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Ring Theory

A ring is a set R with two binary operations 4 and * satisfying
(a) (R,+) is an Abelian group;
(b) R is closed under x;
(c) = is associative;
(d) * is distributive over +, which means that
(a+b)xc=axc+bxc

and
cx(a+b)=cxa+cxb

forall a, b, c in R.

The identity for (R,+)is written Og or 0; the additive inverse of a is —a.
We usually write a x b as ab.

Here are some simple consequences of the axioms:

(a) general associativity of multiplication: the product aj xa * - - - x a, is well de-
fined without parentheses;

(b) aOg = Oga = Og for all a in R (proof: exercise).



Aring R is

a ring with identity if R contains an element 1 such that 1z #0Og andalg = 1ga=a
for all a in R;

a division ring if R has an identity and (R \ {Or},*) is a group;
commutative if axb—=>bx*aforall a, binR;
a field if R is a commutative division ring.

If R has an identity and ab = 1 then b is written ¢~ and a is called a unit. The
set of units in a ring with identity forms a group (proof: exercise).

If ab = Og but a # Og and b # O then a and b are called zero-divisors. A commut-
ative ring with identity and no zero-divisors is an integral domain.

Examples
(a) (Z,+,x) is an integral domain.
(b) Q, R, C are fields.
(c) Zp is afield if p is prime.

(d) Z, is a commutative ring with identity for all n. If n is not prime then Z, has
zero-divisors. For example, in Zg we have [2] x [3] = [0].

(e) If R is a ring then the ring of polynomials over R, written R[x], is the set of all
polynomials with coefficients in R, with the usual addition and multiplication of
polynomials. When we need to be formal, we think of a polynomial as being an
infinite sequence (ag,aj,as,...) of elements of R, with the property that there
is some n such that a; = 0 if j > n. For example, the informal polynomial
2 —x+5x> 4 8x° in Z[x] is the sequence (2,—1,5,8,0,0,...).

(f) This can be extended to the ring of polynomials in n variables xi, ..., x, by
putting R[x1,x2] = (R[x1])[x2], ..., Rlx1,. .., X4] = (R[x1, ..., xn—1]) [xn]-

(2) If (G,+) is any Abelian group then we can turn G into a zero ring by putting
gxh=0¢gforall g, hin G.

(h) If R is a ring then M, (R) is the ring of all n X n matrices with entries in R, with
the usual addition and multiplication of matrices. If n > 2 then M,(R) is not
commutative (unless R is a zero ring) and M, (R) contains zero-divisors.



Sums
If a is an element of a ring R and m is a positive integer then

ma denotes a+a+---+a
—_———

m times
(—m)a denotes —(ma).

Then na + ma = (n+ m)a for all integers n, m.

Subrings and ideals

Definition A subset S of a ring R is a subring of R if it is a ring under the same
operations. We write S < R.

The Subring Test If Ris aring and S C R then § is a subring of R if
(a) (S,+) is a subgroup of (R,+), and
(b) sxte Sforalls,tinS.

If S is a subring of R then Og = Og; but if R has an identity 1z then S might contain
no identity or S might have an identity 1g different from 1g.

Example Put R = M,(Z) and

Then S <R, 1 = [(1) (1)} géSandlg:[(l) 8}

Definition A subset S of aring R is an ideal of R if S is a subring of R and sxr € §
and rxs € S for all sin S and all  in R. We write S <R.

{Og} is an ideal of R.
R is an ideal of itself.

If R has an identity 1g and S is an ideal of R and 1 € S then § = R.

If R is commutative with an identity and a € R then {ar: r € R} is an ideal of R,
called aR. Tt is the smallest ideal of R containing a, so it is also written (a).
In a general ring, the principal ideal {a) is

m
{na+r0a+aso—|—2rias,~ nm€eZ, m=0, ry,s; ER}.
i=1



Example 7Z is a commutative ring with identity. 27 is a principal ideal of Z; it has no
identity. The integer 4 is in 27 and 47 is a principal ideal of 2Z but 4(27Z) = 8Z # 4.

Example For any integer m, mZ <7 and My(mZ) <M (Z).

Lemma If / and J are ideals of a ring R, then so is /N J. In fact, the intersection of
any non-empty collection of ideals of R is itself an ideal of R.

Proof Exercise.

If A C R then R is an ideal containing A. By the lemma, the intersection of all the
ideals containing A is itself an ideal—the smallest ideal containing A. It is written (A)
(or (A) in some books).

Quotient rings

If S is a subring of R then it is a subgroup under addition, so it has cosets. Because
addition is commutative, right cosets are the same as left cosets. The coset containing
the element a is {s+a: s € S}, which is written S+ a. We know that we can define
addition on cosets by

(S+a)+(S+b)=S+(a+D).

This makes the set of cosets into an Abelian group. Now we want to define multipli-
cation of cosets in such a way that the cosets form a ring.

Theorem If S is an ideal of R, then we can define multiplication of cosets of S by
(S+a)*(S+b)=S+ab.

This is well defined, and makes the set of cosets into a ring, called the guotient ring
R/S.

Proof Suppose that S+a; =S+az and S+ by =S+ b,. Then a, —a; =51 € S and
by —by =sp €8, and

arbr = (S1 +a1)(sz+b1) =s150 +aysr+s1by +ayb;.

The first three terms are in S, so so is their sum, so axb, — a1by € S and therefore
S+arxby = S+ a1b;. So multiplication is well defined, and the set of cosets is closed
under multiplication.



For a, b, ¢ in R:

(S+a)«(S+b))*(S+c) = (S+ab)*(S+c)
= S+ (ab)c
= S+a(bc)
= (S4+a)*(S+bc)
= (§+a)«((S+Db)*(S+c)),

so multiplication is associative.
Moreover,

((S+a)+(S+D)+(S+c) = (S+(a+b))*(S+c)
= S+(a+b)c
= S+ (ac+bc)
= (S+ac)+ (S+bc)
(S+a)x(S+c)+(S+b)*(S+c),

and, similarly,
(SH+c)*«((S+a)+(S+Db))=(S+c)*x(S+a)+ (S+c)*x(S+Db),

so multiplication is distributive over addition.
Therefore R/S is aring. [

Example Given m in Z with m > 0, we get Z/mZ = Z,.

Ideals in matrix rings

Theorem Let R be a ring.
(a) If I is an ideal of R then M, (I) is an ideal of M, (R).

(b) If R has an identity and J is an ideal of M, (R) then there is some ideal I of R
such that J = M,,(I).

Proof (a) (i) Every ideal / contains Og, so the zero matrix is in M, (I) for every
ideal I; in particular, M, (1) is not empty.
(ii) If A and B are in M,,(I) with A = [a;;] and B = [b;;] then a;; €  and b;; € I
soa;j—bjjelforl <i,j<nandsoA—-Bel.



(iii) If C € M,(R) and A € M, (I) then every entry of CA has the form ¥ ; ¢;;a ji.
Each term c;jaji is in I, because ¢;; € R and a;; € 1. The sum of elements
of I is itself an element of 7, so every entry of CA is in I: hence CA € M,,(I).
Similarly, every entry of AC is in 1, and so AC € M, (I).

(b) Let E;; be the matrix in M, (R) with (i, j)-th entry equal to 1¢ and all other
entries equal to Og. If A = [a;] then

0 ... 0 17
0o ... 0
Exid = i-throw of A | «<row k
| 0 ... 0 |
SO
0 0O 0 O 07

0 ... 0 aijj 0 ... 0 |«<rowk
EkiAEjl = O ... 0 0 0 ..O0 :aijEkl-

O ....0O 0 O0..0
column /

Let J <M,(R), and put
I ={a € R:ais anentry in any matrix in J}.

Then J C M, (I), and I # 0.

If A € J then EAE;; € J soif a € I then aEy; € J for 1 <k, [ < n. In particular,
aE1 €J. If aand b are in I then aE(1 € J and bE|| € J, so aEj1 —bE|; € J so
(a—b)E; €Jsoa—bel;andif r € R then (rEj;)(aE};) € J so raEy € J so
ra €1, and (aE)(rEy;) € JsoarEy € Jsoar € 1. Hence I <R.

If A = [a;;] with each a;; in I then a;;E;; € J for 1 <i, j<n,butA=Y,Y ;a;E;;
so A € J,soM,(I) CJ. Therefore J = M,(I). O



Simple rings
Definition A ring R is simple if
(@) {rs:r€R, s€ R} #{0g} and

(b) the only ideals of R are {Og} and R.

If R has an identity then (a) is always satisfied.
If R is a field (or a division ring) then R is simple.

Corollary to preceding Theorem If R is a simple ring with identity then M, (R) is
simple. In particular, if F is a field then M, (F) is simple.



