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Symmetry in mathematics

Whatever you have to do with a
structure-endowed entity Σ try to
determine its group of
automorphisms . . . You can expect
to gain a deep insight into the
constitution of Σ in this way.

Hermann Weyl, Symmetry.

I begin with three classical examples, one from geometry, one
from model theory, and one from graph theory, to show the
contribution of symmetry to mathematics.
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Example 1: Projective planes

A projective plane is a geometry of points and lines in which
I two points lie on a unique line;
I two lines meet in a unique point;
I there exist four points, no three collinear.

Hilbert showed:

Theorem
A projective plane can be coordinatised by a skew field if and only if it
satisfies Desargues’ Theorem.
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How not to prove Hilbert’s Theorem

Set up coordinates in the projective plane, and define addition
and multiplication by geometric constructions.

Then prove that, if Desargues’ Theorem is valid, then the
coordinatising system satisfies the axioms for a skew field.

This is rather laborious! Even the simplest axioms require
multiple applications of Desargues’ Theorem.



How to prove Hilbert’s Theorem

A central collineation of a projective plane is one which fixes
every point on a line L (the axis) and every line through a point
O (the centre).

Desargues’ Theorem is equivalent to the assertion:

Let O be a point and L a line of a projective plane. Choose
any line M 6= L passing through O. Then the group of
central collineations with centre O and axis L acts sharply
transitively on M \ {O, L∩M}.

Now the additive group of the coordinatising skew field is the
group of central collineations with centre O and axis L where
O ∈ L; the multiplicative group is the group of central
collineations where O /∈ L.
So all we have to do is prove the distributive laws
(geometrically) and the commutative law of addition (which
follows easily from the other axioms).
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Example 2: Categorical structures

A first-order language has symbols for variables, constants,
relations, functions, connectives and quantifiers. A structure M
over such a language consists of a set with given constants,
relations, and functions interpreting the symbols in the
language. It is a model for a set Σ of sentences if every sentence
in Σ is valid in M.

A set Σ is categorical in power α (an infinite cardinal) if any two
models of Σ of cardinality α are isomorphic. Morley showed
that a set of sentences over a countable language which is
categorical in some uncountable power is categorical in all.

So there are only two types of categoricity: countable and
uncountable.
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Oligomorphic permutation groups

Let G be a permutation group on a set Ω. We say that G is
oligomorphic if it has only a finite number of orbits on the set
Ωn for all natural numbers n.

Example

Let G be the group of order-preserving permutations of the set
Q of rational numbers. Two n-tuples a and b of rationals lie in
the same G-orbit if and only if they satisfy the same equality
and order relations, that is,

ai = aj ⇔ bi = bj, ai < aj ⇔ bi < bj.

So the number of orbits of G on Qn is equal to the number of
preorders on an n-set.
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The theorem of Engeler, Ryll-Nardzewski and Svenonius

Axiomatisability is equivalent to symmetry!

Theorem
Let M be a countable first-order structure. Then the theory of M is
countably categorical if and only if the automorphism group Aut(M)
is oligomorphic.

Example

Cantor showed that Q is the unique countable dense linearly
ordered set without endpoints. So Q (as ordered set) is
countably categorical.
We saw that Aut(Q) is oligomorphic.
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Oligomorphic groups and counting

The proof of the E–RN–S theorem shows that the number of
orbits of Aut(M) on Mn is equal to the number of n-types in the
theory of M.

The counting sequences associated with oligomorphic groups
often coincide with important combinatorial sequences.
A number of general properties of such sequences are known.
To state the next results, we let G be a permutation group on Ω;
let Fn(G) be the number of orbits of G on ordered n-tuples of
distinct elements of Ω, and fn(G) the number of orbits on
n-element subsets of Ω.
Typically, Fn(G) counts labelled combinatorial structures and
fn(G) counts unlabelled structures. Both sequences are
non-decreasing.



Oligomorphic groups and counting

The proof of the E–RN–S theorem shows that the number of
orbits of Aut(M) on Mn is equal to the number of n-types in the
theory of M.
The counting sequences associated with oligomorphic groups
often coincide with important combinatorial sequences.

A number of general properties of such sequences are known.
To state the next results, we let G be a permutation group on Ω;
let Fn(G) be the number of orbits of G on ordered n-tuples of
distinct elements of Ω, and fn(G) the number of orbits on
n-element subsets of Ω.
Typically, Fn(G) counts labelled combinatorial structures and
fn(G) counts unlabelled structures. Both sequences are
non-decreasing.



Oligomorphic groups and counting

The proof of the E–RN–S theorem shows that the number of
orbits of Aut(M) on Mn is equal to the number of n-types in the
theory of M.
The counting sequences associated with oligomorphic groups
often coincide with important combinatorial sequences.
A number of general properties of such sequences are known.
To state the next results, we let G be a permutation group on Ω;
let Fn(G) be the number of orbits of G on ordered n-tuples of
distinct elements of Ω, and fn(G) the number of orbits on
n-element subsets of Ω.

Typically, Fn(G) counts labelled combinatorial structures and
fn(G) counts unlabelled structures. Both sequences are
non-decreasing.



Oligomorphic groups and counting

The proof of the E–RN–S theorem shows that the number of
orbits of Aut(M) on Mn is equal to the number of n-types in the
theory of M.
The counting sequences associated with oligomorphic groups
often coincide with important combinatorial sequences.
A number of general properties of such sequences are known.
To state the next results, we let G be a permutation group on Ω;
let Fn(G) be the number of orbits of G on ordered n-tuples of
distinct elements of Ω, and fn(G) the number of orbits on
n-element subsets of Ω.
Typically, Fn(G) counts labelled combinatorial structures and
fn(G) counts unlabelled structures. Both sequences are
non-decreasing.



Sequences from oligomorphic groups

Theorem
There exists an absolute constant c such that, if G is an oligomorphic
permutation group on Ω which is primitive (i.e. preserves no
non-trivial partition of Ω), then either

I fn(G) = 1 for all n; or
I fn(G) ≥ cn/p(n) and Fn(G) ≥ n! cn/q(n), where p and q are

polynomials.

Merola gave c = 1.324 . . . . No examples are known with c < 2.

Theorem
Let G be a group with fn(G) = 1 for all n (in the above notation).
Then either

I G preserves or reverses a linear or circular order on Ω; or
I Fn(G) = 1 for all n. (In this case we say that G is highly

transitive on Ω.)



Sequences from oligomorphic groups

Theorem
There exists an absolute constant c such that, if G is an oligomorphic
permutation group on Ω which is primitive (i.e. preserves no
non-trivial partition of Ω), then either

I fn(G) = 1 for all n; or
I fn(G) ≥ cn/p(n) and Fn(G) ≥ n! cn/q(n), where p and q are

polynomials.

Merola gave c = 1.324 . . . . No examples are known with c < 2.

Theorem
Let G be a group with fn(G) = 1 for all n (in the above notation).
Then either

I G preserves or reverses a linear or circular order on Ω; or
I Fn(G) = 1 for all n. (In this case we say that G is highly

transitive on Ω.)



Sequences from oligomorphic groups

Theorem
There exists an absolute constant c such that, if G is an oligomorphic
permutation group on Ω which is primitive (i.e. preserves no
non-trivial partition of Ω), then either

I fn(G) = 1 for all n; or
I fn(G) ≥ cn/p(n) and Fn(G) ≥ n! cn/q(n), where p and q are

polynomials.

Merola gave c = 1.324 . . . . No examples are known with c < 2.

Theorem
Let G be a group with fn(G) = 1 for all n (in the above notation).
Then either

I G preserves or reverses a linear or circular order on Ω; or
I Fn(G) = 1 for all n. (In this case we say that G is highly

transitive on Ω.)



Example 3: Random graphs

To choose a graph at random, the simplest model is to fix the
set of vertices, then for each pair of vertices, toss a fair coin: if it
shows heads, join the two vertices by an edge; if tails, do not
join.
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Finite random graphs

Let X be a random graph with n vertices. Then
I for every n-vertex graph G, the event X ∼= G has non-zero

probability;

I The probability that X ∼= G is inversely proportional to the
number of automorphisms of G;

I P(X has non-trivial automorphisms) → 0 as n → ∞ (very
rapidly!)

So random finite graphs are almost surely asymmetric.

But . . .
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The Erdős–Rényi Theorem

Theorem
There is a countable graph R such that a random countable graph X
satisfies

P(X ∼= R) = 1.

Moreover, the automorphism group of R is infinite.

We will say more about R and its automorphism group later.
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Symmetry and groups

The symmetries of any object form a group.

Is every group the symmetry group of something?
This ill-defined question has led to a lot of interesting research.
We have to specify

I whether we consider the group as a permutation group (so
the action is given) or as an abstract group;

I what kinds of structures we are considering.
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As a permutation group

Given a permutation group G on a set Ω, is there a structure M
on Ω of some specified type such that G = Aut(M)?

The most interesting case is where M is a relational structure
over an arbitrary relational language.

I A permutation group on a finite set is the automorphism
group of a relational structure.

I A permutation group on a countable set is the
automorphism group of a relational structure if and only if
it is closed in the symmetric group (in the topology of
pointwise convergence).

Problem
Which permutation groups of countable degree are automorphism
groups of relational structures over finite relational languages?
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As an abstract group

Frucht showed that every abstract group is the automorphism
group of some (simple undirected) graph. There are many
variations on this theme.

Here are a couple of open questions.
I Every group is the collineation group of a projective plane.

But is every finite group the automorphism group of a finite
projective plane?

I Is every finite group the outer automorphism group
(automorphisms modulo inner automorphisms) of some
finite group?



As an abstract group

Frucht showed that every abstract group is the automorphism
group of some (simple undirected) graph. There are many
variations on this theme.

Here are a couple of open questions.
I Every group is the collineation group of a projective plane.

But is every finite group the automorphism group of a finite
projective plane?

I Is every finite group the outer automorphism group
(automorphisms modulo inner automorphisms) of some
finite group?



As an abstract group

Frucht showed that every abstract group is the automorphism
group of some (simple undirected) graph. There are many
variations on this theme.

Here are a couple of open questions.
I Every group is the collineation group of a projective plane.

But is every finite group the automorphism group of a finite
projective plane?

I Is every finite group the outer automorphism group
(automorphisms modulo inner automorphisms) of some
finite group?



Finite permutation groups

The study of finite permutation groups has been revolutionised
by CFSG (the Classification of Finite Simple Groups):

Theorem
A finite simple group is one of the following:

I a cyclic group of prime order;
I an alternating group An, for n ≥ 5;
I a group of Lie type, roughly speaking a matrix group of specified

type over a finite field modulo scalars;
I one of the 26 sporadic groups, whose orders range from 7 920 to

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000.

To apply this theorem, we need to understand these simple
groups well!
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Finite permutation groups

The current methodology uses the following reductions:
I Reduce arbitrary permutation groups to transitive ones

(fixing no subset of the domain).

I Reduce transitive groups to primitive ones (fixing no
partition of the domain).

I Reduce primitive groups to basic ones (preserving no
product structure on the domain).

I Reduce basic groups to almost simple groups (the
O’Nan–Scott Theorem).

I Apply CFSG.
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Examples

Using all or part of the preceding methodology, many problems
previously completely out of reach have been solved.

For example:
I All finite 2-transitive groups have been determined. In

particular, there are no finite 6-transitive groups except the
symmetric and alternating groups.

I More generally, the permutation groups having a bounded
number of orbits on 5-tuples fall into well-understood
infinite families together with some “small” exceptions.

Much is known about primitive groups. For example,
I They are rare: for almost all n, the only primitive groups of
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A test question

Sometimes there are problems . . .

I A finite transitive permutation group of degree n > 1
contains a fixed-point-free element. (Jordan 1871)

I A finite transitive permutation group of degree n > 1
contains a fixed-point-free element of prime-power order
(Fein–Kantor–Schacher 1982; uses CFSG)

The remarkable thing about the second result, apart from
requiring CFSG, is that it is equivalent to a result in number
theory (concerning the infiniteness of relative Brauer groups of
finite extensions of global fields).

Problem
Find an “elementary” proof!
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Related questions

I The FKS theorem doesn’t tell us which prime! Does there
exist a function f (p, b) such that, if n = pa · b with
a ≥ f (p, b), then a transitive permutation group of degree n
contains a fixed-point-free element of p-power order?

I More generally, is there a function g(p, b) such that, if a
p-group acts with b orbits, each of size at least pg(p,b), then it
contains a fixed-point-free element?

I There do exist transitive groups containing no
fixed-point-free elements of prime order. (Such groups are
called elusive.) Can they be classified?

The problem in these cases is that there is no simple reduction
to primitive groups.
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Local or global?

Mathematicians typically consider the second, global, notion,
but what about the first, local, notion, and what is the
relationship between them?

A structure M is homogeneous if every isomorphism between
finite substructures of M can be extended to an automorphism
of M; in other words, “any local symmetry is global”.

Example

The pentagon is homogeneous.
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Homogeneous structures

In a remarkable paper published posthumously in 1927, the
Russian mathematician P. S. Urysohn constructed, and proved
unique, a Polish space (a complete separable metric space) U
with the properties:

I U is universal (every Polish space has an isometric
embedding into U);

I U is homogeneous (every isometry between finite subsets
extends to an isometry of U).

This paper was ignored for a time, and universal homogeneous
relational structures were considered in about 1950 by
R. Fraı̈ssé.

This is now a very active field bordering logic, group theory,
combinatorics, dynamics, etc.
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The countable random graph revisited

Let R be the (unique!) countable random graph, and G its
automorphism group.

I R is homogeneous.
I G is oligomorphic; indeed, the numbers Fn(G), resp. fn(G),

of orbits of G on n-tuples of distinct elements, resp.
n-subsets, is equal to the number of labelled, resp.
unlabelled, graphs on n vertices.

I G is a simple group of cardinality 2ℵ0 .
The group G has many other striking properties:

I The small index property (every subgroup of index less
than 2ℵ0 contains the stabiliser of a finite tuple).

I If g, h ∈ G with g 6= 1 then h is the product of three
conjugates of g.

I Every countable group is embeddable as a semiregular
subgroup of G.
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Other applications of Fräıssé’s method

The amalgamation method can be used to produce various
interesting permutation groups. A couple of simple examples:

I A permutation group which is k-transitive and the
stabiliser of any k + 1 points is the identity, for any k ≥ 1.

I A permutation group which has any given degree of
transitivity, where any element fixes finitely many points
but the fixed point numbers are unbounded.

By contrast, Jacques Tits and Marshall Hall showed that a
4-transitive group in which the stabiliser of any 4 points is the
identity must be one of four finite groups: S4, S5, A6 or M11.
(Finiteness is not assumed!)

Using a variant of Fraı̈ssé’s method, Hrushovski and others
have constructed various generalised polygons,
distance-transitive graphs, etc., with lots of symmetry.
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More generally . . .

The condition of homogeneity can be weakened in various
ways, using the notion of homomorphism or monomorphism in
place of isomorphism. Investigation of these ideas is quite recent.
If H=‘homo’, M=‘mono’, and I=‘iso’, we can say that a structure
X has the IH-property if any isomorphism between finite
substructures of X extends to a homomorphism of X, with
similar definitions for MH, HH, IM, and MM (and, indeed, II,
which is “classical” homogeneity).

Here is a sample result due to Debbie Lockett.

Theorem
For countable partially ordered sets with strict order, the classes IH,
MH, HH, IM, and MM all coincide, and are strictly weaker than II.
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