

MAS 305

Algebraic Structures II

Notes 12 Autumn 2006

Factorization in integral domains

Lemma If a, b, c are elements of an integral domain R and ab = ac then either $a = 0_R$ or b = c.

Proof $ab = ac \Rightarrow a(b-c) = 0_R \Rightarrow a = 0_R \text{ or } b-c = 0_R \text{ because } R \text{ has no zero-divisors.}$

Definition Let a and b be elements of an integral domain R. Then a is an associate of b if there is a unit u in R with au = b.

Lemma In an integral domain R, "is an associate of" is an equivalence relation.

Proof (a) R has an identity 1_R , which is a unit, and $a1_R = a$ for all a in R. So the relation is reflexive.

- (b) If u is a unit then there is v in R with $uv = 1_R$, so v is also a unit. If au = b then bv = auv = a. So the relation is symmetric.
- (c) Suppose that au = b and bw = c, where u and w are units. Then uw is also a unit, and a(uw) = bw = c. So the relation is transitive. \square

Definition Let R be an integral domain and let r be in R. Then r is *irreducible* if $r \neq 0_R$ and r is not a unit and if whenever r = ab then either a or b is a unit (so the other is an associate of r).

Example In \mathbb{Z} , *n* is irreducible if $\pm n$ is prime.

Definition An integral domain R is a unique factorization domain (UFD) if

- (a) every element other than 0_R and units can be written as a product of a finite number of irreducibles, and
- (b) if $r_1r_2...r_n = s_1s_2...s_m$ with $r_1, ..., r_n, s_1, ..., s_m$ all irreducible then n = m and there is a permutation π of $\{1, ..., n\}$ such that r_i and $s_{i\pi}$ are associates for i = 1, ..., n.

Example \mathbb{Z} is a UFD.

Definition Let *R* be a commutative ring.

- (a) If r, s are in R, then r divides s if s = rx for some x in R.
- (b) If r, s are in R, then the element t in R is a highest common factor (hcf) or greatest common divisor (gcd) of r and s if
 - (i) t divides r and t divides s
 - (ii) if $x \in R$ and x divides t and x divides s then x divides t.

Theorem Let *R* be an integral domain. Let *r* and *s* be in *R*.

- (a) If r divides s and s divides r then r and s are associates.
- (b) If d and e are both hefs of r and s then d and e are associates. (Note: r and s may not have any hefs.)
- **Proof** (a) Suppose that s = rx and r = sy, for some x, y in R. Then r = rxy, so $r(1_R xy) = 0_R$. If $r = 0_R$ then $s = 0_R x = 0_R$ so r and s are associates. If $r \neq 0_R$ then $1_R xy = 0_R$, so $xy = 1_R$, so x and y are units and therefore r and s are associates.
 - (b) If d and e are hefs of r and s then d divides e and e divides d, so, by part (a), d and e are associates. \square

Theorem If R is a unique factorization domain and r, s are in R then r and s have a highest common factor.

Proof If $r = 0_R$ then s is a hcf of 0_R and s, because all elements divide 0_R .

If r is a unit then there is some u with $ru = 1_R$. If xy = r then $xyu = yxu = 1_R$ so x and y are both units. Thus the only elements dividing r are units, so 1_R is a hcf of r and s.

Suppose that r and s are neither zero nor units. Let $r = r_1 \dots r_n$ where the r_i are irreducibles. Suppose that r = ab where a, b are neither zero nor units. Let $a = a_1 \dots a_m$ and $b = b_1 \dots b_t$, where the a_j and b_k are irreducibles. Then

$$r = r_1 \dots r_n = a_1 \dots a_m b_1 \dots b_t$$

so m + t = n and we can reorder r_1, \ldots, r_n so that

$$r_i$$
 is an associate of a_i for $i = 1, ..., m$
 r_{m+j} is an associate of b_j for $j = 1, ..., n$.

For irreducibles z in R, let $\phi_r(z)$ be the number of r_1, \ldots, r_n which are associates of z; that is,

$$\phi_r(z) = |\{i : 1 \le i \le n, r_i \text{ is an associate of } z\}|.$$

This is well defined because R is a UFD. We have shown that a divides r if and only if $\phi_a(z) \leq \phi_r(z)$ for all irreducibles z. (Note: we need to check this only for $z = a_1, \ldots, a_m$, which is a finite number of cases.)

Put $\psi(z) = \min \{ \phi_r(z), \phi_s(z) \}$ for the finite number of irreducibles r_1, \ldots, r_n . Then

$$\prod_{\text{such } z} z^{\psi(z)}$$

is a highest common factor of r and s. (Note that the product is over only finitely many irreducibles, and is defined to be 1_R if $\psi(z) = 0$ for $z = r_1, \dots, r_n$. \square

Definition A *principal ideal domain* (PID) is an integral domain in which every ideal is principal.

Example \mathbb{Z} is a PID.

Theorem Let R be a PID, and let r, s be in R. Then r and s have a highest common factor t, and there are x, y in R such that t = rx + sy.

Proof Let $I = \langle \{r, s\} \rangle$, the smallest ideal containing r and s. Then

$$I = \{rx + sy : x, y \in R\}.$$

(R has an identity, so r and s are in I; the distributive law shows that I is a subgroup under +; and the associativity and commutativity of multiplication show that iz and zi are in I when $i \in I$ and $z \in R$.)

R is a PID, so I is a principal ideal, so there is an element t such that $I = \langle t \rangle = tR$. Moreover, $t \in I$, so there are elements x, y in R with t = rx + sy.

Now, $r \in I$ so t divides r, and $s \in I$ so t divides s. Suppose that a divides r and a divides s. Then r = ab and s = ac for some b, c in R. Thus t = rx + sy = abx + acy = a(bx + cy) so a divides t. Hence t is an hef of r and s. \square

Definition A ring R is *Noetherian* if it satisfies the ascending chain condition (ACC), which says that if

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_i \subseteq I_{i+1} \subseteq \cdots$$

is an infinite ascending chin of ideals of R then there is some integer N such that $I_N = I_{N+1} = I_{N+2} = \cdots$, that is, $I_j = I_N$ whenever $j \ge N$.

Example The ideals of \mathbb{Z} are $n\mathbb{Z}$ for n in \mathbb{Z} . If $n \neq 0$ then $n\mathbb{Z}$ is contained in only finitely many ideals of \mathbb{Z} , because $n\mathbb{Z} \subseteq m\mathbb{Z}$ if and only if m divides n. Hence \mathbb{Z} is Noetherian.

Theorem If R is a PID then R is Noetherian.

Proof Suppose that

$$I_1 \subseteq I_2 \subseteq \cdots$$

are ideals of *R*. Put $I = \bigcup_{n=1}^{\infty} I_n$.

- (a) $I_1 \subseteq I$, so I is not empty.
- (b) Let r, s be in I. Then $r \in I_n$ and $s \in I_m$, for some n, m. We may suppose that $n \le m$, so $r \in I_m$. Then $r s \in I_m$, because I_m is an ideal, so $r s \in I$.
- (c) Let $r \in I$ and $t \in R$. Then $r \in I_n$, for some n, and $rt \in I_n \subseteq I$, since I_n is an ideal. Hence I is an ideal of R.

However, *R* is a PID, so there is some *x* in *R* with $I = \langle x \rangle$. Then $x \in I$, so $x \in I_n$ for some *n*, so $\langle x \rangle \subseteq I_n$, so $I \subseteq I_n$. If $j \ge n$ then $I_j \subseteq I \subseteq I_n \subseteq I_j$, so $I_j = I_n$.

Theorem Let R be a Noetherian integral domain. If $r \in R$ and r is neither zero nor a unit then r can be written as a product of a finite number of irreducibles.

Proof If r is irreducible, we are done.

If not, then $r = r_1 s_1$ with neither r_1 nor s_1 a unit or zero. If both r_1 and s_1 can be factorized as products of irreducibles, then so can r. If not, suppose that we chose the labels so that r_1 cannot be factorized. (We are writing "cannot be factorized" as a shorthand for "cannot be written as a product of a finite number of irreducibles".)

Similarly, $r_1 = r_2 s_2$ where neither r_2 nor s_2 is a unit or zero and r_2 cannot be factorized. Continuing in this way, we obtain elements r_1, r_2, \ldots, r_n , with $r_n = r_{n+1} s_{n+1}$ and neither r_{n+1} nor s_{n+1} a unit or zero. Then $r_n \in \langle r_{n+1} \rangle$ so $\langle r_n \rangle \subseteq \langle r_{n+1} \rangle$. If $\langle r_n \rangle = \langle r_{n+1} \rangle$ then $r_{n+1} \in \langle r_n \rangle$ so $r_{n+1} = r_n x$ for some x in R. Then $r_{n+1} = r_{n+1} s_{n+1} x$, so $1_R = s_{n+1} x$, because R is an integral domain and $r_{n+1} \neq 0$, so s_{n+1} is a unit, which is a contradiction.

So, for all n, we have $\langle r_n \rangle \subset \langle r_{n+1} \rangle$ but $\langle r_n \rangle \neq \langle r_{n+1} \rangle$. This contradicts ACC, so r must be factorizable. \square

Theorem If *R* is a PID then it is a UFD.

Proof If *R* is a PID then *R* is Noetherian, so every element of *R* that is neither zero not a unit has a factorization into irreducibles.

Suppose that r is neither zero nor a unit and $r = r_1 \dots r_n = s_1 \dots s_m$ where all the r_i and s_j are irreducible. Since R is a PID, r_1 and s_1 have a hcf t. If t is not a unit then it is an associate of both r_1 and s_1 , so r_1 and s_1 are associates. If t is a unit then 1_R is a hcf of r_1 and s_1 , so $1_R = r_1x + s_1y$ for some x, y in R. Then

$$s_2...s_m = 1_R s_2...s_m$$

= $r_1 x s_2...s_m + s_1 y s_2...s_m$
= $r_1 x s_2...s_m + y r_1...r_n$
= $r_1 (x s_2...s_m + y r_2...r_n),$

so r_1 divides $s_2 \dots s_m$.

Repeating the argument shows that there is some j such that r_1 is an associate of s_j (properly, this is induction on m). Renumber the s_i to make r_1 an associate of s_1 , say $s_1 = r_1 u$ for some unit u. Then

$$r_1r_2\ldots r_n=r_1us_2\ldots s_m$$

and $r_1 \neq 0$ so $r_2 \dots r_n = (us_2)s_3 \dots s_m$ with us_2 also irreducible.

Doing this for a finite number of steps (equivalently, using induction on n), shows that the s_j can be reordered so that r_i is an associate of s_i for i = 1, ..., n, and hence m = n. \square