
MAS 305 Algebraic Structures II

Notes 12 Autumn 2006

Factorization in integral domains
Lemma If a, b, c are elements of an integral domain R and ab = ac then either a = 0R
or b = c.

Proof ab = ac ⇒ a(b− c) = 0R ⇒ a = 0R or b− c = 0R because R has no zero-
divisors. �

Definition Let a and b be elements of an integral domain R. Then a is an associate
of b if there is a unit u in R with au = b.

Lemma In an integral domain R, “is an associate of ” is an equivalence relation.

Proof (a) R has an identity 1R, which is a unit, and a1R = a for all a in R. So the
relation is reflexive.

(b) If u is a unit then there is v in R with uv = 1R, so v is also a unit. If au = b then
bv = auv = a. So the relation is symmetric.

(c) Suppose that au = b and bw = c, where u and w are units. Then uw is also a
unit, and a(uw) = bw = c. So the relation is transitive. �

Definition Let R be an integral domain and let r be in R. Then r is irreducible if
r 6= 0R and r is not a unit and if whenever r = ab then either a or b is a unit (so the
other is an associate of r).

Example In Z, n is irreducible if ±n is prime.
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Definition An integral domain R is a unique factorization domain (UFD) if

(a) every element other than 0R and units can be written as a product of a finite
number of irreducibles, and

(b) if r1r2 . . .rn = s1s2 . . .sm with r1, . . . , rn, s1, . . . , sm all irreducible then n = m
and there is a permutation π of {1, . . . ,n} such that ri and siπ are associates for
i = 1, . . . , n.

Example Z is a UFD.

Definition Let R be a commutative ring.

(a) If r, s are in R, then r divides s if s = rx for some x in R.

(b) If r, s are in R, then the element t in R is a highest common factor (hcf) or
greatest common divisor (gcd) of r and s if

(i) t divides r and t divides s

(ii) if x ∈ R and x divides t and x divides s then x divides t.

Theorem Let R be an integral domain. Let r and s be in R.

(a) If r divides s and s divides r then r and s are associates.

(b) If d and e are both hcfs of r and s then d and e are associates. (Note: r and s
may not have any hcfs.)

Proof (a) Suppose that s = rx and r = sy, for some x, y in R. Then r = rxy, so
r(1R−xy) = 0R. If r = 0R then s = 0Rx = 0R so r and s are associates. If r 6= 0R
then 1R − xy = 0R, so xy = 1R, so x and y are units and therefore r and s are
associates.

(b) If d and e are hcfs of r and s then d divides e and e divides d, so, by part (a),
d and e are associates. �

Theorem If R is a unique factorization domain and r, s are in R then r and s have a
highest common factor.

Proof If r = 0R then s is a hcf of 0R and s, because all elements divide 0R.
If r is a unit then there is some u with ru = 1R. If xy = r then xyu = yxu = 1R so

x and y are both units. Thus the only elements dividing r are units, so 1R is a hcf of
r and s.
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Suppose that r and s are neither zero nor units. Let r = r1 . . .rn where the ri are
irreducibles. Suppose that r = ab where a, b are neither zero nor units. Let a =
a1 . . .am and b = b1 . . .bt , where the a j and bk are irreducibles. Then

r = r1 . . .rn = a1 . . .amb1 . . .bt

so m+ t = n and we can reorder r1, . . . , rn so that

ri is an associate of ai for i = 1, . . . , m
rm+ j is an associate of b j for j = 1, . . . , n.

For irreducibles z in R, let φr(z) be the number of r1, . . . , rn which are associates
of z; that is,

φr(z) = |{i : 1 6 i 6 n, ri is an associate of z}| .
This is well defined because R is a UFD. We have shown that a divides r if and only if
φa(z) 6 φr(z) for all irreducibles z. (Note: we need to check this only for z = a1, . . . ,
am, which is a finite number of cases.)

Put ψ(z) = min{φr(z),φs(z)} for the finite number of irreducibles r1, . . . , rn. Then

∏
such z

zψ(z)

is a highest common factor of r and s. (Note that the product is over only finitely many
irreducibles, and is defined to be 1R if ψ(z) = 0 for z = r1, . . . ,rn. �

Definition A principal ideal domain (PID) is an integral domain in which every ideal
is principal.

Example Z is a PID.

Theorem Let R be a PID, and let r, s be in R. Then r and s have a highest common
factor t, and there are x, y in R such that t = rx+ sy.

Proof Let I = 〈{r,s}〉, the smallest ideal containing r and s. Then

I = {rx+ sy : x,y ∈ R} .

(R has an identity, so r and s are in I; the distributive law shows that I is a subgroup
under +; and the associativity and commutativity of multiplication show that iz and zi
are in I when i ∈ I and z ∈ R.)

R is a PID, so I is a principal ideal, so there is an element t such that I = 〈t〉= tR.
Moreover, t ∈ I, so there are elements x, y in R with t = rx+ sy.

Now, r ∈ I so t divides r, and s ∈ I so t divides s. Suppose that a divides r and
a divides s. Then r = ab and s = ac for some b, c in R. Thus t = rx+sy = abx+acy =
a(bx+ cy) so a divides t. Hence t is an hcf of r and s. �
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Definition A ring R is Noetherian if it satisfies the ascending chain condition (ACC),
which says that if

I1 ⊆ I2 ⊆ ·· · ⊆ I j ⊆ I j+1 ⊆ ·· ·
is an infinite ascending chin of ideals of R then there is some integer N such that
IN = IN+1 = IN+2 = · · ·, that is, I j = IN whenever j > N.

Example The ideals of Z are nZ for n in Z. If n 6= 0 then nZ is contained in only
finitely many ideals of Z, because nZ ⊆ mZ if and only if m divides n. Hence Z is
Noetherian.

Theorem If R is a PID then R is Noetherian.

Proof Suppose that
I1 ⊆ I2 ⊆ ·· ·

are ideals of R. Put I =
∞[

n=1

In.

(a) I1 ⊆ I, so I is not empty.

(b) Let r, s be in I. Then r ∈ In and s ∈ Im, for some n, m. We may suppose that
n 6 m, so r ∈ Im. Then r− s ∈ Im, because Im is an ideal, so r− s ∈ I.

(c) Let r ∈ I and t ∈ R. Then r ∈ In, for some n, and rt ∈ In ⊆ I, since In is an ideal.

Hence I is an ideal of R.
However, R is a PID, so there is some x in R with I = 〈x〉. Then x ∈ I, so x ∈ In for

some n, so 〈x〉 ⊆ In, so I ⊆ In. If j > n then I j ⊆ I ⊆ In ⊆ I j, so I j = In. �

Theorem Let R be a Noetherian integral domain. If r ∈ R and r is neither zero nor a
unit then r can be written as a product of a finite number of irreducibles.

Proof If r is irreducible, we are done.
If not, then r = r1s1 with neither r1 nor s1 a unit or zero. If both r1 and s1 can

be factorized as products of irreducibles, then so can r. If not, suppose that we chose
the labels so that r1 cannot be factorized. (We are writing “cannot be factorized” as a
shorthand for “cannot be written as a product of a finite number of irreducibles”.)

Similarly, r1 = r2s2 where neither r2 nor s2 is a unit or zero and r2 cannot be factor-
ized. Continuing in this way, we obtain elements r1, r2, . . . , rn, with rn = rn+1sn+1 and
neither rn+1 nor sn+1 a unit or zero. Then rn ∈ 〈rn+1〉 so 〈rn〉 ⊆ 〈rn+1〉. If 〈rn〉= 〈rn+1〉
then rn+1 ∈ 〈rn〉 so rn+1 = rnx for some x in R. Then rn+1 = rn+1sn+1x, so 1R = sn+1x,
because R is an integral domain and rn+1 6= 0, so sn+1 is a unit, which is a contradic-
tion.

So, for all n, we have 〈rn〉 ⊂ 〈rn+1〉 but 〈rn〉 6= 〈rn+1〉. This contradicts ACC, so
r must be factorizable. �
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Theorem If R is a PID then it is a UFD.

Proof If R is a PID then R is Noetherian, so every element of R that is neither zero
not a unit has a factorization into irreducibles.

Suppose that r is neither zero nor a unit and r = r1 . . .rn = s1 . . .sm where all the ri
and s j are irreducible. Since R is a PID, r1 and s1 have a hcf t. If t is not a unit then it
is an associate of both r1 and s1, so r1 and s1 are associates. If t is a unit then 1R is a
hcf of r1 and s1, so 1R = r1x+ s1y for some x, y in R. Then

s2 . . .sm = 1Rs2 . . .sm

= r1xs2 . . .sm + s1ys2 . . .sm

= r1xs2 . . .sm + yr1 . . .rn

= r1(xs2 . . .sm + yr2 . . .rn),

so r1 divides s2 . . .sm.
Repeating the argument shows that there is some j such that r1 is an associate of

s j (properly, this is induction on m). Renumber the si to make r1 an associate of s1,
say s1 = r1u for some unit u. Then

r1r2 . . .rn = r1us2 . . .sm

and r1 6= 0 so r2 . . .rn = (us2)s3 . . .sm with us2 also irreducible.
Doing this for a finite number of steps (equivalently, using induction on n), shows

that the s j can be reordered so that ri is an associate of si for i = 1, . . . , n, and hence
m = n. �
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