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In the beginning . . .
A derangement is a permutation with no fixed

points.

1. The proportion of derangements in the sym-
metric group Sn is approximately 1/e.

More precisely, the number of derangements in
Sn is the nearest integer to n!/e.

2. (Jordan) A transitive permutation group of
degree n > 1 contains a derangement.

In fact (Cameron and Cohen) the proportion of
derangements in a transitive group G is at least
1/n.

Equality holds if and only if G is sharply 2-
transitive, and hence is the affine group {x 7→
ax + b : a, b ∈ F, a 6= 0} over a nearfield F.

The finite nearfields were determined by
Zassenhaus. They all have prime power order.

Why do we care?
The presence of derangements in a permutation

group has important implications in number the-
ory and topology. See Serre’s beautiful paper “On
a theorem of Jordan”, in Bull. Amer. Math. Soc. 40
(2003), 429–440.

• Let f be an integer polynomial of degree n >
1, irreducible over Q. Then f has no roots
mod p for infinitely many primes p (indeed,
for at least a proportion 1/n of all primes).

• Let π : T → S be a covering map of de-
gree n ≥ 2, and suppose that T is arcwise con-
nected but not empty. Then there is a contin-

uous closed curve in S which cannot be lifted
to T.

• The Fein–Kantor–Schacher theorem (see later)
is equivalent to the statement that the relative
Brauer group of any finite extension of global
fields is infinite. (The proof uses the classifi-
cation of finite simple groups.)

So find one then . . .
A subgroup of Sn can be generated by at most

n − 1 elements, and such a generating set can
be found efficiently (with polynomial delay) (Jer-
rum). So such a subgroup can be described by
O(n2 log n) bits.

Problem: Given a subgroup of Sn, does it con-
tain a derangement?

This problem is NP-complete, even for elemen-
tary abelian 2-groups. There is a simple reduction
from the known NP-complete problem 3-SAT. In-
deed, the argument shows that counting the de-
rangements in a subgroup of Sn is #P-complete.

and in a transitive group . . .
Given generators for a subgroup G of Sn, we can

check quickly whether H is transitive. If it is (and
n > 1), then we know that G contains a derange-
ment.

Problem: Suppose that G is transitive. Find a
derangement in G.

There is an efficient randomised algorithm for
this problem. Since at least a fraction 1/n of the
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elements of G are derangements, we can do this by
random search: in n trials we will have a better-
than-even chance of finding one, and in n2 trials
we will fail with exponentially small probability.

Problem: Can it be done deterministically?
The answer is likely to be “yes” – this is theo-

retically interesting but the randomised algorithm
will almost certainly be more efficient!

Groups with many derangements
Although the lower bound |G|/n for the num-

ber of derangements in a transitive group G is at-
tained (by sharply 2-transitive groups), there are
many groups with a higher proportion of derange-
ments. For example, if G is regular, than all but
one of its elements are derangements!

The argument of Cameron and Cohen gives a
lower bound of about (r− 1)/n for the proportion
of derangements in a transitive group G, where r
is the permutation rank (the number of orbits of G
on ordered pairs).

Can anything be said about families of (say,
primitive) groups in which the proportion of de-
rangements is bounded away from zero?

An example
Example: There is a constant αk > 0 so that the

proportion of derangements in Sn acting on k-sets
tends to αk as k → ∞. (For example, α1 = e−1 =
0.3679 . . . , while α2 = 2e−3/2 = 0.4463 . . . .

There is a formula for αk as a sum over subsets
of the partitions of k. But most of the terms cancel,
so I suspect there is a much simpler formula!

Problem: Is it true that αk → 1 monotonically as
k→ ∞?

Prime power order
Theorem: A transitive group of degree n > 1

contains a derangement. (Jordan)

The proof is elementary: By the Orbit-counting
Lemma, the average number of fixed points is 1;
and some element (the identity) fixes more than
one point.

Theorem: A transitive group of degree n >
1 contains a derangement of prime-power order.
(Fein–Kantor–Schacher)

The proof uses the Classification of Finite Sim-
ple Groups, together with detailed analysis of the
various families of simple groups.

Problem: Find a simple proof!

Prime order
Not every transitive group contains a derange-

ment of prime order.
A simple example is the 1-dimensional affine

group over GF(9), acting on the set of 12 lines of
the affine plane of order 3.

Call a transitive group elusive if it contains no
derangement of prime order.

Problem: Is it true that the degrees of elusive
groups have density zero?

A permutation group G is 2-closed if any permu-
tation which fixes every G-orbit on 2-sets belongs
to G. For example, the automorphism group of a
graph is 2-closed.

Problem: Is it true that there is no 2-closed elu-
sive group? (Klin)

Which prime?
Conjecture: For any prime p, there is a func-

tion fp on the natural numbers such that, if G
is a transitive group of degree n = pab, where
gcd(p, b) = 1 and a ≥ fp(b), then G contains a
derangement of p-power order.

This was conjectured for p = 2 by Isbell in 1959
(in the context of game theory); even that case is
still open.

Conjecture: For any prime p, there is a func-
tion gp on the natural numbers such that, if P is
a p-group with b orbits each of length greater than
gp(b), then P contains a derangement.

The second conjecture implies the first.

Maillet and Blichfeldt

Theorem 1 (Maillet 1895). Let G be a permutation
group of degree n, and L the set of numbers of fixed
points of non-trivial subgroups of G. Then |G| divides
∏l∈L(n− l).
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Theorem 2 (Blichfeldt 1904). Let G be a permutation
group of degree n, and L the set of numbers of fixed
points of non-identity elements of G. Then |G| divides
∏l∈L(n− l).

Blichfeldt claimed that his was just a new proof
of Maillet’s Theorem but it is actually stronger.

Proof of Maillet’s Theorem
The proof is by induction on n. Let l0 = min(L).
If l0 6= 0, then G fixes l0 points; removing these

fixed points subtracts l0 from n and from every el-
ement of L and leaves ∏l∈L(n− l) unaltered.

If 0 ∈ L, then any point stabiliser satisfies the
hypotheses with L replaced by L \ {0}. By in-
duction, the order of any point stabiliser divides
∏l∈L\{0}(n− l). Since n divides the least common
multiple of the orbit lengths, it follows that |G| di-
vides ∏l∈L(n− l).

Equality implies that the pointwise stabiliser of
any set is transitive on the points it moves. Such a
group acts on a nice geometry (a matroid, indeed
a “perfect matroid design”, that is, a matroid in
which the cardinality of a flat depends only on its
dimension.

Proof of Blichfeldt’s Theorem
The function

g 7→∏
l∈L

(fix(g)− l)

is a virtual character which is zero on all non-
identity elements. So it is a multiple of the regu-
lar character, whence |G| divides its value at the
identity.

It is not at all clear what the consequence of
equality is, apart from saying that the above func-
tion is the regular character of G.

Which groups meet the bound?
Any regular permutation group attains both

bounds, with L = {0}.
Groups meeting the bound in Maillet’s Theorem

have been determined by Zil’ber for |L| ≥ 7 us-
ing geometric and model-theoretic methods, and
by Maund for |L| ≥ 2 using the Classification of
Finite Simple Groups. There are generic examples

(wreath products of regular groups with symmet-
ric groups; alternating groups; extensions of Vr by
G, where G is the stabiliser of a tuple of points in a
general linear group and V its natural module. In
addition there are some sporadic examples with
|L| small.

The classification of groups meeting Blichfeldt’s
bound is not known.

Prime power versions
In both Maillet’s and Blichfeldt’s Theorems (as

they both observed), we can take a smaller set L,
the set of fixed point numbers of non-trivial ele-
ments or subgroups of prime-power order.

For, with this hypothesis, each Sylow subgroup
satisfies the divisibility condition, and so the
whole group does.

Problem 3. Which groups attain the bounds in the
prime power versions of Maillet’s or Blichfeldt’s The-
orems?

Partitions
A partition of a finite group G is a set of non-

identity proper subgroups such that every non-
identity element is contained in exactly one of
these subgroups.

Iwahori and Kondo showed in 1965 that a group
G has a partition if and only if it has a permuta-
tion representation in which every non-identity el-
ement has k fixed points, for some k > 0 (the case
|L| = 1 in Blichfeldt’s Theorem).

Suzuki showed in 1961 that a non-solvable
group having a partition is one of PGL(2, q),
PSL(2, q) or Sz(q) for some prime power q.

Local partitions
Analogous results hold for prime power ele-

ments. A A local partition of a group is a set of
non-identity proper subgroups so that each non-
identity local element (element of prime power or-
der) is contained in exactly one of them.

Spiga showed that a group has a local partition
if and only if it has a permutation representation in
which each non-identity local element has k fixed
points, for some k > 0.

He also found the finite simple groups which
have local partitions: in addition to those in
Suzuki’s list, the Ree groups R1(q) and the first
Janko group J1 are the only ones.
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The set of derangements
The derangements in a transitive permutation

group G are the elements whose conjugacy class
is disjoint from the point stabiliser.

Thus, if two transitive actions of a group have
the same permutation character, then the sets of
derangements in the two actions are equal.

Theorem 4 (Spiga). If a group of nilpotency class 2
has two transitive actions with the same set of derange-
ments, then the point stabilisers are isomorphic, and the
permutation characters are equal. This is false for nilpo-
tency class 3.

Spiga conjectured that if two primitive actions
of G have the same set of derangements, then one
permutation character contains the other.

Fixed points and orbits
Let G be a finite permutation group. Let PG(x)

be the probability generating function for the
number of fixed points of a random element of
G. Let Fi be the number of orbits of G on i-tuples
of distinct elements, and FG(x) the exponential
generating function for the numbers Fn: that is,
FG(x) = ∑ Fixi/i!.

Theorem: FG(x) = PG(x + 1). (Boston et al.)

Corollary: The proportion of derangements in
G is FG(−1).

This gives a simple proof that the proportion of
derangements in Sn is close to 1/e: for Fi = 1 for
0 ≤ i ≤ n, so FG(x) is the expontial series trun-
cated to degree n.

First extension
This is a special case of the Shift Theorem for the

cycle index of a permutation group.

Recall the cycle index: Z(G) =
1
|G| ∑

g∈G

n

∏
i=1

sci(g)
i ,

where s1, s2, . . . are indeterminates and ci(g) is the
number of i-cycles in g. Putting si = 1 for i > 1
gives PG(s1), while putting si = 0 for i > 1 gives
sn

1 /|G|.
The Shift Theorem asserts that, if G[A] denotes

the permutation group induced on A by its setwise

stabiliser, then

∑
A

Z(G[A]) = Z(G; si ← si + 1),

where the sum is over representatives of the G-
orbits on subsets.

Second extension
There is a version of the theorem for lin-

ear groups over GF(q). Replace “number of
fixed points” by “dimension of fixed-point space”,
“number of orbits on tuples of distinct elements”
by “number of orbits on linearly independent tu-
ples”, and use the q-analogue of the factorial to de-
fine the e.g.f.

Shahn Majid interpreted this formula in terms of
addition in the “affine braided line”, giving a du-
ality between counting fixed points and counting
orbits corresponding to interchanging q and q−1 in
the formulae.

In particular we get a simple formula for the
number of derangements in GL(d, q).

Third extension
A permutation group G on an infinite set is oligo-

morphic if G has only finitely many orbits on n-
tuples for all n. Now the formal power series
FG(x) makes sense for any oligomorphic group G.

Sometimes the series converges, or is summable
by some method, at x = −1. If so, is there any
connection with derangements?

For example,

• if G is the symmetric group, then FG(x) = ex,
and FG(−1) = e−1;

• if G is the group of order-preserving permu-
tations of Q, then FG(x) = ∑ xn = 1/(1− x),
and FG(−1) = 1

2 . (Euler)

Random Latin squares
Theorem: The group generated by the rows of

a random Latin square of order n is Sn with high
probability.

The proof uses two important results:

Theorem: The probability that a random ele-
ment of Sn lies in no proper transitive subgroup
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of Sn except possibly An tends to 1 as n → ∞.
(Łuczak–Pyber)

Theorem: The probability that all rows of a ran-
dom Latin square are even permutations is expo-
nentially small. (Häggkvist–Janssen)

The proof
The first row of a random Latin square is a ran-

dom permutation. The group generated by the
rows is clearly transitive. So the group generated
by the rows is Sn or An w.h.p. The second theorem
rules out An.

Corollary: For almost all finite quasigroups Q,
the multiplication group of Q (generated by the
left and right multiplications) is the symmetric
group.

A quasigroup is just a binary system whose Cay-
ley table is a Latin square. Jonathan Smith de-
veloped a character theory of quasigroups, which
turns out to be trivial if the multiplication group is
2-transitive.

What about derangements?
Call a Latin square normalised if its first row is

the identity permutation. (Then the remaining
rows are derangements.) Is it true that, for almost
all normalised Latin squares, the group generated
by the rows is the symmetric group?

Since an element of Sn is a derangement with
positive probability, the Łuczak–Pyber theorem
holds for random derangements (with the uniform
distribution). We’d like to know it for random de-
rangements (where the probability of g is propor-
tional to the number of normalised Latin squares
with second row g).

I conjecture that this is also true.

Derangements and Latin squares
For a derangement g, let L(g) be the number of

Latin squares whose first row is the identity and
whose second row is g. (This depends only on the
cycle structure of g). I conjecture that the ratio of
the maximum and minimum values of L(g) tends
to 1 as n→ ∞.

If true this would resolve the earlier conjecture
and would have the corollary that for almost all fi-
nite loops, the multiplication group is the symmet-
ric group. (A loop is a quasigroup with identity.)

On the next slide are some values of L(g) for the
four conjugacy classes of derangements in S7 and
S8. The agreement is striking!

The cases n = 7, 8
The values for n = 7, 8 are:

[7] 6566400
[5, 2] 6604800
[4, 3] 6543360

[3, 2, 2] 6635520

[8] 181519810560
[6, 2] 182125854720
[5, 3] 181364244480

[4, 2, 2] 183299604480
[4, 4] 182052126720

[3, 3, 2] 181813248000
[2, 2, 2, 2] 186042286080

The case n = 9
This table was computed by Ian Wanless.

[9] 113959125225308160
[7, 2] 114140503159603200
[6, 3] 113970892709560320
[5, 4] 113938545628938240

[5, 2, 2] 114303522444410880
[4, 3, 2] 114131854216396800
[3, 3, 3] 113995242201415680

[3, 2, 2, 2] 114460947413729280
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