· · for all n. Hence if n > p and m > q
then

Lp(Iq)⊆ Ln(Iq)⊆ Ln(Im)

so Ln(Im) = Lp(Iq).
For each n, there is an integer Mn such that the ascending chain

Ln(I1)⊆ Ln(I2)⊆ ·· ·

becomes stationary at Ln(IMn). Put N = max
{

q,M0,M1, . . . ,Mp−1
}

.
Suppose that m > N. Then m > q and N > q so Ln(Im) = Ln(IN) = Lp(Iq) for all

n > p. If n < p then m > Mn and N > Mn so Ln(Im) = Ln(IN) = Ln(IMn). Therefore
Ln(Im) = Ln(IN) for all n, so Im = IN , by part (iv) of the lemma.

Thus ACC is satisfied in R[x], so R[x] is Noetherian. �

ideals in R[x] I1 I2 I3 . . . IM1 . . . Iq . . . IM0 . . .

ideals in R
L0(I1) L0(I2) L0(I3) . . . L0(IM1) . . . L0(Iq) . . . L0(IM0) . . .

L1(I1) L1(I2) L1(I3) . . . L1(IM1) . . . L1(Iq) . . . L1(IM0) . . .

...
...

... . . . ... . . . ... . . . ... . . .

Lp(I1) Lp(I2) Lp(I3) . . . Lp(IM1) . . . Lp(Iq) . . . Lp(IM0) . . .

...
...

... . . . ... . . . ... . . . ... . . .
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Corollary 1 to Hilbert’s Basis Theorem Let R be a commutative ring with identity.
If R is Noetherian then R[x1, . . . ,xn] is Noetherian.

Proof Use induction on n. �

Corollary 2 to Hilbert’s Basis Theorem Let R be a commutative ring with identity.
If S is a subring containing 1R and S is Noetherian and there are elements r1, . . . , rn
in R such that every element can be expressed as f (r1, . . . ,rn) with f in S[x1, . . . ,xn]
then R is Noetherian.

Proof By the previous corollary, S[x1, . . . ,xn] is Noetherian. Define φ:S[x1, . . . ,xn]→
R by f (x1, . . . ,xn)φ = f (r1, . . . ,rn). In a commutative ring, the definition of addition
and multiplication of polynomials makes the substitution φ a homomorphism. Then
R = Im(φ), which is Noetherian. �

Corollary 3 to Hilbert’s Basis Theorem If F is a field then F [x1, . . . ,xn] is Noether-
ian.

Example Put R =
{

a+b
√
−5 : a, b ∈ Z

}
. Then R is a subring of C, which is com-

mutative. Also, Z is a subring of R, Z contains the identity of R, and every element
of R is f (

√
−5) for some f in Z[x]. Therefore R is Noetherian. Moreover, R is an

integral domain, so every element of R which is not a unit or zero can be factorized as
a product of a finite number of irreducibles. However, R is not a unique factorization
domain, because factorization is not unique, as we shall now show.

If (a+b
√
−5)(c+d

√
−5)= e+ f

√
−5 then (a−b

√
−5)(c−d

√
−5)= e− f

√
−5.

Multiplying corresponding sides gives

(a2 +5b2)(c2 +5d2) = e2 +5 f 2. (1)

First put e + f
√
−5 = 1. Then the only integer solution to (1) is a = c = ±1 and

b = d = 0. Therefore the units of R are just ±1.
More generally, (1) shows that e + f

√
f is irreducible if e2 + 5 f 2 cannot be fac-

torized as the product of two integers, neither of which is ±1 and both of which are
congruent to 0, 1 or 4 modulo 5.

In R we have

(1+2
√
−5)(3+

√
−5) =−7+7

√
−5 = 7(−1+

√
−5).

Then we get 12 + 5× 22 = 21 = 3× 7, 33 + 5× 12 = 14 = 2× 7, 72 = 7× 7 and
(−1)2 +5×12 = 6 = 2×3. Since none of 2, 3 and 7 is congruent to 0, 1 or 4 modulo 5,
the four elements 1 + 2

√
−5, 3 +

√
−5, 7 and −1 +

√
−5 are all irreducible. No pair

are associates, because x is an associate of y if and only if x = ±y. So we have a
non-unique factorization of −7+7

√
−5.
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Example We shall show that 2Z is Noetherian but 2Z[x] is not.
Let I be a non-zero ideal of 2Z. If a ∈ I then −a ∈ I because I is a subgroup of

(2Z,+). Let a be the smallest positive element of I. Suppose that b ∈ I with b > 0.
In Z, there are integers q and r such that b = qa+ r and 0 6 r < a. Now,

qa = a+a+ · · ·+a︸ ︷︷ ︸
q times

,

which is in I. Thus b−qa ∈ I and so r ∈ I. Because 0 6 r < a, we must have r = 0.
Therefore I = {qa : q ∈ Z} (of course, a is even).

So every ideal of 2Z is an ideal of Z. We know that Z satisfies ACC, so 2Z must
also satify ACC.

If 2Z[x] is Noetherian then it is finitely generated. Suppose that the generators
are f1(x), . . . , fn(x), where fi(x) has degree di. Put N = max{d1, . . . ,dn}. Then if
g(x) ∈ 〈{ f1(x), . . . , fn(x)}〉 then

either the degree of g(x) is at most N

or every coefficient in g(x) is divisible by 4.

Therefore 2xN+1 /∈ 〈{ f1(x), . . . , fn(x)}〉 but 2xN+1 ∈ 2Z[x]. This contradiction shows
that 2Z[x] is not Noetherian.

Noetherian rings and matrices
Theorem (a) If the ring R is not Noetherian then Mn(R) is not Noetherian.

(b) If the ring R has an identity and R is Noetherian then Mn(R) is Noetherian.

Proof (a) Let I1 ⊂ I2 ⊂ ·· · ⊂ Im ⊂ Im+1 ⊂ ·· · be an infinite ascending chain of
ideals of R. Then Mn(I1) ⊂ Mn(I2) ⊂ ·· · ⊂ Mn(Im) ⊂ Mn(Im+1) ⊂ ·· · is an
infinite ascending chain of ideals of Mn(R).

(b) Let J1 ⊆ J2 ⊆ ·· · be an ascending chain of ideals of Mn(R). Since R has an
identity, there are ideals Im of Mn(R) such that Jm = Mn(Im) for m = 1, 2, . . . .
Then I1 ⊆ I2 ⊆ ·· · . Since R is Noetherian, there is some N such that Im = IN
whenever m > N. Then Jm = Mn(Im) = Mn(IN) = JN when m > N. �
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Example We know that 2Z is Noetherian but does not contain an identity. We shall
show that not all ideals of M2(2Z) have the form M2(I) for some ideal I of 2Z.

Put

J =
{[

4a 4b
2c 4d

]
: a, b, c, d ∈ Z

}
⊆M2(Z).

Then (J,+) is a subgroup of (M2(2Z),+). If A ∈ J and B ∈ M2(2Z) then AB ∈
M2(4Z)⊆ J and BA ∈M2(4Z)⊆ J, so J CM2(Z).

Challenge! Is M2(2Z) Noetherian?

8


