
MAS 305 Algebraic Structures II

Notes 10 Autumn 2006

Ring Theory
A ring is a set R with two binary operations + and ∗ satisfying

(a) (R,+) is an Abelian group;

(b) R is closed under ∗;

(c) ∗ is associative;

(d) ∗ is distributive over +, which means that

(a+b)∗ c = a∗ c+b∗ c

and
c∗ (a+b) = c∗a+ c∗b

for all a, b, c in R.

The identity for (R,+)is written 0R or 0; the additive inverse of a is −a.
We usually write a∗b as ab.

Here are some simple consequences of the axioms:

(a) general associativity of multiplication: the product a1 ∗ a2 ∗ · · · ∗ an is well de-
fined without parentheses;

(b) a0R = 0Ra = 0R for all a in R (proof: exercise).
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A ring R is

a ring with identity if R contains an element 1R such that 1R 6= 0R and a1R = 1Ra = a
for all a in R;

a division ring if R has an identity and (R\{0R} ,∗) is a group;

commutative if a∗b = b∗a for all a, b in R;

a field if R is a commutative division ring.

If R has an identity and ab = 1R then b is written a−1 and a is called a unit. The
set of units in a ring with identity forms a group (proof: exercise).

If ab = 0R but a 6= 0R and b 6= 0R then a and b are called zero-divisors. A commut-
ative ring with identity and no zero-divisors is an integral domain.

Examples
(a) (Z,+,×) is an integral domain.

(b) Q, R, C are fields.

(c) Zp is a field if p is prime.

(d) Zn is a commutative ring with identity for all n. If n is not prime then Zn has
zero-divisors. For example, in Z6 we have [2]× [3] = [0].

(e) If R is a ring then the ring of polynomials over R, written R[x], is the set of all
polynomials with coefficients in R, with the usual addition and multiplication of
polynomials. When we need to be formal, we think of a polynomial as being an
infinite sequence (a0,a1,a2, . . .) of elements of R, with the property that there
is some n such that a j = 0 if j > n. For example, the informal polynomial
2− x+5x2 +8x3 in Z[x] is the sequence (2,−1,5,8,0,0, . . .).

(f) This can be extended to the ring of polynomials in n variables x1, . . . , xn by
putting R[x1,x2] = (R[x1])[x2], . . . , R[x1, . . . ,xn] = (R[x1, . . . ,xn−1])[xn].

(g) If (G,+) is any Abelian group then we can turn G into a zero ring by putting
g∗h = 0G for all g, h in G.

(h) If R is a ring then Mn(R) is the ring of all n×n matrices with entries in R, with
the usual addition and multiplication of matrices. If n > 2 then Mn(R) is not
commutative (unless R is a zero ring) and Mn(R) contains zero-divisors.
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Sums
If a is an element of a ring R and m is a positive integer then

ma denotes a+a+ · · ·+a︸ ︷︷ ︸
m times

(−m)a denotes −(ma).

Then na+ma = (n+m)a for all integers n, m.

Subrings and ideals
Definition A subset S of a ring R is a subring of R if it is a ring under the same
operations. We write S 6 R.

The Subring Test If R is a ring and S⊆ R then S is a subring of R if

(a) (S,+) is a subgroup of (R,+), and

(b) s∗ t ∈ S for all s, t in S.

If S is a subring of R then 0S = 0R; but if R has an identity 1R then S might contain
no identity or S might have an identity 1S different from 1R.

Example Put R = M2(Z) and

S =
{[

n 0
0 0

]
: n ∈ Z

}
.

Then S 6 R, 1R =
[

1 0
0 1

]
/∈ S and 1S =

[
1 0
0 0

]
.

Definition A subset S of a ring R is an ideal of R if S is a subring of R and s ∗ r ∈ S
and r ∗ s ∈ S for all s in S and all r in R. We write S ER.

{0R} is an ideal of R.
R is an ideal of itself.
If R has an identity 1R and S is an ideal of R and 1R ∈ S then S = R.

If R is commutative with an identity and a ∈ R then {ar : r ∈ R} is an ideal of R,
called aR. It is the smallest ideal of R containing a, so it is also written 〈a〉.

In a general ring, the principal ideal 〈a〉 is{
na+ r0a+as0 +

m

∑
i=1

riasi : n,m ∈ Z, m > 0, ri,si ∈ R

}
.
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Example Z is a commutative ring with identity. 2Z is a principal ideal of Z; it has no
identity. The integer 4 is in 2Z and 4Z is a principal ideal of 2Z but 4(2Z) = 8Z 6= 4Z.

Example For any integer m, mZEZ and M2(mZ)EM2(Z).

Lemma If I and J are ideals of a ring R, then so is I ∩ J. In fact, the intersection of
any non-empty collection of ideals of R is itself an ideal of R.

Proof Exercise.

If A⊆ R then R is an ideal containing A. By the lemma, the intersection of all the
ideals containing A is itself an ideal—the smallest ideal containing A. It is written 〈A〉
(or (A) in some books).

Quotient rings
If S is a subring of R then it is a subgroup under addition, so it has cosets. Because
addition is commutative, right cosets are the same as left cosets. The coset containing
the element a is {s+a : s ∈ S}, which is written S + a. We know that we can define
addition on cosets by

(S +a)+(S +b) = S +(a+b).

This makes the set of cosets into an Abelian group. Now we want to define multipli-
cation of cosets in such a way that the cosets form a ring.

Theorem If S is an ideal of R, then we can define multiplication of cosets of S by

(S +a)∗ (S +b) = S +ab.

This is well defined, and makes the set of cosets into a ring, called the quotient ring
R/S.

Proof Suppose that S + a1 = S + a2 and S + b1 = S + b2. Then a2−a1 = s1 ∈ S and
b2−b1 = s2 ∈ S, and

a2b2 = (s1 +a1)(s2 +b1) = s1s2 +a1s2 + s1b1 +a1b1.

The first three terms are in S, so so is their sum, so a2b2− a1b1 ∈ S and therefore
S +a2b2 = S +a1b1. So multiplication is well defined, and the set of cosets is closed
under multiplication.
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For a, b, c in R:

((S +a)∗ (S +b))∗ (S + c) = (S +ab)∗ (S + c)
= S +(ab)c
= S +a(bc)
= (S +a)∗ (S +bc)
= (S +a)∗ ((S +b)∗ (S + c)),

so multiplication is associative.
Moreover,

((S +a)+(S +b))∗ (S + c) = (S +(a+b))∗ (S + c)
= S +(a+b)c
= S +(ac+bc)
= (S +ac)+(S +bc)
= (S +a)∗ (S + c)+(S +b)∗ (S + c),

and, similarly,

(S + c)∗ ((S +a)+(S +b)) = (S + c)∗ (S +a)+(S + c)∗ (S +b),

so multiplication is distributive over addition.
Therefore R/S is a ring. �

Example Given m in Z with m > 0, we get Z/mZ = Zm.

Ideals in matrix rings
Theorem Let R be a ring.

(a) If I is an ideal of R then Mn(I) is an ideal of Mn(R).

(b) If R has an identity and J is an ideal of Mn(R) then there is some ideal I of R
such that J = Mn(I).

Proof (a) (i) Every ideal I contains 0R, so the zero matrix is in Mn(I) for every
ideal I; in particular, Mn(I) is not empty.

(ii) If A and B are in Mn(I) with A = [ai j] and B = [bi j] then ai j ∈ I and bi j ∈ I
so ai j−bi j ∈ I for 1 6 i, j 6 n and so A−B ∈ I.
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(iii) If C ∈Mn(R) and A ∈Mn(I) then every entry of CA has the form ∑ j ci ja jk.
Each term ci ja jk is in I, because ci j ∈ R and ai j ∈ I. The sum of elements
of I is itself an element of I, so every entry of CA is in I: hence CA∈Mn(I).
Similarly, every entry of AC is in I, and so AC ∈Mn(I).

(b) Let Ei j be the matrix in Mn(R) with (i, j)-th entry equal to 1R and all other
entries equal to 0R. If A = [ai j] then

EkiA =



0 . . . 0
0 . . . 0
...

...
...

i-th row of A ←row k
...

...
...

0 . . . 0


so

EkiAE jl =



0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 0 . . . 0
0 . . . 0 ai j 0 . . . 0 ←row k
0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 0 . . . 0


↑

column l

= ai jEkl.

Let J EMn(R), and put

I = {a ∈ R : a is an entry in any matrix in J} .

Then J ⊆Mn(I), and I 6= /0.

If A ∈ J then EkiAE jl ∈ J so if a ∈ I then aEkl ∈ J for 1 6 k, l 6 n. In particular,
aE11 ∈ J. If a and b are in I then aE11 ∈ J and bE11 ∈ J, so aE11−bE11 ∈ J so
(a−b)E11 ∈ J so a−b ∈ I; and if r ∈ R then (rE11)(aE11) ∈ J so raE11 ∈ J so
ra ∈ I, and (aE11)(rE11) ∈ J so arE11 ∈ J so ar ∈ I. Hence I ER.

If A = [ai j] with each ai j in I then ai jEi j ∈ J for 1 6 i, j 6 n, but A = ∑i ∑ j ai jEi j
so A ∈ J, so Mn(I)⊆ J. Therefore J = Mn(I). �
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Simple rings
Definition A ring R is simple if

(a) {rs : r ∈ R, s ∈ R} 6= {0R} and

(b) the only ideals of R are {0R} and R.

If R has an identity then (a) is always satisfied.
If R is a field (or a division ring) then R is simple.

Corollary to preceding Theorem If R is a simple ring with identity then Mn(R) is
simple. In particular, if F is a field then Mn(F) is simple.
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