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A mathematics lecture

This is a maths lecture, so I will expect some engagement from
you.

. . . mathematics is not best learned passively; you
don’t sop it up like a romance novel. You’ve got to go
out to it, aggressive, and alert, like a chess master
pursuing checkmate.

Robert Kanigel, The Man who Knew Infinity: A Life of
The Genius Ramanujan

The reader should expect to make use of pen and
paper in many places; mathematics is not a spectator
sport!

Julian Havel, Gamma: Exploring Euler’s Constant

A problem

Each card in a pack has a number on one side and a letter on
the other. Four cards are placed on the table:�
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You have to test the following hypothesis:

A card which has an even number on one side has a vowel
on the other.

You are allowed to turn over two cards. Which cards should
you turn?

I 2 and A;
I 2 and B;

I a different pair;
I it’s not possible.

Mathematics is important!

Elliptic functions were introduced to measure the arc length of
an ellipse. They led to

I Wiles’ proof of Fermat’s last theorem;
I elliptic curve cryptography, which keeps your transaction

with an ATM secure.
Complex numbers were introduced to understand the process
of solving cubic equations.

I They are essential in quantum mechanics, witness Born’s
equation

pq− qp = ih̄.

I Quantum mechanics underlies the operation of all our
electronic gadgets.

We cannot tell which bit of mathematics will be important next;
so it is vital that we produce able and enthusiastic
mathematicians!

A good career

Them as counts counts moren them as dont count

Russell Hoban, Riddley Walker

From the Jobs Rated website (2009 data), out of 200 professions
surveyed:

1. Mathematician
Applies mathematical theories and formulas to teach or
solve problems in a business, educational, or industrial cli-
mate.

Overall Ranking: 1 Overall Score: 104 Work Environment: 89.720
Physical Demands: 3.97 Stress: 24.670 Income: $94,160 Hours Per Week: 45

Oxford College, Emory University

Why major in mathematics?
One could say that mathematics is simply an exciting,
fascinating, utterly satisfying, and rapidly expanding
discipline. Many people are drawn to the level of challenge it
presents, the creativity it requires, and the clarity it affords in
knowing when you are right.

If you like solving puzzles and hunting for patterns and hidden
structures – if you enjoy logical analysis, deduction, and
investigating the unknown – if you want to understand the
connections between seemingly widely different areas of
science and technology, and how mathematics can be used to
explain and control natural phenomena – then being a math
major might be a good choice for you.

[Emphases mine]



But how do we get from here . . .

OCR Specimen Exam Paper
Sketch the graph of y = cos x◦, for values of x from 0 to 360.
Sketch, on the same diagram, the graph of y = cos(x− 60)◦.
Use your diagram to solve the equation

cos x◦ = cos(x− 60◦)

for values of x between 0 and 360. Indicate clearly on your
diagram how the solutions relate to the graphs.
State how many values of x satisfying the equation

cos(10x)◦ = cos(10x− 60)◦

lie beween 0 and 360. (You should explain your reasoning
briefly, but no further detailed working or sketching is
necessary.)

. . . to here?

The problem

At school, because of league tables, pupils and teachers both
have a vested interest in maximising exam marks (especially at
the C/D borderline); the examiner is the guardian at the end of
the level.
At university, lecturers want the pupils to understand the
material, and to learn to work independently. They are,
incidentally, also the examiners.
We are more interested in helping the students to understand
what they are doing than to cram stuff into short-term memory
for the exams.
On the other hand, there is so much mathematics to know;
there are voices saying “You can’t call yourself a maths
graduate unless you know about Lebesgue measure/finite
simple groups/the Index Theorem/sheaves/. . . ”.

Our response

Part of our response to help students make this transition was
to develop a new first-semester module, MTH4110
Mathematical Structures, for students taking maths or joint
degrees including maths, at Queen Mary, University of London.
The hope was that it would teach mathematical thinking and
understanding, and give the students good habits, which
would transfer to their other modules.
I was given the job of producing and delivering this module. I
would like to thank Thomas Prellberg, whose vision led to this,
and whose unwavering support was crucial to its success.

The specification (extract)

I It should be a first-semester module, compulsory for
mathematics students (including those on joint
programmes), designed to introduce them to rigorous
mathematical thinking and fundamental objects such as
sets, functions, and numbers.

I Despite this, rigorous mathematical thinking, accuracy and
understanding are important in all mathematics modules;
all first-semester lecturers will be expected to convey this
message to the students they teach.

I was nervous of putting “rigorous mathematical thinking” into
a ghetto, hence the second clause.

What was in the course?

The ten chapters were as follows:
I Introduction
I Sets
I Infinity
I Functions and relations
I Natural numbers
I Integers and rational numbers
I Real numbers
I Complex numbers
I Proofs
I Constructing and debugging proofs

The intention was to keep the content minimal, to allow time
for discussion of how to do mathematics.



Supplementary material

With each of the ten chapters in the notes, I also produced
supplementary material, some of it historical and
philosophical, some developing the material further, and some
containing more examples to round out the notes.
Each chapter of the notes also included some advice on study
skills, from the advice to refer to your notes for a definition if
there is a word you don’t understand in the question, to what
to do in the exam room.
I wanted everything open and transparent, so course material
was kept on a web page visible to the public, and I commented
on the progress of the course on my blog “Cameron Counts”.
I collected interesting examples and problems from many
colleagues and friends. Special thanks to Chris Budd!

Details

In my experience, one of the worst breakers of mathematical
concentration is coming to a symbol which you don’t know
how to pronounce. What would you make of ξ ⊗ η?
As a student, I came to grief repeatedly over the Fraktur
capitals G, S, and the rest of them, in a book I was reading.
So I provided the students with a table of the Greek alphabet
with the names of the letters written out, and for every new
kind of formula, notes about how to read it.
There was also advice to students on how to write blackboard
bold characters N, Z, etc., by hand in their notes (and why we
use the particular letters we do), the difference between a/b
and a | b, and so on.

Tutorials

One very important aspect was the re-introduction (after many
years absence at Queen Mary) of small-group tutorials (five or
six students and a tutor).
In recent years, students have chosen modules on-line and
have tended to have little interaction with their academic
advisers. We addressed this as well, by arranging that the
students’ tutor was their academic adviser.
The tutorials were very successful (as I will discuss later).

What’s it all about?

A new module has to have learning outcomes, key objectives,
and all that (or whatever the jargon is now), and this one did. I
was pleased to be able to get a quote from T. S. Eliot into the
course description: “precise but not pedantic”.
But on the web page is a description of what the module was
really about.
The module has three main aims:

1. to introduce the basic objects of mathematics
(numbers, sets and functions), and their properties;

2. to emphasize the fact that mathematics is concerned
with proofs, which establish results beyond doubt,
and to show you how to construct proofs, how to spot
false “proofs”, how to use definitions, etc.;

3. to get you involved in the excitement of doing
mathematics.

Of course the third is the most important!

Re-inventing the wheel?

There is material available which aims at some of the same
targets. Mostly, I deliberately chose not to read it, since I
wanted to find my own approach.
Honorable mention to Kevin Houston for his book How to
Think like a Mathematician. It is supported by a short PDF
document, “Ten ways to think like a mathematician.”
I was delighted to find that the first two of the ten are:

1. Question everything. [Don’t take anyone else’s word for it,
or as the Royal Society has it, Nullius in Verba. It’s true for
all scientists, but far more so for mathematicians.]

2. Write in sentences. [One of the commonest mistakes
students make is to write a chain of formulae connected
with = or ⇔ signs and expect to get full marks.]

Entering a mathematics department

I was an undergraduate at the University of Queensland. The
Mathematics Department was on the side of a hill. You enter on
the ground floor, and can go down to the basement or up to the
higher floors.
When you study mathematics at university, you enter with
your existing knowledge (both explicit and tacit) of numbers
(both integers and real numbers) and space. You can go down
to logic and set theory, or up to analysis and group theory.
My aim was to build on this, not to tear everything up and start
again with abstractions. This decision had several
consequences.



Sets and functions
Philosophers have not found it easy to sort out sets . . .

D. M. Armstrong, A Combinatorial Theory of Possibility

I did not attempt to define sets.
A function was, not a set of ordered pairs, but a black box
where you put in an element of the domain and get out its
image. The name of the function is written on the box, and the
domain and codomain are part of the specification. If the black
box jams when you put in an element of the domain, or if the
output is not in the codomain, ask for your money back!

x3 − 7x + 6- -3 12

Natural numbers

Again, I assume that everyone knows what natural numbers
are. The key property is

You can, in principle, start at 1 and count up to any natural
number.

When my children were in primary school, there was a vogue
for a rhyme that went:

One, two
Missed a few,
Ninety-nine,
A hundred.

Or, as a mathematician would say, 1, 2, . . . , 99, 100.

Integers and rational numbers

Again, I assumed these known.
However, I did give (in the notes, not the lectures) a definition
of the integers in terms of the natural numbers.
The naive way to do this is to say: an integer is either 0 or a
natural number with + or − in front of it. The trouble with this
definition is that, to define addition of integers, you have to
consider thirteen separate cases!
The mathematician’s definition of an integer is an equivalence
class of ordered pairs of natural numbers. The pair (a, b)
represents the integer b− a. But we don’t think of integers this
way . . .

I pictured an integer as a bag full of equations of the form
b + x = a, all defining the same integer; to do calculations with
integers, you don’t have to look inside the bag, just read the
label on the front!

. . . . . .

−1 0 1

2 + x = 1
3 + x = 2

4 + x = 3
5 + x = 4

. . .

1 + x = 1
2 + x = 2

3 + x = 3
4 + x = 4

. . .

1 + x = 2
2 + x = 3

3 + x = 4
4 + x = 5

. . .

Now the equation b + x = a is a way of giving meaning to the
ordered pair (a, b), and we can define addition and
multiplication without cases.

Real numbers

Mathematicians define real numbers by either Dedekind cuts
or Cauchy sequences, based on the rational numbers. Neither
of these is suitable for a beginner (who in any case also has a
good intuition about real numbers).
So I defined real numbers as infinite decimals.
It’s easy to prove that the set of real numbers is uncountable,
that every positive real number has a real square root, and so
on.
There are some difficulties, which I simply skipped over. For
example, consider

x = 0.386732054789 . . . + 0.613467945210 . . .

Is x greater than, equal to or less than 1?

Reasoning and logic

Reasoning and logic are to each other as health is to
medicine, or — better — as conduct is to morality.
Reasoning refers to a gamut of natural thought
processes in the everyday world. Logic is how we
ought to think if objective truth is our goal — and the
everyday world is very little concerned with objective
truth. Logic is the science of the justification of
conclusions we have reached by natural reasoning.
My point here is that, for such natural reasoning to
occur, consciousness is not necessary. The very reason
we need logic at all is because most reasoning is not
conscious at all.

Julian Jaynes, The Origin of Consciousness in the
Breakdown of the Bicameral Mind



Implication

In non-mathematical discourse, “A implies B” suggests that
there is a causal connection between A and B.
Mathematicians, instead, say that “A implies B” holds in any
situation except where A is true and B is false.
Suppose I say to you,

If it’s fine tomorrow, I’ll take you to the Zoo.

The only situation where I have lied is if it is fine and I don’t
take you to the Zoo. If it rains, my statement is not wrong, no
matter what we do.

A problem revisited

Each card in a pack has a number on one side and a letter on
the other. Four cards are placed on the table:�
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You have to test the following hypothesis:

A card which has an even number on one side has a vowel
on the other.

The hypothesis is false only if there is a card with an even
number on one side and a consonant on the other. So we have
to check cards 2 and B.

Proof by contradiction

The proof [of the existence of an infinity of prime
numbers] is by reductio ad absurdum, and reductio ad
absurdum, which Euclid loved so much, is one of a
mathematician’s favourite weapons. It is a far finer
gambit than any chess gambit: a chess player may
offer the sacrifice of a pawn or even a piece, but a
mathematician offers the game.

G. H. Hardy, A Mathematician’s Apology

If the assumption that A is false leads us to an impossible or
nonsensical situation, then we know that A must be true.

Euclid’s proof

Theorem
There are infinitely many prime numbers.

Proof.
Suppose that there are only finitely many prime numbers, say
p1, . . . , pn. Let N be the number obtained by multiplying them
all together and adding 1. Then N is bigger than all of
p1, . . . , pn, so it can’t itself be prime, and it must have a prime
divisor, necessarily in this set (since these are all the primes).
But every prime in this set leaves a remainder of 1 when
divided into N.

A proof is a convincing argument

When I gave this proof, I told the students that a proof is meant
to be a convincing argument; if they were not convinced, I had
not done my job, and they should ask questions. Many of them
took me up on this, and continued to do so throughout the
course.
There is a weak spot in the proof. Why does N have to have a
prime divisor at all? The fact that every natural number greater
than 1 has a prime divisor needs to be proved, and the proof of
this depends on the most important property of the natural
numbers, Induction.

Induction

Suppose we have a long (potentially infinite) line of dominoes:
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Suppose we have a guarantee that, when any domino falls, it
will knock over the next domino. What happpens when I push
over the first domino?
They all fall over!
This is the Principle of Induction.



More formally

Suppose that P(n) is some statement about the natural
number n. Suppose that

I P(1) is true;
I P(n) implies P(n + 1), for any natural number n.

Then P(n) is true for all natural numbers n.

On the previous slide, let P(n) be the statement “domino
number n falls over”. The second bullet point is the guarantee I
gave you, and the first corresponds to my pushing over the first
domino.
But compare the two statements, on the last slide and this one.
The first is to be understood, the second to be learned and
trotted out in an exam.

Why is it true?

Remember the property of the natural numbers: I can start at 1
and count up to any number. Property P holds at the start, and
remains true at every step of the count; so it is true at the end.
One problem that beginning students have is that they are told
“Assume P(n) and prove P(n + 1).” But we are trying to prove
P(n); are we not assuming what we are required to prove?
My hope is that, once you understand induction, this is no
longer a problem.
The statement that every natural number greater than 1 has a
prime factor (which we needed for Euclid’s proof) can be
proved by induction. But I won’t inflict the proof on you now.
(It is an “exercise for the reader”.)

False proofs

As Julian Jaynes pointed out, sometimes arguments appear
plausible but contain logical flaws which can only be
discovered by extreme care.

Theorem
All horses have the same colour.

This is a proof by induction. Let P(n) be the statement:

In any set of n horses, all the horses have the same colour.

We prove P(n) by induction.

Proof.
First, to start the induction, P(1) is obviously true; in a set
containing only one horse, clearly all the horses in the set have
the same colour!
Next, the inductive step: We assume that P(n) is true and prove
P(n + 1). Accordingly, let {H1, H2, . . . , Hn+1} be a set of n + 1
horses. Then

I the subset {H1, H2, . . . , Hn} is a set of n horses, so horses
H1, H2, . . . , Hn all have the same colour, by the induction
hypothesis;

I the subset {H2, . . . , Hn, Hn+1} is also a set of n horses, so
that the horses H2, . . . , Hn, Hn+1 all have the same colour,
again by the induction hypothesis.

It follows that all of H1, . . . , Hn+1 have the same colour, and so
the inductive step is complete, and with it the proof.

Tutors’ comments

There were some teething troubles, but the tutors very quickly
became engaged. I tried to provide interesting questions which
would provoke discussion.
At the start of the semester, two of my colleagues had a bet, one
claiming that the students would stop turning up at tutorials
by the mid-term.
I am happy to report that the cynic lost the bet! Tutors were
reporting full attendance, or emailed apologies in advance, at
the end of the semester.

Tutors’ comments

Typical comment:
Good engagement with the group in the tutorial. But

reluctance to get involved - "can’t see how to write it

down for case "n" when they argued it perfectly for "n=4"

re. no two people have the same number of friends. Have

asked them to hand in the solutions we discussed for me to

look at - hope this doesn’t break too many rules? I had 3

of the 6 stand up and write on the board which wasn’t bad.

Generally nice problems to talk around in Ex 1 and 2. I

enjoyed the tutorial.



Student comments: positive

I Different view of maths than I had previously encountered.
I Professor Cameron makes the lectures interesting by

adding some history/philosophical thoughts in.
I Tutorials are very helpful, small classes enable a lot of

learning to be done. Online notes are useful.
I Intervals at the appropriate times for questions.
I The lecturer . . . makes the students interact more than any

other lecturer.
I The professor . . . is passionate about mathematics.

There were many positive comments about the small group
tutorials.

Student comments: negative

This section asked how the module could be improved. Every
lecturer knows that there will be many students who ask for
“more examples”. On the other hand, giving more examples
without the underlying theory does not help understanding.
Many students asked for more tutorials. Clearly they wanted
the small group tutorials extended to other modules.
Unfortunately this is not practicable!
Students asked for notes to be put online in advance of the
lectures. Rightly or wrongly, I do not do this. I believe that
taking notes is an important part of learning and helps get the
material into the students’ brains.

An email

Dear Professor Cameron,
I’d just like to say a HUGE thank you! You made the
transition from A-level to University much easier for me,
you taught me to look at mathematics in a different way
and I feel I am now able to approach this course in the
way I should after learning Mathematical Structures.
Every single lecture you gave was so intriguing and I
didn’t realise how much I had learnt from them until the
mid-term exam.

Approaching the Midterms, Mathematical Structures was the

one I was most worried about as it required a different

approach compared to Calculus, Probability and

Mathematical Computing, but after reading through my notes

I realised that I actually knew most of the material and

ended up getting 97/100 (which was my highest mark!).

I would just like to say thank you one more time, you have
made me very confident in knowing that I can achieve my
best at Queen Mary and in Mathematics as a whole and I
think I can speak for everyone on the course when I say I
hope you were able to stay and teach all of our modules!
Hope you have a lovely time in Portugal and a great
Christmas!

Vickie Weller

So the course was a success!


