
Slide 1

Cyclic automorphisms of
homogeneous structures

Peter J Cameron

p.j.cameron@qmul.ac.uk

Joint EMS Mathematical Weekend
Prague, 3 September 2004

Slide 2

Homogeneous and universal structures

A structure of some kind ishomogeneousif any
isomorphism between finite (induced) substructures
can be extended to a global automorphism of the
whole structure.
A srtuctureX is universalfor a classC if X ∈ C
and any structure inC “no larger thanX” can be
embedded inX.
We are mainly interested ingraphs and metric
spaces; we interpret the size bound as countability
and separability respectively.
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Urysohn and Rado

In a posthumous paper published in 1927, Urysohn
showed that there is a homogeneous and universal
objectU in the class of complete separable metric
spaces, by giving an explicit construction.
The analogous result in the simpler case of count-
able graphs was not proved until the 1960s. Rado in
1964 constructed a countable universal graphR. It
is not clear whether he knew that it is homogeneous
(but see comments on Erdős and Ŕenyi below).
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Fraı̈sśe

Theageof a relational structureX is the class of all
finite substructures embeddable inX.
Already in the early 1950s, Fraı̈sśe had given nec-
essary and sufficient conditions for a classC of fi-
nite relational structures to be the age of a countable
homogeneous structureX. There are three rather
trivial “book-keeping” conditions and one impor-
tant condition: theamalgamation property. He
showed that, if these conditions are satisfied, thenX
is unique up to isomorphism. It is called theFraı̈sśe
limit of C .
Moreover, the Fräısśe limit of C is universal for the
class of countable structures whose age is contained
in C .
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Urysohn and Rado through Fräısśe’s
eyes

The class of all finite graphs satisfies Fraı̈sśe’s con-
ditions. Its Fräısśe limit is Rado’s graphR.
For Urysohn, things are not so simple. There are too
many finite metric spaces for them all to be embed-
dable in a given countable space. But if we take, for
example, the classC of finite metric spaces with all
distances rational, then Fraı̈sśe’s conditions are sat-
isfied, so there is a Fraı̈sśe limit QU. The Urysohn
spaceU is the completion ofQU.
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Erdős–Ŕenyi and Vershik

In 1963 (the year before Rado’s paper), Erdős and
Rényi “demolished the theory of infinite random
graphs” by showing that there is, up to isomor-
phism, a unique countable random graph (where we
choose edges independently with probability 1/2).
They gave no explicit construction (their argument
is a non-constructive existence proof); but, not sur-
prisingly, Rado’s graphR is the countable “random
graph”.
The analogous result for complete separable met-
ric spaces was not proved until 2002, when Vershik
showed that, for a wide range of “natural” measures,
the random metric space is isometric toU.
Similar but easier results hold if we use Baire cate-
gory instead of measure. Any Fraı̈sśe limit is resid-
ual in the class of all countable structures with the
same or smaller age (using the natural ultrametric
on this set).
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Henson, Lachlan–Woodrow and Cherlin

In 1971, Henson observed that, for anyn≥ 3, the
class ofKn-free finite graphs satisfies Fraı̈sśe’s con-
ditions, so that there is a unique homogeneousKn-
free graphHn.
In 1980, Lachlan and Woodrow showed that, up
to complementation, and excluding some “trivial
examples” (disjoint unions of complete graphs),
the only countable homogeneous graphs are Rado’s
graphRand the Henson graphsHn.
Henson also constructed uncountably many count-
able homogeneous directed graps, The classification
of all such digraphs was a major piece of work by
Cherlin, published in 1998.
Note: H3 is the generic triangle-free graph, in the
sense of Baire category; but the random triangle-
free graph is almost surely bipartite.
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Cyclic automorphisms of graphs

If a graph X has acyclic automorphismσ (one
which permutes all the vertices in a single cycle),
then the vertices ofX can be indexed by the integers
so thatσ is the cyclic shiftx 7→ x+ 1. Let Sbe the
set of positive integersn such thatxn is adjcent tox0
in X. Now SdeterminesX up to isomorphism, and
σ up to conjugacy in Aut(X). In fact,X is the Cay-
ley graph of the infinite cyclic group with respect to
S(strictly, S∪−S).
(TheCayley graphCay(G,S) of a groupG with re-
spect to a setS is the graph with vertex setG, with x
joined toy if and only if xy−1 ∈ S. The groupG acts
by right multiplication as a group of automorphisms
of the graph.)
It can be shown that, if we choose a random setSof
positive integers, then with probability 1, the result-
ing graphX is isomorphic toR. HenceR has 2ℵ0

pairwise non-conjugate cyclic automorphisms.
Henson showed thatH3 also has many cyclic auto-
morphisms, butHn has no cyclic automorphisms for
n≥ 4.
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Cyclic automorphisms ofQU

U is uncountable and so cannot have a cyclic au-
tomorphism. Nevertheless, its dense subspaceQU
does have cyclic automorphisms, and indeed has un-
countably many non-conjugate such. The proof is a
little more elaborate than the proof forR; we cannot
choose the distances arbitrarily since, for example,
d(x,σn(x))≤ nd(x,σ(x)).
Now σ induces an automorphism ofU, all of whose
orbits are dense. The closure of〈σ〉 is an abelian
group A which acts transitively (and hence regu-
larly) on U. SoU has an abelian group structure
(indeed, many such).
Note that different choices ofσ give rise to differ-
ent structures for the groupA; this is not well under-
stood yet!
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Ras a Cayley graph

What if we replace the infinite cyclic group with an
arbitrary countable group? Which countable groups
G act regularly on a given homogeneous graphX?
In other words, which homogeneous graphsX are
Cayley graphs for a given countable groupG?
In the case of Rado’s graph, we can write down
a somewhat complicated necessary and sufficient
condition for a countable groupG to act regularly on
R. This condition implies that ifG cannot be writ-
ten as the union of finitely many translates of square
root sets of non-identity elements together with a
finite set, thenG acts regularly onR. In particu-
lar, this holds if any non-identity element has only
finitely many square roots.
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Ras a Cayley graph, continued

For example, ifG is any finite or countable group,
the direct productG×Z acts regularly onR (where
Z is the infinite cyclic group). So Aut(R) embeds all
countable groups in a very special manner.
An example of a group which does not act regularly
onR is the infinitedicyclic group

G = 〈a,b : b4 = 1,b−1ab= a−1〉.

In any Cayley graph forG, any vertexx is either
joined to both or neither of 1 andb2, or to both or
neither ofb andb3.
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Henson’s graphs as Cayley graphs

We saw thatH3 admits cyclic automorphisms. In-
deed,H3 admits regular actions of many countable
groups. The known sufficient conditions are more
stringent than those forR, but allow (for example)
all abelian groups where the subgroups consisting
of elements of orders 2 or 3 are finite.
A normal Cayley graphis a Cayley graph Cay(G,S)
for which G acts by both left and right multiplica-
tion; equivalently,S is a normal subset ofG. Fol-
lowing Henson’s argument, it can be shown that, for
n> 3, the graphHn is not anormal Cayley graph
for any countable group.
It is not known whetherHn is a Cayley graph, or
whether Aut(Hn) embeds all countable groups.
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QU as a Cayley object

R is areductof QU; that is, there is a partition of the
positive rationals into two setsE andN such that, if
we join two points whose distance belongs toE, the
resulting graph is isomorphic toR. (Indeed there
are many such partitions). Thus, any group acting
regularly onQU also acts regularly onR.
however, this implication does not reverse. The
countable elementary abelian group of exponent 3
does not act regularly onQU, and indeed, does not
act onU with dense orbits.
On the other hand, the countable elementary abelian
group of exponent 2 does act regularly onQU. Its
closure in the isometry group ofU is a regular ele-
mentary abelian group of exponent 2.
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Countable B-groups

A groupG is said to be aB-groupif every primitive
groupH containing the regular action ofG is doubly
transitive. The B stands for Burnside, who showed
that finite cyclic groups of composite order are B-
groups. Using the Classification of Finite Simple
Groups, it is easy to show that for almost alln, every
group of ordern is a B-group.
On the other hand, no countable B-group is known.
The most powerful tool for showing that a countable
group is not a B-group is Rado’s graph, whose au-
tomorphism group is primitive but not doubly tran-
sitive. So every group acting regularly onR fails to
be a B-group.
The remarks on the last slide show thatQU doesn’t
give us any further examples.
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What next?

Here are a couple of further questions in addition to
those mentioned above.

Other structures The countable homogeneous
total order isQ; a group acts regularly onQ if and
only if it has a dense right order. The infinite cyclic
group does not, but many other countable torsion-
free groups do, including the free and free abelian
groups of rank greater than 1.
There is a very interesting countable homogeneous
universal posetP. It does not admit the infinite
cyclic group: indeed, a countable poset with a cyclic
automorphism is either disconnected, or has only
finitely many elements incomparable with a given
one. Does any group act regularly onP?

Homomorphisms What happens if we replace
“isomorphism” with “homomorphism” in the def-
inition of homogeneity? Jarik Nešeťril and I have
some partial results on this.
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