
Slide 1

Counting, structure, and symmetry

Peter J. Cameron

p.j.cameron@qmul.ac.uk

NZIMA/ACCMCC
Lake Taupo, December 2004

Slide 2

Some counting problems

Count functionsf : X → C with |X| = n, |C| = k
(that is, colourings ofX with k colours), subject to
some combination of structure and symmetry onX
andC, as follows:
• a graphΓ onX, with f a proper colouring;
• also a graphΓ′ on C, with f a homomor-

phism;
• groupsG andG′ acting onX andC (as auto-

morphisms of the graphs if present), count up to the
group action (that is, count orbits).
Here G acts byf g(x) = f (xg−1

), and G′ acts by
f g′(x) = ( f (x))g′ .
These are only examples; many other interpretations
of “structure” are possible!
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Examples

For the four combinations ofΓ the null or com-
plete graph,G the trivial or symmetric group, we
obtain the counts for sampling with or without re-
placement, with ordered or unordered samples. So
the answers to the four counting problems are re-

spectivelykn, k(k−1) · · ·(k−n+ 1),
(

k+n−1
n

)
,

and

(
k
n

)
, respectively.

If k≥ n and we takeG′ to be the symmetric group,
we obtain the Bell numberB(n) if G is the trivial
group, and the partition numberp(n) if G is the
symmetric group.
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Structure on X

Let’s just consider the case where we put structure
only onX.
• If there is no structure onX, the number iskn.
• If the is a graphΓ on X, the number isPΓ(k)

(the chromatic polynomial ofΓ evaluated atk), a
polynomial ink with leading termkn.
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Symmetry onX

• If there is a groupG on X, the number of or-
bits is

1
|G| ∑g∈G

kc(g)

(wherec(g) is the number of cycles ofg), a poly-
nomial with leading termkn/|G|. This follows
from the Orbit-Counting Lemma, sinceg fixeskc(g)

colourings.
• If we have both graph and group, the number

is again a polynomial with leading termkn/|G|. For
if two vertices in a cycle ofg are adjacent, theng
fixes no colourings; otherwise it fixesPΓg(k) colour-
ings, whereΓg is obtained by shrinking each cycle
of g to a single vertex.
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Example

Let Γ be the following graph, and letG be the group
whose elements are the identity,(1,4), (2,3), and
(1,4)(2,3).
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The chromatic polynomial ofΓ is k(k− 1)k− 2)2.
The automorphisms(2,3) and (1,4)(2,3) fix no
colourings, whereas(1,4) fixes (1,4) fixes k(k−
1)(k−2) colourings, since the graphΓ(1,4) is a tri-
angle. So the number of orbits is

1
4k(k−1)2(k−2).
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Nowhere-zero flows

Let A be an abelian group of orderk. A flow on a
graphΓ with values inA is defined as follows. Take
an (arbitrary but fixed) orientation of the edges of
Γ. Now a flow is a function from the set of oriented
edges toA such that, at each vertexv, the total flow
into and out ofv are equal (the sums computed in
A). It is nowhere zeroif it doesn’t take the value 0∈
A. If a graph has a bridge, then it nas no nowhere-
zero flows; so we assume for the time being that our
graphs are bridgeless.
It is known that the number of nowhere zero flows
onΓ with values inA depends only onΓ and the or-
derk of A, not on the detailed structure ofA. More-
over, this number is a polynomial ink, with leading
coefficient 1.
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Orbits on nowhere-zero flows

If G is a group of automorphisms ofΓ, thenG acts
on the set of nowhere-zero flows onΓ in a natural
way. (An automorphism may change the orientation
of an edge; if so, we require that it should negate the
value of the flow on that edge.)
Bill Jackson considered the case whereA = Cm

2 , so
that k = 2m. In this case, every element is equal
to its inverse, so we don’t have to worry about this
problem. He showed that, in this case, the number
of G-orbits on nowhere-zero flows is a polynomial
in k, whose leading coefficient is 1/|Ḡ|, whereḠ is
a certain factor group ofG.
As the next example shows, in general the answer
does depend on the structure ofA, not just its order.
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An example
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A nowhere-zero flow takes valuesa on 23,b on 21
and 13, andc on 24 and 43, witha+ b+ c = 0. We
can choose any non-zeroa, and anyb 6= −a; then
c =−a−b. So there are(k−1)(k−2) n.z. flows.
A flow is fixed by (2,3) if and only if 2a = 2b =
2c = 0. So the number of such flows is(α2−
1)(α2−2), whereα2 is the number of solutions of
2x = 0 in A.
A flow is fixed by(1,4) if and only if a = b. Soc =
−2a, whence there arek = α2 choices for the flow.
Finally, a flow fixed by(1,4)(2,3) must vanish on
23. So by the Orbit-Counting Lemma, the number
of orbits on n.z. flows is

1
4

((k−1)(k−2)+(α2−1)(α2−2)+(k−α2)).
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Orbits on nowhere-zero flows, continued

We have found that the following result holds:

Theorem 1 Let G be a group of automorphisms of
a graphΓ. Then there is a polynomial P(Γ,G) in in-
determinates qi indexed by non-negative integers i,
with the following property:
Given an abelian group A, the number of G-orbits
on nowhere-zero A-flows onΓ is P(Γ,G;qi ← αi),
whereαi is the number of solutions of the equation
ia = 0 for a∈ A.

Note thatα0 is the order of the groupA. Moreover,
if A is an elementary abelian 2-group, then

αi =
{

1 if i is odd,
|A| if i is even,

so we recover Jackson’s polynomial.
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First reduction

It suffices to prove that, for any automorphismg of
Γ, the number of nowhere-zeroA-flows fixed byg
is of the formp(Γ,g;qi← αi), for some polynomial
p(Γ,g).
For, by the Orbit-Counting Lemma, the number of
orbits of a group is the average number of fixed
points of its elements: thus

P(Γ,G) =
1
|G| ∑g∈G

p(Γ,g).
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Second reduction

It suffices to prove that, for any automorphismg
of Γ, the total number ofA-flows fixed byg is of
the form p∗(Γ,g;qi ← αi), for some polynomial
p∗(Γ,g).
For, if I indexes the set of cycles ofg on edges of
Γ, andΓ(J) is obtained fromΓ by deleting edges in
cycles indexed byJ, then Inclusion-Exclusion gives

p(Γ,g) = ∑
J⊆I

(−1)|J|p∗(Γ(J),g),

since p∗(Γ(J),g;qi ← αi) is the number of flows
fixed byg which vanish at least on the edges in or-
bits with indices inJ.
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The final step

Let M be the vertex-edge incidence matrix ofΓ
(with respect to a given orientation). Then anA-flow
onΓ is a vectorf (with components inA) satisfying
M f = 0.
Now letMg be obtained fromM by adding, for each
pair (ei ,ej) of edges in the same cycle ofg, a row
with ith entry 1, jth entry−1 if eg

i
andej have the

same orientation and+1 otherwise, and other en-
tries 0.
Then f is anA-flow fixed byg if and only if Mg f =
0.
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The final step, continued

By elementary row and column operations (which
don’t change the number of solutions in any given
abelian groupA), we can convertMg to Smith nor-
mal form, with(i, i) entrydi for i ≤ r and all other
entries zero, andr is the rank ofMg. Now the first
r equations aredixi = 0 (which hasαdi

solutions in

A) and the lastm− r are trivial (and have|A| = α0
solutions).
So the number of solutions isp∗(Γ,g;qi ← αi),
where

p∗(Γ,g) =

(
r

∏
i=1

qdi

)
qm−r

0 .
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Calculating αi

For any abelian groupA, we haveα0 = |A| andα1 =
1.
In general,A is a direct sum of cyclic groups, say

A = Cn1
⊕Cn2

⊕·· ·⊕Cnr ;

then we have

αi(A) = αi(Cn1
) ·αi(Cn2

) · · ·αi(Cnr )
= gcd(i,n1) ·gcd(i,n2) · · ·gcd(i,nr).
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Where next?

The method we have used for nowhere-zero flows
extends to nowhere-zero tensions in graphs, and to
words of given weight in linear codes.
We would like to extend the method to any counting
problem whose solution (without the group action)
is given by a specialisation of the Tutte polynomial.
We would also like to replace the use of the Orbit-
Counting Lemma by the Cycle Index Theorem.
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