
MAS 305 Algebraic Structures II

Notes 11 Autumn 2006

Ring homomorphisms
Definition Let R and S be rings, and let φ:R → S be a function. Then φ is a ring
homomorphism if

(r1 + r2)φ = r1φ+ r2φ

and
(r1r2)φ = (r1φ)(r2φ)

for all r1, r2 in R.

A ring homomorphism which is a bijection is called an isomorphism. If there is an
isomorphism φ from R to S then φ−1 is also an isomorphism and R is isomorphic to S,
written R∼= S.

Definition If φ:R → S is a ring homomorphism then the image of φ is {rφ : r ∈ R},
written Im(φ), and the kernel of φ is {r ∈ R : rφ = 0S}, written ker(φ).

Theorem If φ:R→ S is a ring homomorphism then

(a) Im(φ) is a subring of S;

(b) ker(φ) is an ideal of R;

(c) r1φ = r2φ if and only if r1 and r2 are in the same coset of ker(φ).

Proof (a) We know that (Im(φ),+) is a subgroup of (S,+), from the similar theo-
rem for groups. If s1 and s2 are in Im(φ) then there are r1, r2 in R with r1φ = s1
and r2φ = s2. Then s1s2 = (r1φ)(r2φ) = (r1r2)φ ∈ Im(φ), so Im(φ) 6 S.

(b) We know that (ker(φ),+) is a subgroup of (R,+), from the group theory. If
r ∈ ker(φ) and t ∈ R then (rt)φ = (rφ)(tφ) = 0S(tφ) = 0S and (tr)φ = (tφ)(rφ) =
(tφ)0S = 0S. Thus rt ∈ ker(φ) and tr ∈ ker(φ). Therefore ker(φ)ER.
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(c) We know this because φ:(R,+)→ (S,+) is a group homomorphism. �

The theorem has been stated in this way because parts (a) and (b) are so important.
However, essentially the same proof can generalize part (a) to the image of any subring
of R, and generalize part (b) to the inverse image of any subring or ideal of Im(φ). We
shall do this in the Correspondence Theorem.

Theorem Let I be an ideal of a ring R. The function θ:R→ R/I defined by rθ = I + r
is a ring homomorphism (called the canonical homomorphism for I) and its kernel
is I.

Proof For all r, s in R:

rθ+ sθ = (I + r)+(I + s) = I +(r + s) = (r + s)θ

and
(rθ)(sθ) = (I + r)(I + s) = I + rs = (rs)θ,

so θ is a ring homomorphism. Moreover,

r ∈ ker(θ) ⇐⇒ rθ = I ⇐⇒ I + r = I ⇐⇒ r ∈ I. �

First Isomorphism Theorem for Rings If R and S are rings and φ:R → S is a ring
homomorphism then R/ker(φ)∼= Im(φ).

Proof Put I = ker(φ). Define ψ:R→ Im(φ) by (I +r)ψ = rφ for r in R. We know that
r1φ = r2φ if and only if I + r1 = I + r2, so ψ is well defined and one-to-one. Clearly ψ

is onto.
Furthermore,

(I + r1)ψ+(I + r2)ψ = r1φ+ r2φ

= (r1 + r2)φ
= [I +(r1 + r2)]ψ
= [(I + r1)+(I + r2)]ψ

and

[(I + r1)ψ][(I + r2)ψ] = (r1φ)(r2φ)
= (r1r2)φ
= (I + r1r2)ψ
= [(I + r1)(I + r2)]ψ

for all r1, r2 in R, so ψ is a homomorphism. �
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Some authors include parts (a) and (b) of the first theorem in this section in the
statement of the First Isomorphism Theorem.

Lemma if φ1:R1 → R2 and φ2:R2 → R3 are ring homomorphisms then φ1φ2:R1 → R3
is a ring homomorphism.

Proof Exercise.

Correspondence Theorem for Rings Let I be an ideal of a ring R. There is a bijec-
tion ψ from the set of subrings of R containing I and the set of subrings of R/I. The
bijection preserves inclusion (S1 ⊆ S2 ⇐⇒ S1ψ⊆ S2ψ), and ideals of R containing I
correspond to ideals of R/I.

Proof Define Sψ = {I + s : s ∈ S} = S/I, for subrings S of R containing I. Let θ be
the canonical homomorphism for I. Given S, let θ̃ be the restriction of θ to S. Then
θ̃ is a homomorphism, and Im(θ̃) = {sθ : s ∈ S}= {I + s : s ∈ S}= Sψ. But Im(θ̃) is
a subring of R/I, so Sψ is a subring of R/I.

Given Sψ, we can recover S as the union of the cosets of I which are elements
of Sψ, so ψ is one-to-one. Clearly, ψ preserves inclusion.
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Let T be a subring of R/I. Put T̄ = {r ∈ R : I + r ∈ T}. We know from the group
theory that (T̄ ,+) is a subring of (R,+) containing I. If r1, r2 are in T̄ then I + r1 ∈ T
and I + r2 ∈ T , so (I + r1)(I + r2) ∈ T , so I + r1r2 ∈ T , so r1r2 ∈ T̄ . Hence T̄ is a
subring of R. Clearly, T̄ ψ = T . Therefore ψ is onto.
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Finally,

SψER/I ⇐⇒ (I + s)(I + r) ∈ Sψ for all s in S and all r in R
and (I + r)(I + s) ∈ Sψ for all s in S and all r in R
⇐⇒ I + sr ∈ Sψ and I + rs ∈ Sψ for all s in S and all r in R
⇐⇒ sr ∈ S and rs ∈ S for all s in S and all r in R
⇐⇒ S ER. �

Second Isomorphism Theorem for Rings If I and J are ideals of a ring R with I 6 J
then (R/I)/(J/I)∼= R/J.

Proof Exactly like the proof of the Second Isomorphism Theorem for groups. �

Some authors include the Corrspondence Theorem in the statement of the Second
Isomorphism Theorem.

Third Isomorphism Theorem for Rings If R is a ring, I is an ideal of R and S is a
subring of R, define I +S = {x+ y : x ∈ I, y ∈ S}. Then

(a) I +S is a subring of R containing I;

(b) I∩S is an ideal of S;

(c) (I +S)/I ∼= S/I∩S.

Proof A small adaptation of the proof of the Third Isomorphism Theorem for groups. �
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