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Factorization in integral domains

Lemma If a, b, c are elements of an integral domain R and ab = ac then either a = Og
orb=c.

Proof ab = ac = a(b—c¢) = 0r = a = Og or b — ¢ = Og because R has no zero-
divisors. [

Definition Let a and b be elements of an integral domain R. Then a is an associate
of b if there is a unit u in R with au = b.

Lemma In an integral domain R, “is an associate of ” is an equivalence relation.

Proof (a) R has an identity 1g, which is a unit, and alg = a for all a in R. So the
relation is reflexive.

(b) If u is a unit then there is v in R with uv = 1g, so v is also a unit. If au = b then
bv = auv = a. So the relation is symmetric.

(c) Suppose that au = b and bw = ¢, where u and w are units. Then uw is also a
unit, and a(uw) = bw = c. So the relation is transitive. [

Definition Let R be an integral domain and let » be in R. Then r is irreducible if
r # Og and r is not a unit and if whenever r = ab then either a or b is a unit (so the

other is an associate of r).

Example In Z, n is irreducible if +n is prime.



Definition An integral domain R is a unique factorization domain (UFD) if

(a) every element other than Og and units can be written as a product of a finite
number of irreducibles, and

b) ifrir...rp,=s152...85, wWith rq, ..., ry, 51, ..., 8, all irreducible then n = m
and there is a permutation © of {1,...,n} such that r; and s;; are associates for
i=1,...,n.

Example Z is a UFD.

Definition Let R be a commutative ring.
(a) If r, s are in R, then r divides s if s = rx for some x in R.

(b) If r, s are in R, then the element ¢ in R is a highest common factor (hcf) or
greatest common divisor (gcd) of r and s if

(1) t divides r and ¢ divides s

(i1) if x € R and x divides ¢ and x divides s then x divides 7.

Theorem Let R be an integral domain. Let r and s be in R.
(a) If r divides s and s divides r then r and s are associates.

(b) If d and e are both hcfs of r and s then d and e are associates. (Note: r and s
may not have any hcfs.)

Proof (a) Suppose that s = rx and r = sy, for some x, y in R. Then r = rxy, so
r(1g —xy) = Og. If r = Og then s = Ogx = Og so r and s are associates. If r # Og
then 1z —xy = Og, so xy = 1g, so x and y are units and therefore r and s are
associates.

(b) If d and e are hcfs of r and s then d divides e and e divides d, so, by part (a),
d and e are associates. [

Theorem If R is a unique factorization domain and r, s are in R then r and s have a
highest common factor.

Proof If r = O then s is a hcf of Og and s, because all elements divide Og.

If r is a unit then there is some u with ru = 1g. If xy = r then xyu = yxu = 1 so
x and y are both units. Thus the only elements dividing r are units, so 1g is a hef of
rand s.



Suppose that r and s are neither zero nor units. Let » = ry...r, where the r; are
irreducibles. Suppose that r = ab where a, b are neither zero nor units. Let a =
ai...ay and b = by ...b,, where the a; and by, are irreducibles. Then

r=ri...my,=ay...ayb;...b;

so m+t = n and we can reorder rq, ..., 1, So that
riis an associate of «; fori=1,...,m
rm+j1s an associate of b; for j=1,...,n.
For irreducibles z in R, let ¢,(z) be the number of r, ..., r, which are associates
of z; that is,

¢,(z) = [{i: 1 <i<n, r;is an associate of z}|.

This is well defined because R is a UFD. We have shown that a divides r if and only if
0,4(z) < 0,(z) for all irreducibles z. (Note: we need to check this only for z =ay, ...,
a;,, which is a finite number of cases.)

Put y(z) = min{¢,(z),ds(z) } for the finite number of irreducibles ry, ..., r,. Then

H )

such z

is a highest common factor of r and s. (Note that the product is over only finitely many
irreducibles, and is defined to be 1g if y(z) =0forz=ry,...,r,. O

Definition A principal ideal domain (PID) is an integral domain in which every ideal
is principal.

Example Z is a PID.

Theorem Let R be a PID, and let r, s be in R. Then r and s have a highest common
factor 7, and there are x, y in R such that t = rx+ sy.

Proof Let ! = ({r,s}), the smallest ideal containing r and s. Then
I={rx+sy:x,y €R}.

(R has an identity, so r and s are in [; the distributive law shows that [ is a subgroup
under +; and the associativity and commutativity of multiplication show that iz and zi
arein/ wheni €l andz € R.)

R is a PID, so I is a principal ideal, so there is an element ¢ such that I = (t) =tR.
Moreover, t € I, so there are elements x, y in R with t = rx + sy.

Now, r € I so ¢t divides r, and s € I so ¢ divides s. Suppose that a divides r and
a divides s. Then r = ab and s = ac for some b, ¢ in R. Thus t = rx+sy = abx+acy =
a(bx+ cy) so a divides r. Hence ¢ is an hef of rand s. O
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Definition A ring R is Noetherian if it satisfies the ascending chain condition (ACC),
which says that if
LChLC--- glngH_] c..-

is an infinite ascending chin of ideals of R then there is some integer N such that
Iy =Iny1 = Iyyo = -+, that s, I =1Iy whenever j > N.

Example The ideals of Z are nZ for n in Z. If n # 0 then nZ is contained in only
finitely many ideals of Z, because nZ C mZ if and only if m divides n. Hence Z is
Noetherian.

Theorem If R is a PID then R is Noetherian.

Proof Suppose that
LChC--

are ideals of R. Put I = U L.
n=1

(a) I} C 1, so11is not empty.

(b) Letr, sbein I. Then r € I,, and s € I,,,, for some n, m. We may suppose that
n<m,sor¢€l,. Thenr—s € l,, because I, is an ideal, so r —s € 1.

(c) Letrelandt € R. Then r € I,,, for some n, and rt € I, C I, since I, is an ideal.

Hence I is an ideal of R.
However, R is a PID, so there is some x in R with / = (x). Then x € I, so x € I,, for
some 1, 50 (x) CI,,s0I CI,. If j>nthenl; C1CI,Clj,s0lj =1, O

Theorem Let R be a Noetherian integral domain. If » € R and r is neither zero nor a
unit then r can be written as a product of a finite number of irreducibles.

Proof If r is irreducible, we are done.

If not, then r — rysy with neither | nor s; a unit or zero. If both r; and s; can
be factorized as products of irreducibles, then so can r. If not, suppose that we chose
the labels so that r; cannot be factorized. (We are writing “‘cannot be factorized” as a
shorthand for “cannot be written as a product of a finite number of irreducibles™.)

Similarly, r; = rps, where neither r; nor s> is a unit or zero and r, cannot be factor-
ized. Continuing in this way, we obtain elements ry, rs, ..., r,, With r,, = r,, 1 15,+1 and
neither 7,41 nor s,+ aunit or zero. Then ry, € (rp41) 0 (ry) C (rps1). I (rp) = (rut1)
then r,, 1 € (ry) SO ry41 = rpx for some x in R. Then 7,41 = ry41Sp4+1%, SO 1g = spp1X,
because R is an integral domain and r,,+1 # 0, so 5,41 is a unit, which is a contradic-
tion.

So, for all n, we have (r,) C (ry41) but (r,) # (ra+1). This contradicts ACC, so
r must be factorizable. [



Theorem If R is a PID then it is a UFD.

Proof If R is a PID then R is Noetherian, so every element of R that is neither zero
not a unit has a factorization into irreducibles.

Suppose that r is neither zero nor a unit and r = ry...r, = s1...s, where all the r;
and s; are irreducible. Since R is a PID, r| and s have a hcf 7. If 7 is not a unit then it
1s an associate of both r; and s{, so r; and s; are associates. If ¢ is a unit then 1 is a
hcf of r; and s1, so 1g = rix+s1y for some x, y in R. Then

$2...85m = 1Rrsa...sy,
= rxs2...S;tS1ys2... .Sy
= rxsy...S;mtyri...r

= r(xs2...Sm+yr2...r),

so rq divides s7.....5,,.

Repeating the argument shows that there is some j such that rq is an associate of
sj (properly, this is induction on m). Renumber the s; to make r| an associate of sy,
say s1 = rju for some unit u. Then

Firy ...ty = FlUS)...Sy

and r; #0s0ry...r, = (us3)s3...s, with us; also irreducible.

Doing this for a finite number of steps (equivalently, using induction on n), shows
that the s; can be reordered so that r; is an associate of s; fori =1, ..., n, and hence
m=—n. O



