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Classical v quantum

In a classical computer, each bit of information is
stored by a transistor containing trillions of electrons.

On a quantum computer, a single electron or nucleus
in a magnetic field carries a bit of information.
Interaction with the environment is much more
serious.

Decoherence puts a limit on the space and time
resources available to a quantum computer.

In order to get round this limit, the computer must be
fault tolerant, that is, it must have error correction
built in; and the error correction circuits should not
introduce more errors than they correct!

Why quantum computing?
In 1990 Peter Shor proved the following theorem.

Theorem 1 There exists a randomized algorithm for
integer factorization which runs in polynomial time on
a quantum computer.

On a classical computer, primality testing is ‘easy’ but
factorization is ‘hard’. This is the basis of the RSA
cryptosystem.

Roughly speaking, a quantum computer is highly
parallel; we can run exponentially many
computations at the same time, and only those which
terminate with a positive result will produce output.

Classical error correction

Let F = GF(2) ={0,1}. An element of F is a bit of
information. A word of length n (an element of
V =FM) contains n bits of information.

A code is a subset C of V such that any two elements
of C are far apart. We only use codewords to carry
information; if few errors occur, the correct codeword
is likely to be the nearest.

For v,w € V, the Hamming distance d(v,w) is the
number of coordinates i such that v; # w;.

If the minimum Hamming distance between distinct
elements of C is d, then C can correct up to
|(d—1)/2] errors. So an error pattern is correctable
if it has weight at most [(d—1)/2].

The weight of vis wt(v) = d(v,0). If Cis linear, then its
minimum distance is equal to its minimum weight.
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States and observables

The state of a quantum system is a unit vector in a
complex Hilbert space. An observable is a
self-adjoint operator on the state space, whose
eigenvalues are the possible values of the
observable.

The interpretation of the coefficients g of a state
vector with respect to an orthonormal basis of
eigenvectors of an observable is that |a;|2 is the
probability of obtaining the corresponding eigenvalue
as the value of a measurement.

Quantum errors

An error, like any physical process, is a unitary
transformation of the state space. The space of
errors to a single qubit is 4-dimensional, and is
spanned by the four unitary matrices

I (no error) e €y €€

X (bit error) €€, 61—

z (phase error) egr> g, €1~ —€1

Y =iXZ (combination)

Note that I, X,Y,Z are the Pauli spin matrices.

We can write Xey = 6,;1, Zey = (—1)Vey.

Bits and qubits

The quantum analogue of a bit of information is
called a qubit. It is the state of a system in a
2-dimensional Hilbert space C? spanned by ey and
e, Where ey and e are eigenvectors corresponding
to the eigenvalues 0 and 1 of the qubit.

Thus, the qubit is represented by the self-adjoint

matrix
00
0 1

relative to this basis. So in the state aey+ fey, the
probabilities of measuring 0 and 1 are |a|? and |B|?
respectively.

An n-tuple of qubits is an element of the tensor
product
2@ ®@C2=C?"
a basis for this space consists of all vectors
=6, ® @8y,
for v=(vy,...,Vn) €V.

Quantum errors

Now the errors to n qubits act coordinatewise, and
are generated by X(a) and Z(b) for a,b € V, where

X(a): ey evpa,  Z(b) ey (—1)“Pey.

These generate the error group, an extraspecial
2-group E of order 221 with centre Z(E) = +I.

E = E/Z(E) = GF(2)2"; we represent the coset

{£X(a)z(b)} by (ab).

On E, we have a quadratic form g given by
(X(@)2Z(h))? = (~1)1@P)

and associated symplectic form x given by

[X(a)Z(b), X () Z(b)] = (—1) (@)@




Quantum codes

Let Sbhe an abelian subgroup of E such that Sis
totally singular (w.r.t. ). Then under the action of S
the state space C?" is the sum of |§ orthogonal
eigenspaces. Let Q be an eigenspace. Then

e the error group permutes the eigenspaces
regularly;

o the stabilizer of Qis S';
e Sacts trivially on Q.

Thus, errors in St are undetectable, while errors in S
have no effect. So if £ is a subset of E with the
property

efeE=fle¢sh\s
then errors in E can be corrected. (If two such errors

have undetectably different effect, then they have the
same effect!)

GF(4) to quantum

The field GF(4) can be written as
{aw+bw: a,be GF(2)}.
So we have a bijection 8 between E and GF(4)",

given by (a|b) — aw+ bw.

Moreover, if a subspace of GF(4)" is totally isotropic
with respect to the Hermitian inner product on
GF(4)", then its image in E is totally singular.

Also, the quantum weight of (a|b) is equal to the
Hamming weight of aw+ bo.

So good GF(4)-codes can be used to construct good
gquantum codes.

11

Quantum error correction

The subspace Q is our quantum code. If |§ = 2', then
dim(Q) =2"""; we can think of Q as consisting of
n—r qubits “smeared out” over the space of n qubits.

Define the quantum weight of (a|b) € E to be the
number of coordinates i such that either g or b; (or
both) is non-zero, that is, some error has occurred in
the ith qubit.

By taking ‘£ to consist of all errors with quantum
weight at most | (d — 1)/2|, Calderbank, Rains, Shor
and Sloane proved the following analogue of
classical error correction:

Theorem 2 Suppose that the minimum quantum
weight of St \ Sis d. Then Q corrects |(d—1)/2]
qubit errors.
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