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Summary

• Codes over rings and orthogonal arrays

• Z4 codes and Gray map images

• Z4 codes determined by two binary codes

• Generalisation to Zpn

Codes over rings
Rings will always be finite commutative rings with

identity.
A (linear) code of length n over R is a submod-

ule of the free R-module Rn.

We define the (Hamming) metric dH , the inner
product of words, and the dual of a code, over a
ring R just as for codes over fields.

Orthogonal arrays
A code C over an alphabet R is an orthogonal ar-

ray of strength t if, given any set of t coordinates
i1, . . . , it, and any entries r1, . . . , rt ∈ R, there is a
constant number of codewords c ∈ C such that
cik = rk for k = 1, . . . , t.

The strength of a code C is the largest t for which
C is an orthogonal array of strength t.

A theorem

Theorem 1. The strength of the linear code C over R
is one less than the Hamming weight of the dual code
C⊥.

This was proved by Delsarte for codes over
fields. The generalisation is not completely
straightforward. It depends on the following
property of rings (which, here, mean finite com-
mutative rings with identity).

A theorem about rings

Proposition 2. If I is a proper ideal of the ring R, then
the annihilator of R is non-zero.

This is false without the assumptions on R, of
course. It is proved by reducing to the case of local
rings, and using the fact that such a ring is equal
to its completion.

Now the theorem is the case n = 1 of the coding
result: a code of length 1 is just an ideal of R and
the dual code is its annihilator. The general case is
then proved by a careful induction.

It is not true that |Ann(I)| = |R|/|I| for any
ideal I, and hence not true that |C⊥| = |R|n/|C|
for any code over the ring R. However this does
hold for rings such as the integers mod q for posi-
tive integers q, or for finite fields.

The Gray map
The Lee metric dL on Zn

4 is defined coordinate-
wise:

dL(v, w) =
n

∑
i=1

dL(vi, wi),

where the Lee metric on Z4 is given by the rule
that dL(a, b) is the number of steps from a to b
when the elements of Z4 are arranged round a cir-
cle.
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The Gray map γ is a non-linear map from Zn
4 to

Z2n
2 , which is an isometry from the Lee metric on

Zn
4 to Z2n

2 . It is also defined coordinatewise: on Z4
we have

γ(0) = 00, γ(1) = 01, γ(2) = 11, γ(3) = 10.

It was introduced by Hammons et al. in their clas-
sic paper showing that certain nonlinear binary
codes such as the Nordstrom–Robinson, Preparata
and Kerdock codes are Gray map images of linear
Z4-codes.

The Gray map
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A theorem and a conjecture

Conjecture 3. Let C be a linear code over Z4 and C′

its Gray map image. Then the strength of C′ is one less
than the minimum Lee weight of C⊥.

Note that the strength of C is one less than the
minimum Hamming weight of C⊥.

Moreover, if C and C′ have strength t and t′ re-
spectively, then it is known that t ≤ t′ ≤ 2t + 1.
(This would follow from the truth of the conjec-
ture.)

Theorem 4. Let C be a linear code over Z4 and C′ its
Gray map image. Then the strength of C′ is at most the
minimum Lee weight of C⊥ minus one.

A classification of Z4-codes
With any Z4-code C, we can associate a pair

(C1, C2) of binary codes as follows. (This is a spe-
cial case of a construction due to Eric Lander).

• C1 is obtained by reading the entries in words
of C mod 2, so that 0 and 2 become 0, 1 and 3
become 1.

• C2 is obtained by considering just those words
of C with entries 0 and 2 only, and replacing 0
by 0 and 2 by 1.

Algebraically, there is a homomorphism from C
to C1 with kernel (isomorphic to) C2; so C is an
extension of C2 by C1.

So you should expect cohomology to come in
somewhere . . .

The class C(C1, C2)
We note that C1 ≤ C2. For, given any word c ∈

C1, let c′ be a word in C mapping onto c; then 2c′

has all entries 0 or 2 and produces the word c ∈ C2.
Given binary codes C1 ≤ C2, let C(C1, C2) be the

set of all Z4-codes C corresponding as above to the
pair C1, C2.

Proposition 5. If the length is n, and dim(Ci) = ki
for i = 1, 2, then |C(C1, C2)| = 2k1(n−k2).

Given C1 and C2, what can we say about prop-
erties of the codes in C(C1, C2)?

Generator matrices
The code C has a generator matrix of the form(
I X Y
O 2I 2Z

)
.

The generator matrices of C1 and C2 are respec-

tively
(

I X Y
)

and
(

I X Y
O I Z

)
(where the en-

tries are read mod 2).
We can assume that X is a zero-one matrix. Then

Y is only determined mod 2 by C1 and C2, so the
codes in C(C1, C2) are found by adding 0 or 2 to
the elements of Y.

Since Y is k1× (n− k2), where ki = dim(Ci), this
gives the formula for |C(C1, C2)|.

Weight enumerators
The symmetrized weight enumerator of a Z4-code

C is the three-variable homogeneous polynomial

∑
c∈C

xn0(c)yn2(c)zn1(c)+n3(c).

Apart from renormalisation, we obtain the weight
enumerators of C1 and C2 by the substitutions x →
x, y → x, z → y and x → x, y → y and z → 0
respectively.

The Lee weight enumerator of C, and hence the
weight enumerator of the Gray map image, is ob-
tained by the substitution x → x2, y → y2, z → xy.
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Theorem 6. The average of the symmetrized weight
enumerators of the codes in C(C1, C2) is

|C2|
2n

(
WC1(x + y, 2z)− (x + y)n)

+ WC2(x, y).

Weight enumerators, continued
Carrie Rutherford and I are currently trying to

obtain further global information about this; in
particular, the “variance” of the weight enumer-
ators of codes in C(C1, C2).

Fatma Al-Kharoosi examined this situation lo-
cally, and showed that there are only a limited
number of possibilities for the way that the s.w.e.
changes in moving from one code in the class to a
neighbouring one.

A detailed example is given later.

C(C1, C2) as an affine space
The fact that |C(C1, C2)| is a power of 2 is not a

coincidence: the group C∗
1 ⊗ (Zn

2 /C2) acts on this
set by translation. (C∗

1 is the dual space of C1.)
For C∗

1 ⊗Zn
2 acts on C by the rule

( f ⊗ w)(c) = c + d( f (c mod 2))w

where d is the “doubling” map 0 → 0, 1 → 2 from
Z2 to Z4, and the kernel of the action is C∗

1 ⊗ C2.
So if we fix a reference code in C to act as origin,

there is a bijection between C and C∗
1 ⊗ (Zn

2 /C2).

Another group action
It is clear that C is invariant under Aut(C1) ∩

Aut(C2), the common automorphisms of C1 and
C2.

Also, 3 is a unit in Z4, so multiplying any set
of coordinate by 3 maps each code in C to another
with the same symmetrized weight enumerator.

Multiplying all coordinates by 3 fixes all the
codes, so the group Zn−1

2 acts.
These two groups generate their semidirect

product (Zn−1
2 ) : (Aut(C1) ∩Aut(C2)).

First cohomology
Let A be an abelian group, and G a group acting

on A.
A derivation is a map d : G → A satisfying

d(g1g2) = d(g1)g2 + d(g2). It is inner if there is
an element a ∈ A such that d(g) = ag − a.

The derivations modulo inner derivations form
a group, the first cohomology group H1(G, A),
whose elements correspond bijectively to the con-
jugacy classes of complements of the normal sub-
group A in the semidirect product A : G.

If A is a vector space and G a linear group, then
A : G is a group of affine transformations of A; the
stabilizer of the zero vector is a complement, and a
complement is conjugate to G if and only if it fixes
a vector.

A case study
A very interesting case is that in which C1 =

C2 is the extended Hamming code of length 8.
The class C(C1, C2) includes the “octacode” whose
Gray map image is the non-linear Nordstrom–
Robinson code of length 16.

The class C in this case admits the group G =
(Z7

2) : AGL(3, 2) (the first factor corresponds to
coordinate sign changes, the second is the com-
mon automorphism group of C1 and C2).

The cohomology group H1(G, W) is non-zero,
and indeed the class C realises an outer deriva-
tion.

A case study, continued
The table gives the orbit lengths of G on C,

the symmetrized weight enumerator of a code in
each orbit, and the number of orbits of the sub-
group AGL(3, 2) (the automorphism group of the
extended Hamming code). Here

F(x, y, z) = x8 + 14x4y4 + y8 + 16z8 + 112xyz4(x2 + y2)

is the weight enumerator of the octacode, and

E(x, y, z) = 4z4(x − y)4.

The data

Orbit SWE #perm orbits
7168 F+5E 19

896 F+6E 7
21504 F+4E 24
21504 F+3E 27

3584 F+4E 14
896 F+4E 4

7168 F+2E 8
2688 F+2E 8

128 F 3
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The orbit of size 128 consists of octacodes.

The average SWE is F + 7
2 E, in agreement with

Theorem 6.

Problems

• In the example, the symmetrized weight enu-
merators of the codes in C(C1, C2) lie on a
line in the space of polynomials. In general,
Fatma’s work shows that they always lie on
a relatively low-dimensional space. Can one
calculate this dimension, in terms of C1 and
C2?

• Can one give lower bounds for the number of
different SWEs that occur?

• Can one give necessary and sufficient condi-
tions for the element of H1(Zn−1

2 : Aut(C1) ∩
Aut(C2), C∗

1 ⊗ (Zn
2 /C2)) to be non-zero?

• Can one calculate the number of orbits of
Zn−1

2 : Aut(C1)∩Aut(C2) on C(C1, C2)? (This
number is not greater than the number of or-
bits on C∗

1 ⊗ (Zn
2 /C2), and is equal if the co-

homology element is zero.)

More generally . . .
Following Eric Lander’s method, we can asso-

ciate a chain of r codes over Zp with any code over
Zpr . The ith code consists of words of C with all
entries divisible by pi−1, read modulo pi and then
“divided” by pi−1 to give a Zp-code.

One can ask the inverse question: Given a chain
of Zp-codes, how many Zpr codes give rise to this
chain, and what can be said about their properties?

Almost nothing is known about this!
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