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Why quantum computing?

In 1990 Peter Shor proved the following theorem.

Theorem 1 There exists a randomized algorithm for
integer factorization which runs in polynomial time on
a quantum computer.

On a classical computer, primality testing is ‘easy’ but
factorization is ‘hard’. This is the basis of the RSA
cryptosystem.

Roughly speaking, a quantum computer is highly
parallel; we can run exponentially many
computations at the same time, and only those which
terminate with a positive result will produce output.
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Classical v quantum

In a classical computer, each bit of information is
stored by a transistor containing trillions of electrons.

On a quantum computer, a single electron or nucleus
in a magnetic field carries a bit of information.
Interaction with the environment is much more
serious.

Decoherence puts a limit on the space and time
resources available to a quantum computer.

In order to get round this limit, the computer must be
fault tolerant, that is, it must have error correction
built in; and the error correction circuits should not
introduce more errors than they correct!
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Classical error correction

Let F � GF
�
2 � � � 0 � 1 � . An element of F is a bit of

information. A word of length n (an element of
V � Fn) contains n bits of information.

A code is a subset C of V such that any two elements
of C are far apart. We only use codewords to carry
information; if few errors occur, the correct codeword
is likely to be the nearest.

For v � w � V , the Hamming distance d
�
v � w � is the

number of coordinates i such that vi �� wi.

If the minimum Hamming distance between distinct
elements of C is d, then C can correct up to� �

d 	 1 � 
 2 � errors. So an error pattern is correctable
if it has weight at most

� �
d 	 1 � 
 2 � .

The weight of v is wt
�
v � � d

�
v � 0 � . If C is linear, then its

minimum distance is equal to its minimum weight.
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States and observables

The state of a quantum system is a unit vector in a
complex Hilbert space. An observable is a
self-adjoint operator on the state space, whose
eigenvalues are the possible values of the
observable.

The interpretation of the coefficients ai of a state
vector with respect to an orthonormal basis of
eigenvectors of an observable is that � ai � 2 is the
probability of obtaining the corresponding eigenvalue
as the value of a measurement.
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Bits and qubits

The quantum analogue of a bit of information is
called a qubit. It is the state of a system in a
2-dimensional Hilbert space 
 2 spanned by e0 and
e1, where e0 and e1 are eigenvectors corresponding
to the eigenvalues 0 and 1 of the qubit.

Thus, the qubit is represented by the self-adjoint
matrix �

0 0

0 1 �
relative to this basis. So in the state αe0 � βe1, the
probabilities of measuring 0 and 1 are � α � 2 and � β � 2
respectively.

An n-tuple of qubits is an element of the tensor
product 
 2 � � � � � 
 2 � 
 2n �
a basis for this space consists of all vectors

ev
� ev1

� � � � � evn �
for v � �

v1 � � � � � vn � � V .
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Quantum errors

An error, like any physical process, is a unitary
transformation of the state space. The space of
errors to a single qubit is 4-dimensional, and is
spanned by the four unitary matrices

I (no error) e0 �� e0, e1 �� e1
X (bit error) e0 �� e1, e1 �� e0
Z (phase error) e0 �� e0, e1 �� 	 e1
Y � iXZ (combination)

Note that I � X � Y � Z are the Pauli spin matrices.

We can write Xev
� ev � 1, Zev

� � 	 1 � vev.
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Quantum errors

Now the errors to n qubits act coordinatewise, and
are generated by X

�
a � and Z

�
b � for a � b � V , where

X
�
a � : ev �� ev � a � Z

�
b � : ev �� � 	 1 � v � bev

�
These generate the error group, an extraspecial
2-group E of order 22n � 1 with centre Z

�
E � � � I.

E � E 
 Z
�
E � �� GF

�
2 � 2n; we represent the coset� � X

�
a � Z

�
b � � by

�
a � b � .

On E, we have a quadratic form q given by� �
X

�
a � Z

�
b � � 2 � � 	 1 � q � a � b � I

and associated symplectic form � given by�
X

�
a � Z

�
b � � X �

a � � Z
�
b � �  � � 	 1 � � a � b � ! � a " � b " � I �
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Quantum codes

Let S be an abelian subgroup of E such that S is
totally singular (w.r.t. q). Then under the action of S,
the state space 
 2n

is the sum of � S � orthogonal
eigenspaces. Let Q be an eigenspace. Then

# the error group permutes the eigenspaces
regularly;

# the stabilizer of Q is S $ ;

# S acts trivially on Q.

Thus, errors in S $ are undetectable, while errors in S
have no effect. So if % is a subset of E with the
property

e � f � % & f ' 1e 
� S $ ( S �
then errors in % can be corrected. (If two such errors
have undetectably different effect, then they have the
same effect!)
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Quantum error correction

The subspace Q is our quantum code. If � S � � 2r, then
dim

�
Q � � 2n ' r; we can think of Q as consisting of

n 	 r qubits “smeared out” over the space of n qubits.

Define the quantum weight of
�
a � b � � E to be the

number of coordinates i such that either ai or bi (or
both) is non-zero, that is, some error has occurred in
the ith qubit.

By taking % to consist of all errors with quantum
weight at most

� �
d 	 1 � 
 2 � , Calderbank, Rains, Shor

and Sloane proved the following analogue of
classical error correction:

Theorem 2 Suppose that the minimum quantum
weight of S $ ( S is d. Then Q corrects

� �
d 	 1 � 
 2 �

qubit errors.
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GF ) 4 * to quantum

The field GF
�
4 � can be written as� aω � bω : a � b � GF

�
2 � � �

So we have a bijection θ between E and GF
�
4 � n,

given by
�
a � b � �� aω � bω.

Moreover, if a subspace of GF
�
4 � n is totally isotropic

with respect to the Hermitian inner product on
GF

�
4 � n, then its image in E is totally singular.

Also, the quantum weight of
�
a � b � is equal to the

Hamming weight of aω � bω.

So good GF
�
4 � -codes can be used to construct good

quantum codes.
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