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Remembering Hamming and

Assmus

H � ��
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

��
Hamming code

The dual code has one non-zero weight.

� � �� ���� � � � � �� � � � � � � ������ 							
 �� 

The Assmus–Mattson theorem gives 2-designs,�
7 � 3 � 1 � and

�
7 � 4 � 2 � .
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A problem

What is the smallest number m of subsets (blocks) of�
1 � � � � � n � such that

(a) any two blocks meet in at most two points;

(b) any two points lie in at least two blocks?
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Some results

Theorem (i) m � n, with equality if and only if the
blocks form a biplane.

(ii) m � �
2 � o

�
1 � � n.

Proof (i) Count incidences between point-pairs and
block pairs.

(ii) Let n � q2 � q � 1, q a prime power, and let D be a
planar difference set in Z � �

n � . Take all translates of D

and � D.
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Some values

n 3 4 5 6 7 8 9
m 4 4 7 7 7 10 11

n 10 11 12 13 14 15 16
m 11 11 16 16 16 16 16

If r � 4 and � r � 1
2 � � 2 � n � � r

2 � , then

m � min � � r
2 � � 1 � � 2 � n

2 � / � r � 1
2 �  � 1 ! �
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A problem

We are given a set of n objects, and we know that
one pair is ‘active’. We can test any subset of the
objects; the test result will be positive if and only if
the active pair is contained in the set being tested.

How many tests are required?

6

Two approaches

Scheme 1. Choose a family of sets as in the earlier
problem and test these sets. Condition (b)
guarantees at least two positive results, and
condition (a) guarantees that these determine the
active pair.

�
2 � o

�
1 � � n tests are required.

Scheme 2. It is possible to identify the active pair in
at most 8log2 n tests (and at most 4log2 n if n � 2k � 1)
using coding theory.
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The coding scheme

Suppose that n � 2k � 1. There is a 2-error-correcting
BCH code of length n and codimension 2k. Imagine
that the zero codeword was transmitted, and two
errors were made in the positions of the active pair.
We can correct the errors, i.e. identify the active pair.

Let H be a 2k " n parity check matrix for the code.
Use syndrome decoding, i.e. calculate vH # , where v

is the characteristic vector of the active pair. Then v

can be recovered from its syndrome.
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The coding scheme

The ith bit in the syndrome is the inner product of v

with the ith row of H, i.e. it is 1 if the active pair is
separated by the support of the ith row. We can
determine this with two tests A0

i and A1
i , where Aε

i is
the set of positions where ε occurs in the ith row. So
4k tests are required.

The number may be smaller: if A0
i tests positive, then

A1
i doesn’t have to be tested.
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Variations

What if some test results are incorrect?

Choose a code C of length m and dimension 2k that
will correct the maximum number of errors likely to
occur in the tests. Let G be its 2k " m generator
matrix. Then use G # H instead of H in Scheme 2. 2m

tests are required.

What if we have to identify subsets of other sizes?

Just choose a code correcting the appropriate
number of errors.
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Example

Suppose that we are trying to identify an active pair
from a set of size 1000. The 2-error-correcting BCH
code of length 1023 has codimension 20, so that 40

tests are required.

If we suspect that some tests will give the wrong
result, but (say) not more than 3% of all tests in a
sequence will be wrong, we could use a
2-error-correcting shortened BCH code of length 30

and dimension 20, which will yield the required
information in 60 tests, correctly if at most two test
results are wrong.
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Who found the Hamming codes?

R. A. Fisher, The theory of confounding in factorial
experiments in relation to the theory of groups, Ann.
Eugenics 11 (1942), 341–353.

R. A. Fisher, A system of confounding for factors with
more than two alternatives, giving completely
orthogonal cubes and higher powers, Ann. Eugenics
12 (1945), 2283–290.

M. J. E. Golay, Notes on digital coding, Proc. IEEE
37 (1949), 657.

R. W. Hamming, Error detecting and error correcting
codes, Bell Systems Tech. J. 29 (1950), 147–160.
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Coding theory

We wish to send words of length n over an alphabet
A with $ A $ � q over a noisy channel where errors can
occur.

We assume that, with high probability, not too many
errors occur during transmission of a word.

The strategy is to send words from a code C, a
subset of An. We require:

(a) large minimum distance d: if d � 2e � 1, we can
correct up to e errors;

(b) many codewords (subject to (a)): the
transmission rate is logq $ C $ � n;

(c) computationally efficient encoding and decoding
(subject to (a) and (b)).
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Factorial design

We are investigating n factors which can affect the
yield of some process. The ith factor can take any
one of a set Ai of levels, with $ Ai $ � qi.

We assume that only the interactions of small
numbers of factors affect the yield significantly.

We impose the structure of an abelian group on Ai,
and test treatment combinations lying in a subgroup
B of A1 " % % % " An.
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Factorial design

Let C be the annihilator of B in A &1 " % % % " A &n. (Here A &i
is the group of characters of Ai; so C is the set of all
characters of Ai " � � � " An which are trivial on B.)

Elements of C represent combinations of treatments
which are confounded in the experiment. (For
example, if an element of C has support in
A &i ' A & j ' A &k, then the interaction of factors j and k

cannot be distinguished from the main effect of
factor i.)
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Factorial design

We want

(a) Large weight in C so that potentially significant
combinations of factors are not confounded;

(b) Few trials (subject to (a)): trials are expensive!
This means small B, and so large C: note that$ C $ � q1 % % % qn$ B $ �
(c) simple description which can be explained to

experimenters and for which results can be analysed
(subject to (a) and (b)).
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Comparison

Design theorists and coding theorists are both
looking for subsets C of A1 " % % % " An with large
minimum distance and large cardinality.

Coding theorists have n large, all Ai of the same size
(almost always 2), and don’t insist on group structure
(though it does help to use a linear code).

Statisticians have n fairly small, varying alphabet
size, and do require group structure.

Hamming codes satisfy both specifications!
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Hamming codes

Let V � GF
�
q � k. Partition the non-zero vectors in V

into equivalence classes, where two vectors are
equivalent if one is a non-zero scalar multiple of the
other. There are

�
qk � 1 � � �

q � 1 � equivalence classes.

Choose one vector from each equivalence class, and
let H be the k " �

qk � 1 � � �
q � 1 � matrix having these

vectors as columns. (For simplicity, take all vectors
whose first non-zero entry is 1.) Then any two
columns of H are linearly independent.

The code C with parity check matrix H thus has
minimum weight 3 and so is 1-error-correcting. This
is the Hamming code H

�
k � q � .
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Fisher’s Theorem on Minimal

Confounding
Fisher (1942) proved that:

A 2n factorial scheme can be arranged in 2n ( p

blocks of 2p plots each, without confounding either
main effects or 2-factor interactions, provided that
n ) 2p.

Subsequently (1945), he generalized this theorem and proved
that:

A πn factorial scheme can be arranged in πn ( p

blocks of πp plots each, without confounding either
main effects or 2-factor interactions, provided that

n * + πp � 1 , - + π � 1 , .
D. J. Finney, An Introduction to the Theory of Experimental

Design, University of Chicago Press, Chicago, 1960.

(Here π is a prime power.)
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Mixed alphabets

C is a code of length n and minimum distance d over
alphabets of size q1 � � � � � qn. Let e � / �

d � 1 � � 2 0 , and
assume that q1 � % % % � qn.

Sphere-packing bound:

$ C $ � n

∏
i 1 1

qi

e

∑
k 1 0

∑
i1 ) 2 2 2 ) ik

k

∏
j 1 1

�
qi j � 1 � �

Singleton bound: $ C $ � n � d 3 1

∏
i 1 1

qi �
Plotkin bound: Let

α � n

∑
i 1 1

�
1 � 1 � qi � �

If d 4 α then $ C $ � d � �
d � α � .
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An example

Let n � 5 and let the alphabet sizes be 2 � 2 � 2 � 2 � 4.
Take d � 3.

The sphere-packing bound gives$ C $ � 2 % 2 % 2 % 2 % 4
1 � 1 � 1 � 1 � 1 � 3

� 8 �
The Singleton bound gives$ C $ � 2 % 2 % 2 � 8 �
The Plotkin bound:

α � 1
2 3 1

2 3 1
2 3 1

2 3 3
4 1 11

4 ) 3 5
so $ C $ � 3 � �

3 � 11
4 � � 12.
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An example

Take A1
� � � � � A4

� �
0 � 1 � (the cyclic group of

order 2) and A5
� �

0 � a � b � c � with a � b � c � 0 (the
Klein group of order 4).

Then C is

00000

11110

0011a

1100a

0101b

1010b

0110c

1001c
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More generally . . .

For every a 6 b and prime power q, there is a perfect
code of length

�
qb � qa � � �

q � 1 � � 1 over alphabets of
sizes q (

�
qb � qa � � �

q � 1 � times) and qa (once).

This is constructed using Hamming codes. If
b � a � 1, it meets the Singleton bound too.
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Codes and projective spaces

R. C. Bose, Mathematical theory of the symmetrical
factorial design, Sankhyā 8 (1947), 107–166.

R. C. Bose and J. N. Srivastava, On a bound useful
in the theory of factorial design and error-correcting
codes, Ann. Math. Statist. 35 (1964), 408–414.

C. Greene, Weight enumeration and the geometry of
linear codes, Studies in Applied Math. 55 (1976),
119–128.
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Codes and projective spaces

Let A be a k " n matrix over GF
�
q � . Assume that no

two columns are linearly dependent, and that A has
rank k.

(a) A is the parity check matrix of a 7 n � n � k 8 code

C � �
v 9 GF

�
q � n : Av # � 0 � �

Elementary row operations don’t affect C; column
permutations and scalar multiplications replace it by
an equivalent code (metric properties are
unaffected). The code C has minimum weight at least
3, so is 1-error-correcting. The corresponding
factorial design has qk treatments.
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Codes and projective spaces

(b) The columns of A are a set S of n points in
projective space PG

�
k � 1 � q � . Elementary row

operations induce collineations of the projective
space, while column permutations don’t change S.
The set S spans PG

�
k � 1 � q � .

So 1-error-correcting codes (up to equivalence)
correspond naturally to spanning subsets of
projective space (up to collineations).

The correspondence between codes and projective
spaces allows many properties to be transferred back
and forth:
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Codes and projective spaces

1. The Hamming codes correspond to the entire
projective space. The code/projective space
connection can be regarded as a generalisation of
the construction of Hamming codes.

2. Supports of words of the dual code correspond to
complements of hyperplane sections of S.

3. (Bose 1947) MDS codes (those which meet the
Singleton bound) correspond to arcs in projective
space. (This, and a bound on the size of arcs in
projective planes, are in Bose’s paper on factorial
designs.)

4. (Greene 1976) The weight enumerator of the code
is a specialisation of the Tutte polynomial of the
matroid represented by the matrix. Hence the
MacWilliams identities follow from matroid duality.
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