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There’s no mathematics involved. Use logic and reasoning
to solve the puzzle.
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Technology transfer

To criticize mathematics for its abstraction is to miss the
point entirely. Abstraction is what makes mathematics
work. If you concentrate too closely on too limited an
application of a mathematical idea, you rob the
mathematician of his most important tools: analogy,
generality, and simplicity. Mathematics is the ultimate in
technology transfer.

Ian Stewart, Does God play dice? The mathematics of chaos,
Penguin, London, 1990.



Euler



The bridges of Königsberg

Is it possible to walk around the town, crossing each bridge
exactly once?

Euler showed: No!
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What is mathematics?

Leonhard Euler, Letter to Carl Ehler, mayor of Danzig, 3 April
1736:

Thus you see, most noble Sir, how this type of solution [to
the Königsberg bridge problem] bears little relationship to
mathematics, and I do not understand why you expect a
mathematician to produce it, rather than anyone else, for
the solution is based on reason alone, and its discovery does
not depend on any mathematical principle . . .

In the meantime, most noble Sir, you have assigned this
question to the geometry of position, but I am ignorant as to
what this new discipline involves, and as to which types of
problem Leibniz and Wolff expected to see expressed in this
way.
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Dürer’s Melancholia

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

All rows, columns, and diagonals sum to 34. The date of the
picture is included in the square.
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Euler’s construction

Take a Graeco-Latin square of order n.

Replace the symbols by
0, 1, . . . , n− 1. Interpret the result as a two-digit number in base
n. Add one.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2

Some rearrangement may be needed to get the diagonal sums
correct.

So for which n do Graeco-Latin squares exist?



Euler’s construction

Take a Graeco-Latin square of order n. Replace the symbols by
0, 1, . . . , n− 1.

Interpret the result as a two-digit number in base
n. Add one.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2

Some rearrangement may be needed to get the diagonal sums
correct.

So for which n do Graeco-Latin squares exist?



Euler’s construction

Take a Graeco-Latin square of order n. Replace the symbols by
0, 1, . . . , n− 1. Interpret the result as a two-digit number in base
n. Add one.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2

Some rearrangement may be needed to get the diagonal sums
correct.

So for which n do Graeco-Latin squares exist?



Euler’s construction

Take a Graeco-Latin square of order n. Replace the symbols by
0, 1, . . . , n− 1. Interpret the result as a two-digit number in base
n. Add one.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2

Some rearrangement may be needed to get the diagonal sums
correct.

So for which n do Graeco-Latin squares exist?



Euler’s construction

Take a Graeco-Latin square of order n. Replace the symbols by
0, 1, . . . , n− 1. Interpret the result as a two-digit number in base
n. Add one.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2

Some rearrangement may be needed to get the diagonal sums
correct.

So for which n do Graeco-Latin squares exist?



Euler’s officers

Six different regiments have six officers, each one holding a
different rank (of six different ranks altogether). Can these
36 officers be arranged in a square formation so that each
row and column contains one officer of each rank and one
from each regiment?

Trial and error suggests the answer is “No”:
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Euler’s conjeture

Euler knew how to construct a Graeco-Latin square of every
order n not congruent to 2 mod 4.

It is trivial that there is no Graeco-Latin square of order 2.

In 1900, Tarry confirmed that there is no Graeco-Latin square of
order 6.

In 1960, Bose, Shrikhande and Parker showed that, apart from
these two cases, Euler was wrong: Graeco-Latin squares exist
for all other orders.
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Latin squares

A Latin square is the type of structure formed by the Latin
letters in a Graeco-Latin square: that is, each symbol occurs
exactly once in each row or column.

There is no question about the existence of Latin squares: there
is a Latin square of any order. But we still don’t know many
things about them, for example, how many there are.

We also don’t know whether there is an efficient way to decide
if a given Latin square can be extended to a Graeco-Latin
square.
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Latin squares in statistics

Latin squares were introduced into statistics by R. A. Fisher.

They are useful for design of experiments in field trials where
there may be spatial effects.
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Latin squares in statistics
A Latin square at Rothamsted Experimental Station.

This Latin square was designed by Rosemary Bailey. Thanks to
Sue Welham for the photograph.

It has the additional property of being complete: each ordered
pair of distinct symbols occurs together once in a row and once
in a column.



Latin squares in statistics
A Latin square at Rothamsted Experimental Station.

This Latin square was designed by Rosemary Bailey. Thanks to
Sue Welham for the photograph.

It has the additional property of being complete: each ordered
pair of distinct symbols occurs together once in a row and once
in a column.



Gerechte designs

W. Behrens: What if there is, for example, a boggy patch in the
middle of the field?

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5

This is a gerechte design (a “fair design”).
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Critical sets

John Nelder: A critical set is a partially filled Latin square
which can be completed in a unique way to a Latin square, but
if any entry is deleted the completion is no longer unique.

1 2
2

3

Critical sets were designed to study the process of “stepping”
between different Latin squares by means of trades.
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Sudoku

So a Sudoku puzzle is a partial gerechte design for the partition
of a 9× 9 square into nine 3× 3 subsquares, which contains a
critical set.

In fact Sudoku was invented by Howard Garns (a retired New
York architect) in the 1980s, under the name “number place”.

It was popularised in Japan by Maki Kaji, who renamed it Su
Doku.

New Zealander Wayne Gould popularised it in the West. The
rest is history. . .
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How many Sudoku solutions?

Felgenhauer and Jarvis, showed, by a massive computation,
that the number of different Sudoku solutions (filled Sudoku
grids) is

6 670 903 752 021 072 936 960.

This figure has been independently verified.
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How many Sudoku solutions?

We count Sudoku solutions up to
I Permuting the numbers 1, . . . , 9;
I Permuting rows and columns preserving the partitions

into 3 sets of 3;
I Possibly transposing the grid.

The number of different solutions of ordinary Sudoku (with
these rules) is 5 472 730 538.
This was computed by Jarvis and Russell using the
Orbit-counting Lemma applied to the group
S9 × ((S3 wr S3) wr S2) of order 9! · 68 · 2 acting on the set of
solutions counted by Felgenhauer and Jervis.



How many Sudoku solutions?

We count Sudoku solutions up to
I Permuting the numbers 1, . . . , 9;
I Permuting rows and columns preserving the partitions

into 3 sets of 3;
I Possibly transposing the grid.

The number of different solutions of ordinary Sudoku (with
these rules) is 5 472 730 538.

This was computed by Jarvis and Russell using the
Orbit-counting Lemma applied to the group
S9 × ((S3 wr S3) wr S2) of order 9! · 68 · 2 acting on the set of
solutions counted by Felgenhauer and Jervis.



How many Sudoku solutions?

We count Sudoku solutions up to
I Permuting the numbers 1, . . . , 9;
I Permuting rows and columns preserving the partitions

into 3 sets of 3;
I Possibly transposing the grid.

The number of different solutions of ordinary Sudoku (with
these rules) is 5 472 730 538.
This was computed by Jarvis and Russell using the
Orbit-counting Lemma applied to the group
S9 × ((S3 wr S3) wr S2) of order 9! · 68 · 2 acting on the set of
solutions counted by Felgenhauer and Jervis.



Symmetric Sudoku

This was invented by Robert Connelly and independently by
Vaughan Jones. It s connected to some very interesting and
important mathematical topics.

Each number from 1 to 9 should occur once in each set of the
following types:

I rows;
I columns;
I 3× 3 subsquares;
I broken rows (one of these consists of three “short rows” in

the same position in the three subsquares in a large
column);

I broken columns (similarly defined);
I locations (a location consists of the nine cells in a given

position, e.g. middle of bottom row, in each of the nine
subsquares).
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Affine geometry

We coordinatise the cells of the grid with F4, where F is the
integers mod 3, as follows:

I the first coordinate labels large rows;
I the second coordinate labels small rows within large rows;
I the third coordinate labels large columns;
I the fourth coordinate labels small columns within large

columns.

Now the relevant regions are cosets of the following subspaces:

Rows x1 = x2 = 0 Columns x3 = x4 = 0
Subsquares x1 = x3 = 0 Broken rows x2 = x3 = 0
Broken columns x1 = x4 = 0 Locations x2 = x4 = 0
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Affine spaces and SET

The card game SET has 81 cards, each of which has four
attributes taking three possible values (number of symbols,
shape, colour, and shading). A winning combination is a set of
three cards on which either the attributes are all the same, or
they are all different.

Each card has four coordinates taken from F (the integers
mod 3), so the set of cards is identified with the 4-dimensional
affine space. Then the winning combinations are precisely the
affine lines!
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Coding theory

Coding theory was invented in the 1950s by Shannon,
Hamming and Golay to solve the problem of transmitting
information accurately through a “noisy” channel, in which
some symbols are randomly changed during transmission.

We transmit “words”, which are strings of symbols taken from
a fixed alphabet (in practice the binary alphabet {0, 1}, though
any alphabet could be used). The strategy is that, instead of
transmitting all possible strings, we restrict our messages to
those belonging to a suitable “code”. Codewords should have
the property that any two of them are so different that, even if
we garble one a bit, it still resembles the original more closely
than it resembles any other.
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An example

Alphabet {0, 1, 2}.

C =


0000 1012 2021
0111 1120 2102
0222 1201 2210

 .

Any two codewords have distance 3.

For example, to change 1012 into 0111 we have to change the
first, second, and fourth symbols.

So the code will correct a single error.

For example, the word 1221 is one step away from 1201 but at
least two steps from any other codeword.
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Perfect codes

A code is a set C of “words” or n-tuples over a fixed alphabet F.
The Hamming distance between two words v, w is the number
of coordinates where they differ; that is, the number of errors
needed to change the transmitted word v into the received
word w.

A code C is e-error-correcting if there is at most one word at
distance e or less from any codeword. [Equivalently, any two
codewords have distance at least 2e + 1.] We say that C is
perfect e-error-correcting if “at most” is replaced here by
“exactly”.

The example on the last slide is a perfect code.
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Perfect codes and symmetric Sudoku

I The positions of any symbol in a symmetric Sudoku
solution form a perfect code.

I So the entire solution is a partition of the affine space into
nine perfect codes.

I Using the SET test, a perfect code is an affine subspace.
I So there are only two different symmetric Sudoku

solutions.

No one would doubt that this really is mathematics!
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I So the entire solution is a partition of the affine space into
nine perfect codes.

I Using the SET test, a perfect code is an affine subspace.
I So there are only two different symmetric Sudoku

solutions.

No one would doubt that this really is mathematics!



The two symmetric Sudoku solutions
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