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There’s no mathematics involved. Use logic and reasoning
to solve the puzzle.

Instructions in The Independent



Euler



The bridges of Königsberg

Is it possible to walk around the town, crossing each bridge
exactly once?

Euler showed: No!
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What is mathematics?

Leonhard Euler, Letter to Carl Ehler, mayor of Danzig, 3 April
1736:

Thus you see, most noble Sir, how this type of solution [to
the Königsberg bridge problem] bears little relationship to
mathematics, and I do not understand why you expect a
mathematician to produce it, rather than anyone else, for
the solution is based on reason alone, and its discovery does
not depend on any mathematical principle . . .

In the meantime, most noble Sir, you have assigned this
question to the geometry of position, but I am ignorant as to
what this new discipline involves, and as to which types of
problem Leibniz and Wolff expected to see expressed in this
way.
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Dürer’s Melancholia

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

All rows, columns, and diagonals sum to 34. The date of the
picture is included in the square.
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Euler’s construction

Take a Graeco-Latin square of order n.

Replace the symbols by
0, 1, . . . , n− 1. Interpret the result as a two-digit number in base
n. Add one.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2

Some rearrangement may be needed to get the diagonal sums
correct.

So for which n do Graeco-Latin squares exist?
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Euler’s officers

Six different regiments have six officers, each one holding a
different rank (of six different ranks altogether). Can these
36 officers be arranged in a square formation so that each
row and column contains one officer of each rank and one
from each regiment?

Trial and error suggests the answer is “No”:
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Latin squares in statistics

Latin squares were introduced into statistics by R. A. Fisher.



Latin squares in statistics

A Latin square at Rothamsted Experimental Station.

This Latin square was designed by Rosemary Bailey. Thanks to
Sue Welham for the photograph.



Gerechte designs

W. Behrens: What if there is, for example, a boggy patch in the
middle of the field?

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5

This is a gerechte design (a “fair design”).
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Critical sets

John Nelder: A critical set is a partially filled Latin square
which can be completed in a unique way to a Latin square, but
if any entry is deleted the completion is no longer unique.

1 2
2

3



Sudoku

So a Sudoku puzzle is a partial gerechte design for the partition
of a 9× 9 square into nine 3× 3 subsquares, which contains a
critical set.

In fact Sudoku was invented by Howard Garns (a retired New
York architect) in the 1980s, under the name “number place”,
was taken up in Japan and re-names Sudoku, and spread
worldwide from there.
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How many Sudoku solutions?

We count Sudoku solutions up to
I Permuting the numbers 1, . . . , 9;
I Permuting rows and columns preserving the partitions

into 3 sets of 3;
I Possibly transposing the grid.

The number of different solutions of ordinary Sudoku is
5 472 730 538.
This was computed by Jarvis and Russell using the
Orbit-counting Lemma applied to the group (S3 wr S3) wr S2 of
order 68 · 2.
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Robert Connelly’s Symmetric Sudoku

Each number from 1 to 9 should occur once in each set of the
following types:

I rows;
I columns;
I 3× 3 subsquares;
I broken rows (one of these consists of three “short rows” in

the same position in the three subsquares in a large
column);

I broken columns (similarly defined);
I locations (a location consists of the nine cells in a given

position, e.g. middle of bottom row, in each of the nine
subsquares).



Example

3 5 9 2 4 8 1 6 7
4 8 1 6 7 3 5 9 2
7 2 6 9 1 5 8 3 4
8 1 4 7 3 6 9 2 5
2 6 7 1 5 9 3 4 8
5 9 3 4 8 2 6 7 1
6 7 2 5 9 1 4 8 3
9 3 5 8 2 4 7 1 6
1 4 8 3 6 7 2 5 9

Rows Columns Subsquares
Broken rows Broken columns Locations
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Affine geometry

We coordinatise the cells of the grid with F4, where F is the
integers mod 3, as follows:

I the first coordinate labels large rows;
I the second coordinate labels small rows within large rows;
I the third coordinate labels large columns;
I the fourth coordinate labels small columns within large

columns.

Now Connelly’s regions are cosets of the following subspaces:

Rows x1 = x2 = 0 Columns x3 = x4 = 0
Subsquares x1 = x3 = 0 Broken rows x2 = x3 = 0
Broken columns x1 = x4 = 0 Locations x2 = x4 = 0
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Affine spaces and SET

The card game SET has 81 cards, each of which has four
attributes taking three possible values (number of symbols,
shape, colour, and shading). A winning combination is a set of
three cards on which either the attributes are all the same, or
they are all different.

Each card has four coordinates taken from F (the integers
mod 3), so the set of cards is identified with the 4-dimensional
affine space. Then the winning combinations are precisely the
affine lines!
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Perfect codes

A code is a set C of “words” or n-tuples over a fixed alphabet F.
The Hamming distance between two words v, w is the number
of coordinates where they differ; that is, the number of errors
needed to change the transmitted word v into the received
word w.

A code C is e-error-correcting if there is at most one word at
distance e or less from any codeword. [Equivalently, any two
codewords have distance at least 2e + 1.] We say that C is
perfect e-error-correcting if “at most” is replaced here by
“exactly”.
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Perfect codes and symmetric Sudoku

I The positions of any symbol in a symmetric Sudoku
solution form a perfect code.

I So the entire solution is a partition of the affine space into
nine perfect codes.

I Using the SET test, a perfect code is an affine subspace.
I So there are only two different symmetric Sudoku

solutions.
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How hard is a problem?

We measure the complexity of a problem by the smallest
number of steps required by the “best possible” solution
method.

We imagine that an idealised model of a computer (a Turing
machine) is doing the calculation. A Turing machine is a
theoretical computer which is

I very simple;
I capable of solving any problem that can be solved on any

computer yet built or imagined;
I not too much slower (in terms of number of computation

steps required) than any computer yet built.
The last statement would become false if a quantum computer
were to be built.
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Complexity measures

We measure the size of a problem by the number of bits of
information needed to specify it.

A type of problem is polynomial-time, or in the class P, if an
n-bit instance can be solved in a number of steps polynomial in
n. (Informally these are the problems which can be solved
“efficiently”.

A type of problem is non-deterministic polynomial time, or in
the class NP, if we can recognise a solution in a polynomial
number of steps.
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Complexity measures

It is widely believed that the classes P and NP are not equal,
since NP contains some well-known hard problems like the
travelling salesman problem. The Clay Institute have offered a
prize of a million dollars for proof or disproof of P = NP.

According to Cook’s Theorem, there is a class of problems
called NP-complete, which are the “hardest” problems in NP; if
one of them could be solved in polynomial time, then all could.

In other words, if a problem is NP-complete, then no known
algorithm solves it efficiently, and we suspect that no efficient
solution can exist.
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Example

Given a graph G,
I the problem of walking round the graph so that every edge

is traversed exactly once is in P (this is Euler’s bridges of
Königsburg in disguise);

I the problem of walking round the graph so that each
vertex is visited exactly once is NP-complete (this is
Hamilton’s Icosian game).
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What about Sudoku?

Sudoku seems to be hard:

I Deciding whether a partly filled n2 × n2 Sudoku grid can
be completed is an NP-complete problem;

I Deciding whether an empty gerechte grid can be filled is
an NP-complete problem.

Several problems remain, for example:
I What about empty gerechte grids where the regions are

contiguous?
I Is there a test for completability short of actually trying to

do it?
I What about finding an orthogonal mate to a Latin square

(one which extends it to a Graeco-Latin square)?
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