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Summary

e Codes over rings and orthogonal arrays
e Z,4 codes and Gray map images
e Z, codes determined by two binary codes

e Generalisation to Zyn

Codes over rings

Rings will always be finite commutative rings with
identity.

A (linear) code of length n over R is a submod-
ule of the free R-module R".

We define the (Hamming) metric dp, the inner
product of words, and the dual of a code, over a
ring R just as for codes over fields.

Orthogonal arrays

A code C over an alphabet R is an orthogonal ar-
ray of strength t if, given any set of ¢ coordinates
i1,...,1t, and any entries rq,...,r; € R, there is a
constant number of codewords ¢ € C such that
¢, =rcfork=1,...,t

The strength of a code C is the largest ¢ for which
C is an orthogonal array of strength ¢.

A theorem

Theorem 1. The strength of the linear code C over R
is one less than the Hamming weight of the dual code
ct.

This was proved by Delsarte for codes over
fields.  The generalisation is not completely
straightforward. It depends on the following
property of rings (which, here, mean finite com-
mutative rings with identity).

A theorem about rings

Proposition 2. If I is a proper ideal of the ring R, then
the annihilator of R is non-zero.

This is false without the assumptions on R, of
course. Itis proved by reducing to the case of local
rings, and using the fact that such a ring is equal
to its completion.

Now the theorem is the case n = 1 of the coding
result: a code of length 1 is just an ideal of R and
the dual code is its annihilator. The general case is
then proved by a careful induction.

It is not true that |Ann(I)| = |R|/|I| for any
ideal I, and hence not true that |C*| = |R|"/|C]|
for any code over the ring R. However this does
hold for rings such as the integers mod g for posi-
tive integers g, or for finite fields.

The Gray map
The Lee metric d; on Zj is defined coordinate-
wise:

n
dp(v,w) =) di(vj, w;),
i=1

where the Lee metric on Z, is given by the rule
that dy(a,b) is the number of steps from a to b
when the elements of Z, are arranged round a cir-
cle.



The Gray map <y is a non-linear map from Zj to
73", which is an isometry from the Lee metric on
Zj to Z%". It is also defined coordinatewise: on Z4
we have

7(0) =00, ~(1)=01, 7(2)=

It was introduced by Hammons et al. in their clas-
sic paper showing that certain nonlinear binary
codes such as the Nordstrom-Robinson, Preparata
and Kerdock codes are Gray map images of linear
Z.4-codes.

11, ~(3) =10.

The Gray map
2 11
3 1 10 01
0 00

A theorem and a conjecture

Conjecture 3. Let C be a linear code over Z4 and C’
its Gray map image. Then the strength of C' is one less
than the minimum Lee weight of C+.

Note that the strength of C is one less than the
minimum Hamming weight of C*.

Moreover, if C and C’ have strength t and t' re-
spectively, then it is known that t < t' < 2t + 1.
(This would follow from the truth of the conjec-
ture.)

Theorem 4. Let C be a linear code over Z4 and C' its
Gray map image. Then the strength of C' is at most the
minimum Lee weight of C* minus one.

A classification of Z4-codes

With any Zj-code C, we can associate a pair
(C1,Cy) of binary codes as follows. (This is a spe-
cial case of a construction due to Eric Lander).

e (; is obtained by reading the entries in words
of C mod 2, so that 0 and 2 become 0, 1 and 3
become 1.

e (;is obtained by considering just those words
of C with entries 0 and 2 only, and replacing 0
by 0and 2 by 1.

Algebraically, there is a homomorphism from C
to C; with kernel (isomorphic to) Cp; so C is an
extension of C; by Cj.

So you should expect cohomology to come in
somewhere ...

The class C(Cy,Cy)

We note that C; < C,. For, given any word ¢ €
Cy, let ¢’ be a word in C mapping onto ¢; then 2¢’
has all entries 0 or 2 and produces the word ¢ € Cs.

Given binary codes C; < Cy, let C(Cq, Cy) be the
set of all Z4-codes C corresponding as above to the
pair Cl, Cz.

Proposition 5. If the length is n, and dim(C;) = k;
fori=1,2, then |C(Cy,Cp)| = 2k (n—Fk2),

Given C; and Cp, what can we say about prop-
erties of the codes in C(Cy,Cy)?

Generator matrices
The code C has a generator matrix of the form
I X Y
(O 2] 22)'
The generator matrices of C; and C; are respec-
tively (I X Y)and ( rX Y) (where the en-

O 1 z

tries are read mod 2).

We can assume that X is a zero-one matrix. Then
Y is only determined mod 2 by C; and Cy, so the
codes in C(Cq,Cy) are found by adding 0 or 2 to
the elements of Y.

Since Yisky x (n — k), where k; = dim(C;), this
gives the formula for |C(Cy, C2)|.

Weight enumerators
The symmetrized weight enumerator of a Z4-code
C is the three-variable homogeneous polynomial

Y x"0(e)yna(€) g (e)+ns(c)

ceC

Apart from renormalisation, we obtain the weight
enumerators of C; and C; by the substitutions x —
X,y —x,z—yandx —- x,y - yandz — 0
respectively.

The Lee weight enumerator of C, and hence the
weight enumerator of the Gray map image, is ob-
tained by the substitution x — x2,y — y2,z — xy.



Theorem 6. The average of the symmetrized weight
enumerators of the codes in C(Cy, Cy) is

|Co
21’1

(We, (x +y,22) = (x +y)") + We, (x, ).

Weight enumerators, continued

Carrie Rutherford and I are currently trying to
obtain further global information about this; in
particular, the “variance” of the weight enumer-
ators of codes in C(Cy, Cp).

Fatma Al-Kharoosi examined this situation lo-
cally, and showed that there are only a limited
number of possibilities for the way that the s.w.e.
changes in moving from one code in the class to a
neighbouring one.

A detailed example is given later.

C(Cq,Cy) as an affine space

The fact that |C(Cy,Cy)| is a power of 2 is not a
coincidence: the group Cj ® (Z%/C,) acts on this
set by translation. (Cj is the dual space of C;.)

For C ® Z5 acts on C by the rule

(fow)(c)=c+d(f(cmod 2))w

where d is the “doubling” map 0 — 0,1 — 2 from

Z to Z4, and the kernel of the action is C ® C».
So if we fix a reference code in C to act as origin,

there is a bijection between C and C; ® (Z5/C5).

Another group action

It is clear that C is invariant under Aut(Cy) N
Aut(C;), the common automorphisms of C; and
Go.

Also, 3 is a unit in Z,, so multiplying any set
of coordinate by 3 maps each code in C to another
with the same symmetrized weight enumerator.

Multiplying all coordinates by 3 fixes all the
codes, so the group 23*1 acts.

These two groups generate their semidirect
product (Z571) : (Aut(C1) N Aut(Cy)).

First cohomology

Let A be an abelian group, and G a group acting
on A.

A derivation is a map d : G — A satisfying
d(g182) = d(g1)%2 +d(g2). It is inner if there is
an element a € A such thatd(g) = a8 —a.

The derivations modulo inner derivations form
a group, the first cohomology group H'(G,A),
whose elements correspond bijectively to the con-
jugacy classes of complements of the normal sub-
group A in the semidirect product A : G.

If A is a vector space and G a linear group, then
A : Gis a group of affine transformations of A; the
stabilizer of the zero vector is a complement, and a
complement is conjugate to G if and only if it fixes
a vector.

A case study

A very interesting case is that in which C; =
C, is the extended Hamming code of length 8.
The class C(Cq, Cy) includes the “octacode” whose
Gray map image is the non-linear Nordstrom-
Robinson code of length 16.

The class C in this case admits the group G =
(Z5) : AGL(3,2) (the first factor corresponds to
coordinate sign changes, the second is the com-
mon automorphism group of C; and Cy).

The cohomology group H'(G, W) is non-zero,
and indeed the class C realises an outer deriva-
tion.

A case study, continued

The table gives the orbit lengths of G on C,
the symmetrized weight enumerator of a code in
each orbit, and the number of orbits of the sub-
group AGL(3,2) (the automorphism group of the
extended Hamming code). Here

F(x,y,z) = x® + 1dxty* + 98 +162° + 112xy24 (2 + )

is the weight enumerator of the octacode, and

E(x,y,z) = 424 (x — y)*.

The data

Orbit | SWE | #perm orbits
7168 | F+5E 19
896 | F+6E 7
21504 | F+4E 24
21504 | F+3E 27
3584 | F+4E 14
896 | F+4E 4
7168 | F+2E 8
2688 | F+2E 8
128 | F 3




The orbit of size 128 consists of octacodes.

The average SWE is F + %E, in agreement with
Theorem 6.

Problems

In the example, the symmetrized weight enu-
merators of the codes in C(Cy,C;) lie on a
line in the space of polynomials. In general,
Fatma’s work shows that they always lie on
a relatively low-dimensional space. Can one
calculate this dimension, in terms of C; and
Cy?

Can one give lower bounds for the number of
different SWESs that occur?

Can one give necessary and sufficient condi-
tions for the element of H'(Z5 ! : Aut(Cy) N
Aut(Cy),Ci ® (Z5/Cy)) to be non-zero?

Can one calculate the number of orbits of
757 Aut(C) N Aut(Ca) on C(Cy, Co)? (This
number is not greater than the number of or-
bits on Cj ® (Z%/C,), and is equal if the co-
homology element is zero.)

More generally ...
Following Eric Lander’s method, we can asso-
ciate a chain of r codes over Z;, with any code over

Z,.

The ith code consists of words of C with all

entries divisible by pi~1, read modulo p' and then
“divided” by p'~! to give a Z,-code.

One can ask the inverse question: Given a chain
of Z,-codes, how many Z,r codes give rise to this
chain, and what can be said about their properties?

Almost nothing is known about this!



