

MAS 305

Algebraic Structures II

Notes 1 Autumn 2006

Review of Equivalence Relations

A binary relation \sim on a set A is an equivalence relation if

- (a) \sim is *reflexive*, which means that $a \sim a$ for all a in A;
- (b) \sim is *symmetric*, which means that if $a \sim b$ then $b \sim a$;
- (c) \sim is *transitive*, which means that if $a \sim b$ and $b \sim c$ then $a \sim c$.

Example Take A to be the set \mathbb{Z} of integers. Given a fixed integer m, define $a \sim_m b$ if m divides a - b.

- (a) m divides 0, so $a \sim_m a$ for all a, so \sim_m is reflexive;
- (b) if m divides a b then m divides b a, so \sim_m is symmetric;
- (c) if m divides a b and m divides b c then m divides (a b) + (b c), which is a c, so \sim_m is transitive.

Given an equivalence relation \sim , the *equivalence class* containing a is

$$\{b \in A : b \sim a\}$$
.

Theorem The equivalence classes form a *partition* of A, in the sense that each element of A belongs to exactly one equivalence class.

Thus two equivalence classes are either exactly the same or disjoint.

Notation In general, write [a] for the equivalence class containing a.

Example In \mathbb{Z} , the equivalence classes of \sim_4 are:

$$\{..., -4, 0, 4, 8, ...\} = [0]$$

$$\{..., -3, 1, 5, 9, ...\} = [1]$$

$$\{..., -6, -2, 2, 6, 10, ...\} = [2] = [10]$$

$$\{..., -5, -1, 3, 7, ...\} = [3] = [-1].$$

Notation This set of four classes is called $\mathbb{Z}/(4)$ or $\mathbb{Z}/4\mathbb{Z}$ or \mathbb{Z}_4 .

When we manipulate equivalence classes, we have to make sure that our definitions do not depend on the names we have given to them. For example, in addition in \mathbb{Z}_4 , it makes no difference whether we refer to [3] or to [-1].