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The countable random graph

We begin with thecountable random graphor Rado
graph R.
A graph G is homogeneousif every isomorphism
betweem (finite) induced subgraphs ofG extends to
an automorphism ofG.
This is a very strong symmetry condition on a
graph. In particular, a homogeneous graph is vertex-
transitive, edge-transitive, non-edge-transitive, . . .
A countable graph isuniversal if every (at most)
countable graph can be embedded in it as an induced
subgraph.
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The random graph

Theorem 1 (Erdős and Ŕenyi)There is a countable
graph R with the property that a random countable
graph (edges chosen independently with probabil-
ity 1

2) is almost surely isomorphic to R.

The graphRhas the properties that

• it is universal: any finite (or countable) graph
is embeddable as an induced subgraph ofR;

• it is homogeneous: any isomorphism between
finite induced subgraphs ofRextends to an au-
tomorphism ofR.

As well as being the “random graph”,R is also
generic in the sense of Baire category (with respect
to a natural metric on the set of all graphs on a fixed
countable vertex set).
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Sketch proof

Property (∗) Given finite disjoint setsU,V of ver-
tices, there is a vertex joined to everything inU and
to nothing inV.

Step 1 With probability 1, a countable random
graph has property (∗).
Calculation shows that, for a fixed pairU , V, the
probability that no such vertexzexists is zero. Then
use the fact that a countable union of null sets is null.

Step 2 Any two countable graphs with property (∗)
are isomorphic.
A standard ‘back-and-forth’ argument: condition
(∗) allows us to extend any partial isomorphism (in
either direction) to any further point.

1



Slide 5

Explicit constructions

The argument by Erd̋os and Ŕenyi is a non-
constructive existence proof, and they offered no ex-
plicit construction.
The year after the paper by Erdős and Ŕenyi, an ex-
plicit construction forRwas given by Rado (though
apparently without noticing that it was the random
graph. The vertex set is the set of natural numbers;
for x< y, we joinx to y if the xth digit of y (written
in base 2) is one. (The joining rule is symmetric.)
Two other constructions:
• Vertices are primes congruent to 1 mod 4; join

p to q if p is a square modq (this is symmetric by
quadratic reciprocity).
• Take a countable model of the Zermelo–

Fraenkel axioms for set theory, and symmetrise the
membership relation.
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Automorphisms of R

The homogeneous graphRhas a very rich automor-
phism group. Here are some of its properties.
• (Truss) Aut(R) is simple and has cardinality

2ℵ0.
• (Cameron–Johnson) Aut(R) contains 2ℵ0 con-

jugacy classes of cyclic automorphisms.
• (Truss) Aut(R) contains generic elements (that

is, a conjugacy class which is residual in Aut(R) in
the sense of Baire category). All cycles of such ele-
ments are finite, but they have infinite order.
Truss also found all possible cycle structures of au-
tomorphisms ofR.
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Automorphism groups of R

A body of results describe various interesting sub-
groups of Aut(R):
• (Hodges, Hodkinson, Lascar, Shelah) Aut(R)

contains genericn-tuples of elements. Any suchn-
tuple generates a free group of rankn, all of whose
orbits are finite.
• (Bhattacharjee, Macpherson) Aut(R) contains a

free group of rank 2 whose non-identity elements
have only finitely many cycles.
• (Bhattacharjee, Macpherson) Aut(R) contains a

dense locally finite subgroup.
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Regular automorphism groups and
Cayley graphs

A group acts as a regular group of automorphisms
of a graph if and only if the graph is a Cayley graph
for the group.
The existence of many cyclic automorphisms ofR
is proved by showing that, with probability 1, a ran-
dom Cayley graph for the infinite cyclic group is
isomorphic toR.
Cameron and Johnson found that, if the countable
groupX is not the union of finitely many translates
of square-root sets of non-identity elements together
with a finite set, then a random Cayley graph forX
is isomorphic toRwith probability 1.
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Countable homogeneous structures

Fräısśe gave a necessary and sufficient condition for
a classC of finite structures to be the finite substruc-
tures of a countable homogeneous structure. The
most important condition is theamalgamation prop-
erty. If the conditions are satisfied, then the count-
able structure is unique up to isomorphism, and is
called theFraı̈sśe limit of C .
In particular, we have:

Theorem 2 (Fräısśe)R is the unique countable uni-
versal homogeneous graph.
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Countable homogeneous graphs

Theorem 3 (Lachlan and Woodrow) The count-
ably infinite homogeneous graphs are the following:

(a) the disjoint union of m complete graphs of
size n, where m and n are finite or countable
(and at least one is infinite);

(b) the complement of a graph under (a);

(c) theHenson graphHn, the Fräısśe limit of the
class of graphs containing no complete sub-
graph of size r, for given finite r≥ 3;

(d) the complement of a graph under (c);

(e) the random graph (the Fraı̈sśe limit of the class
of all finite graphs).
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Regular automorphism groups

Which of the Henson graphs has a regular automor-
phism group? That is, which is a Cayley graph?
Henson showed thatH3 has cyclic automorphisms
butHr does not forr > 3.
More generally, we have:
•H3 is a Cayley graph for any one of a large class

of countable groups (there is a characterisation like
that of Cameron and Johnson forR);
• for r > 3, Hr is not a normal Cayley graph for

any countable groupX (that is, there is no graph
admitting both the left and the right regular action
of X). It is not known whetherHr can be a Cayley
graph forr > 3.
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Urysohn space

In a posthumous paper published in 1927,
P. S. Urysohn showed that there exists a unique
universal and homogeneousPolish space(complete
separable metric space)U . Here “homogeneous”
means that any isometry between finite subsets ex-
tends to an isometry of the whole space; “univer-
sal” means that any Polish space can be isometri-
cally embedded intoU .
This result is a precursor of the work of Fraı̈sśe; the
separability condition plays the role of countability
in Fräısśe’s work.
Vershik has shown thatU is the random metric
space with respect to a wide class of natural mea-
sures on the class of Polish spaces, and that it is
generic.
We do not yet have a simple explicit description of
U .
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Urysohn and Fräısśe

A convenient construction ofU is as follows. Let
Q be the universal homogeneous “rational metric
space”: the Fräısśe limit of the class of finite metric
spaces with rational distances. ThenU is the com-
pletion ofQ. Moreover, any isometry ofQ extends
uniquely to an isometry ofU .
Our strategy is to build isometry groups ofQ using
similar techniques to those used forRearlier, they or
their closures in Aut(U) provide us with interesting
isometry groups ofU .
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Regular automorphisms

There are 2ℵ0 non-conjugate cyclic isometries ofQ
(permuting all vertices in a single cycle). Each of
these has the property that all its orbits onU are
dense. In particular, the closure of the group gener-
ated by such an isometry (in the natural topology on
Aut(U)) is an abelian group acting transitively on
U .

Problem: What can one say about the structure and
conjugacy of the abelian groups arising in this way?
Note that these groups are not necessarily torsion-
free.
Moreover, one can show that the condition of
Cameron and Johnson for a group to act regularly
on R also guarantees a regular action onQ. Again
one can ask what the closure of such a group looks
like.
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Normal structure

An isometryσ whose cycles are dense inU has the
property thatd(u,σ(u)) is constant for all points
u∈U . Hence it lies in the normal subgroupB(U) of
Aut(U) consisting ofbounded isometries, those for
which d(u,σ(u)) is bounded. Thus this subgroup
is non-trivial; it is also easy to see that it is not the
whole of Aut(U) (that is, unbounded isometries ex-
ist).

Problem: Is it true thatB(U) and Aut(U)/B(U)
are simple?
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A dense free subgroup

Using a trick invented by Tits, we can show:

Theorem 4 There is a subgroup F ofAut(U) which
is a free group of countable rank and is dense in
Aut(U).

The proof depends on the facts that
• Aut(U)/B(U) contains a free subgroup;
• B(U) is a dense subgroup of Aut(U).

Problem: Does the analogue of Bhattacharjee–
Macpherson hold? That is, does Aut(U) have a
dense locally finite subgroup?
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