London
Mathematical
Society

LMS Popular Lectures

Codes

Peter J. Cameron

‘aQs’ Queen Mary

University of London

p.j.cameron@qmul.ac.uk

June/July 2001



Think of a number ...

Think of a number between 0 and 15.

Now answer the following questions.

You are allowed to lie once.



Think of a number ...

Think of a number between 0 and 15.

Now answer the following questions.

You are allowed to lie once.

N o Ok owDdPRE

Is the number 8 or greater?

Is it in the set {4,5,6,7,12,13,14,15}7
Is it in the set {2,3,6,7,10,11,14,15}7
Is it odd?

Is it in the set {1,2,4,7,9,10,12,15}?

.Isitinthe set {1,2,5,6,8,11,12,15}7
.Isitinthe set {1,3,4,6,8,10,13,15}7




Base 2 and modulo 2

Our familiar way of writing numbers uses base ten:
for example

1354 = 1 x 10°+ 3 x 10%+5 x 101 + 4 x 10°.

We could use any number as a base. One which is
important is base 2:

1101 =1x28+1x224+0x 21 r1x20

which is the number we usually write as 13 (using
base ten).

Note that 10 (in base 2) is 21 = 2; so we have
1+1=10.

Later we will use another kind of addition, modulo
two, where instead we have the equation 1+ 1 =0.
This looks confusing but it is really easier than
ordinary addition: there is no carrying!



How does the tric k work?

If no lies were allowed, we would only need four
guestions. Any number in the range from 0 to 15 can
be written in base 2 with four digits (starting with zero
If necessary); for example,

5 (base 10) = 0101 (base 2).

If we record the answers to the questions as either O
(for ‘no’) or 1 (for ‘yes’), then the first four of our
seven questions generate the base 2 representation.
For they are equivalent to asking:

Is the 8s digit 17?
Is the 4s digit 17?
Is the 2s digit 17?
Is the units digit 17?

The last three questions are put in to catch the liars!



How does it work?

The possible answers to the seven questions, if no
lies are told, are:

0,0 00 O0OOOPO
10 0 01 111
2/0 01 0110
3]0 011001
4/0 1 0 01 01
5(0 1 01 010
6/0 1 1 00 11
/710111100
8/1 00 00 11
912 0 01 1 00
10/1 0 1 0 1 0 1
111 0 1 1 0 1 O
12{1 1 0 0 1 1 O
13{1 1 01 0 0 1
141 1 1 0 0 0 O
151 111111

Let C be the list of sixteen 7-tuples of zeros and ones
In the table. C is our first example of a code. We use
the notation v, for the 7-tuple corresponding to the
number n.



A vector space

We regard 0 and 1 as being the elements of the
binary field.

That is, we add and multiply them modulo two, that
IS, according to the following rules:

+10 1 x |0 1
0|0 1 0/00
110 10 1

We denote this field by 5.

Now the set of all 7-tuples of zeros and ones is a
7-dimensional vector space over the field [F,. Two
vectors are added component by component: for
example,

0010100 + 1110001 = 1100101.

Now some diligent checking shows that C is closed
under addition. For example, vi3+ V11 = V.



Distance

Further checking shows that any two elements of C
have different entries in at least three positions.
Since the distance between v and w is just the
number of ones in v+ w, we just have to observe that
all non-zero codewords have at least three ones.

For example,

v4 = 0100101
and

vg = 1001100

differ in the first, second, fourth and seventh
positions, since v4+ Vg = V3 = 1101001.

If you tell a lie, then your answers to the questions
will only differ in one place from the correct answers.
This means that they will differ in at least two places
from the correct answers for any other number. So in
principle I can work out which number you were
thinking of and which answer is a lie.



A projective plane

This picture shows a projective plane.

It has seven points and seven lines.

Any line contains three points, and any point lies on
three lines.

Any two points lie together on just one line, and any
two lines meet in just one point (that is, there are no
parallel lines).



The plane with coor dinates

001

011 101

010 110 100

We can give coordinates to the points of the plane.
Notice that the coordinates of the points on any line
add up to 000 (where the addition is binary, as usual).

We can also regard these coordinates as being the
numbers from 1to 7, written in base 2. Then we get
the picture on the next slide.



The plane with numbers

Now something remarkable happens.

The code we had earlier has 16 words. One is
all-zeros, and one is all-ones. Of the others, seven
have three zeros and four ones, and the lines of the
plane give the positions of the three zeros. The other
seven have three ones and four zeros, and the lines
of the plane give the positions of the three ones.

If you have played the game of Nim, you will
recognise these as winning positions.



The game of Nim

The game of Nim is played with matches. Put any
number of piles of matches on the table, with any
number of matches in each pile. Two players take
turns to remove matches from the table; each player
can remove any positive number of matches from
one pile. The player who takes the last match wins.

To work out a winning strategy, you do the following:

e Convert the numbers of matches in the piles to
base 2.

e Add these numbers modulo 2.

e If the answer is zero, the player who just played
can win; otherwise, the other player can win.

For example, {3,5,6} is a winning position for the
player who just played, since
(011) 4 (101) 4 (110) = (000).



How the trick really works

With this information, you can do the decoding in
your head.

Look at the responses to the questions. If they are all
0s, then no lies were told. If there was just one 1,
then it was the lie.

If there were two 1s in positions i and |, find the third
point k on the line through i and j; this is the position
of the lie.

If there are three 1s which form a line of the plane, no
lie was told. If there are three 1s which do not form a
line, then the positions of the zeros contain just one
line; the odd point out is the lie.

If there are more 1s than 0s, just reverse zeros and
ones.

For example, if the response is 0111000, then 234 is

not a line, but 1567 contains the line 167; so 5is the

lie, the correct response is 0111100, and the number
s 0111 =7.



Codes

Now we turn this into mathematics. Consider an
alphabet A of symbols. (In our example, A is the
binary alphabet {0,1}). A code is simply a set of
words of length n, or n-tuples, of elements of the
alphabet A.

The minimum distance of the code is the smallest
distance between two different codewords. If the
minimum distance is at least 2e+ 1, then the code
can correct up to eerrors. (We had e=1in our
example.)

Encoding and decoding are easier if the alphabet Ais
a field, and the sum of two codewords (or product of
a codeword by a scalar) are again in the code. In this
case, we say that the code is linear.

Codes are used in many practical situations. We now
look at a few of these.



The planets

Error-correction is used for getting pictures and data
about the Solar System back to earth.

For example, the Voyager spaceprobes had a
400-watt power supply to drive all the instruments;
the transmitter used only 30 watts! Information was
transmitted over hundreds of millions of kilometers of
space. Errors occur during transmission: this is
‘nature lying to us’, and we can use a code to get
round this. The above picture used a famous code
called the Golay code, which also features in some of
the latest developments in group theory and
mathematical physics.



Compact discs

A compact disc holds music (or data, in the case of a
CD-ROM) in digital form. A typical CD comes off the
production line with about 500000 bit errors, and after
normal use may have 1000000 bit errors. Many of
them are burst errors, i.e. a scratch destroys a long
run of bits. How can we correct burst errors
efficiently?

Take a large alphabet A made up of, say, 216 symbols.
Each symbol can be encoded as a string of 16 bits.

Now suppose we have a code which corrects one
error over the alphabet A. Up to 16 bit errors in the
output string will only cause a single symbol of Ato
be received incorrectly, and so can be corrected.

Thus the code cannot correct more than one error
‘scattered about’, but can correct up to 16 errors
occurring ‘in a burst’.



Finite fields

We'd like the alphabet to be a field. A theorem of
Evariste Galois (the French mathematician who died
in a duel in 1832 at the age of 21) says that we can
find a field with 21° elements.

The theorem of Galois says that there is a finite field
with any given prime power number of elements.

Electrical engineering books often contain tables of
large finite fields.



The Human Genome Project

The human genome has now been sequenced. How
did they do it?

It is not possible to run a molecule of DNA through a
machine and read off the sequence of bases.
Instead, the molecule is chopped into a lot of small
pieces. Now short sequences of bases can be
recognised, so we can test the pieces to see if such
sequences occur. Two sequences which occur
together on the same piece must be close together
on the original molecule. This information is then
patched together to get the sequence.

If the pieces are short, we can assume that at most
one contains any two given sequences, and we want
to identify which piece does so.

Let us make a mathematical model which captures
the essence of this.



A combinatorial search problem

We are given a set of n objects, containing one
‘active pair’.

We can test any subset: the test is positive precisely
when the subset contains both members of the active
pair.

How many tests are required to identify the active
pair? (We want to use as few tests as possible.)

We could test all n(n—1)/2 pairs. More economically,
we can find a set of about 2n subsets such that each
pair is contained in at least two of them, and any two
have at most one pair in common; then testing these
subsets will find the pair.



Using coding theory

We can do much better with a 2-error-correcting
code.

Imagine that a message is transmitted consisting
entirely of zeros, but an error occurs in the
transmission and two zeros are changed into ones (in
the positions of the active pair). A 2-error-correcting
code can find the positions of the ones, by asking a
number of questions.

Now each question is of the form we saw before,
corresponding to a subset of the positions.
Corresponding to each guestion, we perform two
tests, one on the subset specified by that question,
and one on the complementary subset. From the
results we can get the information needed by the
code to locate the errors.

In this way, we can locate the active pair in only about
4log, n tests.



Bonuses

Of course, the method easily adapts to the case
where we are looking for a triple, quadruple, etc., of
elements, rather than a pair.

There Is an extra bonus too.

Suppose that a small proportion of test results may
be incorrect. We can think of this as ‘nature lying to
us’ and use another code to catch the lie.

For example, suppose that n = 1000. There is a
2-error-correcting code which will solve the problem
In 40 tests. If some of the test results are wrong, but
not more than 3% in a given run, then we can still
identify the active pair in 60 tests.

The codes in this example are called BCH codes,
after R. C. Bose, D. K. Ray-Chaudhuri, and A.
Hocquenghem.



Quantum computing

Quantum computing may be one of the exciting
developments of the new century. Nobody has
managed to build a quantum computer yet, but in
theory it could perform certain tasks much faster than
a conventional computer. An example of such a task
Is factorising a large number into its prime factors.
(This is thought to be a difficult problem, and the
security of Internet communication depends on the
assumption that nobody can factorise large numbers

quickly).

A quantum computer could potentially do this
because it can carry out many different calculations
at the same time, because of the superposition
principle.

In a quantum computer, a bit of information is stored
by a single nuclear spin. So the machine is very
vulnerable to errors caused by interference from the
environment.



Quantum error correction

Quantum theory is based on complex numbers,
which have both modulus and argument. So they are
vulnerable to both bit errors (e.g. changinga Oto a 1)
and phase errors (changing the argument of the
complex number).

To correct these, we use codes based on the Galois
field IF4 with four elements. Here, wis a cube root of
unity, and @ its ‘complex conjugate’. We encode two
bits (a,b) as the element aw—+ bow.

+10 1 w ® 10 1 w W
OO0 1 w ® OO0 0 OO
11 0 ®© w 1 01 w ®
Wl lw w 0 1 w0 w w1l
WwlwwloO Wwl0wl w




Picture credits

The logos and banners are the property of the
organisations they represent.

The picture of Saturn is from the Planetary Data
System at NASA JPL in Pasadena, California:

http://pds.jpl.nasa .go v/ pla net s/

The picture of Galois is taken from the MacTutor
History of Mathematics Archive at the University of
St. Andrews:

http://www-groups.d cs. st -an d.a c.u k/” hi sto ry/

The lie detector picture is (€) Neill Cameron 2001

http://www.geocitie s.c ompl anetdu mbass/
default.html




