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Rado’s graph

In 1964, Rado constructed a universal graph as follows: The
vertex set is the set of natural numbers (including zero).
Fori,j € N,i < j, theniand  arejoined if and only if the ith
digit in j (in base 2) is 1.



Rado’s graph

In 1964, Rado constructed a universal graph as follows: The
vertex set is the set of natural numbers (including zero).
Fori,j € N,i < j, theniand  arejoined if and only if the ith
digit in j (in base 2) is 1.

Another construction:

Let IP; denote the set of primes congruent to 1 mod 4.
According to the Quadratic Reciprocity Law, for p,q € Py, pisa
square mod g if and only if g is a square mod p. Join p to g if this
holds.

This graph is isomorphic to Rado’s.



Universality and homogeneity

Rado showed that R is universal: every finite or countable
graph can be embedded in R.

It is also true (though not really obvious) that R is
homogeneous: every isomorphism between finite subgraphs of
R extends to an automorphism of R.



Universality and homogeneity

Rado showed that R is universal: every finite or countable
graph can be embedded in R.

It is also true (though not really obvious) that R is
homogeneous: every isomorphism between finite subgraphs of
R extends to an automorphism of R.

Exercise: Find an automorphism interchanging 0 and 1.



Uniqueness

Rado’s graph is the unique (up to isomorphism) graph which is
countable, universal and homogeneous.

In fact, it suffices for this statement to assume universality for
finite graphs (that is, every finite graph can be embedded as an
induced subgraph) and homogeneity.
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Consider countable graphs following condition (x):

Given any two finite disjoint sets U and V of vertices, there
is a vertex z joined to every vertex in U and to no vertex
nV.
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Recognition

Consider countable graphs following condition (x):

Given any two finite disjoint sets U and V of vertices, there
is a vertex z joined to every vertex in U and to no vertex
nV.

Clearly a graph satisfying (*) is universal. A “back-and-forth”
argument shows that any two countable graphs satisfying ()
are isomorphic, and a small modification shows that any such
graph is homogeneous.

Thus, Rado’s graph is the unique countable graph (up to
isomorphism) satisfying condition ().



Measure and category

There are two natural ways of saying that a set of countable
graphs is “large”.

Choose a fixed countable vertex set, and enumerate the pairs of
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Measure and category

There are two natural ways of saying that a set of countable
graphs is “large”.

Choose a fixed countable vertex set, and enumerate the pairs of
vertices: {xo,v0}, {x1, 11}, ...

There is a probability measure on the set of graphs, obtained by
choosing independently with probability 1/2 whether x; and y;
are joined, for all i. Now a set of graphs is “large” if it has
probability 1.

There is a complete metric on the set of graphs: the distance
between two graphs is 1/2" if n is minimal such that x, and y,
are joined in one graph but not the other. Now a set of graphs is
“large” if it is residual in the sense of Baire category, that is,
contains a countable intersection of open dense sets.



Ubiquity

It is now quite easy to show that the set of countable graphs
satisfying () (that is, the set of graphs isomorphic to R) is
“large” in both the senses just described.

In fact, condition (*) with fixed sets U and V is satisfied in an
open dense set of graphs with full measure, and there are only
countably many choices of the pair (U, V).



Ubiquity

It is now quite easy to show that the set of countable graphs
satisfying () (that is, the set of graphs isomorphic to R) is
“large” in both the senses just described.

In fact, condition (*) with fixed sets U and V is satisfied in an
open dense set of graphs with full measure, and there are only
countably many choices of the pair (U, V).

Thus, Rado’s graph is the countable random graph, as well as
the generic countable graph.
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Indestructibility

A number of operations can be applied to R without changing
its isomorphism type. These include

v

deleting any finite set of vertices;

v

adding or deleting any finite set of edges;

v

more generally, adding or deleting any set of edges such
that only finitely many are incident with each vertex;

v

taking the complement.
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whenever the vertex set of G is partitioned into two parts in
any manner, the induced subgraph on one of these parts is
isomorphic to G.



Pigeonhole property

A countable graph G is said to have the pigeonhole property if,
whenever the vertex set of G is partitioned into two parts in
any manner, the induced subgraph on one of these parts is
isomorphic to G.

Rado’s graph has the pigeonhole property.

Indeed, there are just three countable graphs with the
pigeonhole property: the complete graph, the null graph, and
Rado’s graph.



Spanning subgraphs

A countable graph G is a spanning subgraph of R if and only if,
for any finite set W of vertices of G, there is a vertex Z joined to
no vertex in W.

In particular, any locally finite graph is a spanning subgraph
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Spanning subgraphs

A countable graph G is a spanning subgraph of R if and only if,
for any finite set W of vertices of G, there is a vertex Z joined to
no vertex in W.

In particular, any locally finite graph is a spanning subgraph

of R.

Dually, R is a spanning subgraph of G if and only if any finite
set of vertices of G have a common neighbour.
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Factorisations

Theorem

Let G1, Gy, . . . be a sequence of locally finite countable non-null
graphs. Then R can be partitioned into subgraphs isomorphic to
G1,Gy, ...

Proof.

Enumerate the edges of R: ey, 2, . . .. Suppose we have found
disjoint subgraphs G}, .. ., G;, isomorphic to Gy, . .., G, and
containing ey, ...,e,. Then R\ (G} U- - - UG),) is isomorphic to
R, so contains a spanning subgraph G;, , ; isomorphic to G, 1;
moreover, since the automorphism group of R is
edge-transitive, we may assume that this subgraph contains
en+1, if this edge is not already covered by Gj, ..., Gj,. O
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Automorphisms

The automorphism group of R is a very interesting group.
Some of its properties:

>

>

>

Aut(R) has cardinality 2™;
Aut(R) is simple;
Aut(R) has the small index property, that is, any subgroup

of index less than 2™ contains the pointwise stabiliser of a
finite set of vertices;

Aut(R) contains a generic conjugacy class, one that is
residual in the whole group;

Aut(R) contains a copy of every finite or countable group.



Homomorphisms

A homomorphism of a graph G is a map from G to G which
maps edges to edges. The endomorphisms of any graph G (the
homomorphisms from G to G) form a monoid (a semigroup
with identity).

The endomorphism monoid of R contains a copy of every finite
or countable monoid.



Homomorphism-homogeneity

Recall that a graph G is homogeneous if every isomorphism
between finite subgraphs of G can be extended to an
isomorphism from G to G.

We obtain new classes of graphs by replacing “isomorphism”
by “homomorphism” (or “monomorphism”) in this definition.
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Homomorphism-homogeneity

Recall that a graph G is homogeneous if every isomorphism
between finite subgraphs of G can be extended to an
isomorphism from G to G.

We obtain new classes of graphs by replacing “isomorphism”
by “homomorphism” (or “monomorphism”) in this definition.
What is known?

» Every graph containing R as a spanning subgraph is
homomorphism- and monomorphism-homogeneous.

» If a countable graph G has the property that every
monomorphism between finite subgraphs extends to a
homomorphism of G, then either G contains R as a
spanning subgraph, or there is a bound on the size of
claws Ky , in G.

Apart from disjoint unions of complete graphs (which contain

no Kj »), no homomorphism-homogeneous graphs of bounded
claw size are known.



Polish spaces

There is a complete metric space with properties remarkably
similar to those of Rado’s graph.

A complete metric space will not usually be countable. Instead
we require it to be separable, that is, to have a countable dense
subset.

A Polish space is a complete separable metric space.

Thus, the completion of any countable metric space is a Polish
space. (This is analogous to the construction of R from Q.)



Urysohn space

In a posthumous paper published in 1927, P. S. Urysohn
showed:

Theorem
There is a unique Polish space which is

» universal, that is, every Polish space can be isometrically
embedded into it;

> homogeneous, that is, every isometry between finite subsets can
be extended to an isometry of the whole space.

We denote Urysohn space by U.



Constructing a Polish space

To construct a Polish space, build a countable metric space one
point at a time and take its completion.
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distances d(a;, a;) specified. We want to add a new point a,,; 1
with distances d(a,,11,a;) = x; fori = 1,...,n. These distances
must satisfy x; > 0fori=1,...,nand

|x1- — X]'| < d(ai,a]-) < x; —|—X]‘
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Constructing a Polish space

To construct a Polish space, build a countable metric space one
point at a time and take its completion.

Suppose that points 4y, . . ., a, have been constructed and their
distances d(a;, a;) specified. We want to add a new point a,,; 1
with distances d(a,,11,a;) = x; fori = 1,...,n. These distances
must satisfy x; > 0fori=1,...,nand

|x1- — X]'| < d(ai,a]-) < x; —|—X]‘

fori,j=1,...,n.
Thus the possible distances are chosen from a cone in IR".
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the restriction of a Gaussian measure on the whole space.
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Ubiquity

Thus we have both a measure and a metric on the set of
countable metric spaces. For the measure, use any natural
probability measure on the cone in R" at each step, for example,
the restriction of a Gaussian measure on the whole space.
Anatoly Vershik showed that

> the completion of a random countable metric space is
isometric to U with probability 1;

» the set of countable metric spaces whose completion is U
is residual in the set of all countable metric spaces.

In other words, Urysohn space is the random Polish space, and
the generic Polish space.
Unfortunately we don’t have a simple direct construction of U.



Rado and Urysohn

Any countable dense subset of U carries the structure of Rado’s
graph R (in many different ways). Simply partition the set of
distances which occur into two subsets E and N (satisfying
some weak restrictions), and join x to y if d(x,y) € E.



Rado and Urysohn

Any countable dense subset of U carries the structure of Rado’s
graph R (in many different ways). Simply partition the set of
distances which occur into two subsets E and N (satisfying
some weak restrictions), and join x to y if d(x,y) € E.

Hence, if a group G acts as an isometry group of U with a
countable dense orbit, then G acts as an automorphism group
of R.
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The Urysohn space admits an isometry all of whose orbits are
dense. So the infinite cyclic group is an example of a group
acting on R. (In fact, if we choose a “random countable
circulant graph”, it is isomorphic to R with probability 1.
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Examples

The Urysohn space admits an isometry all of whose orbits are
dense. So the infinite cyclic group is an example of a group
acting on R. (In fact, if we choose a “random countable
circulant graph”, it is isomorphic to R with probability 1.

The countable elementary abelian 2-group also acts on U with
dense orbits.

The reverse implication is false. The countable elementary
abelian 3-group acts on R but not on U.



Ramsey theory

There is a close connection between homogeneity and Ramsey
theory.

Hubicka and Nesetfil have shown that, if a countably infinite
structure carries a total order and the class of its finite
substructures is a Ramsey class, then the infinite structure is
homogeneous.

The finite substructures of R are the finite graphs, which do
form a Ramsey class.

The converse is false in general, but Nesetfil recently showed
that the class of finite metric spaces is a Ramsey class.



