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This is part of an investigation involving, among
others, João Araújo, Πeter Neumann, Jan Saxl,
Csaba Schneider, Pablo Spiga, and Ben Steinberg.
Nik Ruskuc, Colva Roney-Dougal, Ian Gent and
Tom Kelsey have recently been involved. Some of
the work also involves Cristy Kazanidis, a student
of Cheryl’s.

There is far more material than can be presented
here; Πeter will talk about other aspects of this
topic in his workshop next week. See you there!

Notation
In this talk, X is a graph, G is a group.

For a graph X, we use ω(X) for the clique num-
ber, χ(X) for the chromatic number, X for the com-
plement, α(X) for the independence number (so
that α(X) = ω(X)), and Aut(X) for the automor-
phism group of X.

Graph homomorphisms
A homomorphism from a graph X to a graph Y

is a map from vertices of X to vertices of Y which
maps edges to edges. (We don’t care what it does
to non-edges.)

Write X → Y if there is a homomorphism, and
X ≡ Y if there are homomorphisms in both direc-
tions.

We use End(X) for the monoid of endomor-
phisms of X (homomorphisms from X to X).

Example:

• Km → X if and only if ω(X) ≥ m;

• X → Km if and only if χ(X) ≤ m.

Cores
The core of X is the (unique) smallest graph Y

such that Y ≡ X. It is an induced subgraph (in-
deed, a retract) of X. (This means that it is the im-
age of an idempotent endomorphism of X.)

Note that

• X is equal to its core if and only if all its endo-
morphisms are automorphisms;

• the core of X is complete if and only if ω(X) =
χ(X).

Cores and symmetry

Proposition 1. If X is vertex-transitive, then so is
core(X). Similarly for other kinds of transitivity.

Proof. Let Y be a core of X; we may assume that
it is embeddable as an induced subgraph. Let ι be
the embedding of Y into X, and ρ a retraction of X
onto Y.

Suppose that X is vertex-transitive, and let v
and w be vertices of Y. Choose g ∈ Aut(X) with
vg = w. Then g′ = ιgρ is an endomorphism of Y
mapping v to w. Since Y is a core, g′ is an automor-
phism of Y.

Similarly for other kinds of transitivity.

Complexity
Hell and Nešetřil showed that the problem of

deciding whether there is a homomorphism from
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X to a fixed graph Y is NP-complete, unless Y has
a loop or is bipartite.

Dyer and Greenhill showed that the problem of
counting these homomorphisms is #P-complete,
again excepting some rather simple graphs Y.

More relevant to us, Hell and Nešetřil showed
that the problem of deciding whether a given
graph is a core is NP-complete.

Rank 3 graphs
A graph X is a rank 3 graph if its automorphism

group is transitive on vertices, ordered edges and
ordered non-edges; in other words, Aut(X) is a
rank 3 permutation group. (The rank of a permu-
tation group G on a set V is the number of G-orbits
on V ×V.)

After working out a lot of examples, Cristy
Kazanidis and I made the following conjecture:

Conjecture 2. If X is a rank 3 graph, then either the
core of X is complete, or X is a core.

This is true; the proof came from an unexpected
direction: automata theory.

The cave
You are in a dungeon consisting of a number

of rooms. Passages are marked with coloured ar-
rows. Each room contains a special door; in one
room, the door leads to freedom, but in all the oth-
ers, to instant death. You have a schematic map of
the dungeon, but you do not know where you are.
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You can check that (Blue, Red, Blue, Blue) is a
reset word which takes you to room 3 no matter
where you start.

Automata and reset words
An automaton is an edge-coloured digraph with

one edge of each colour out of each vertex. Vertices
are states, colours are transitions. A reset word is
a word in the colours such that following edges
of these colours from any starting vertex always
brings you to the same state. An automaton which
possesses a reset word is called synchronizing.

Not every finite automaton has a reset word; the
Černý conjecture, states that, if a reset word exists,
then there is one of length at most (n− 1)2, where
n is the number of states (or rooms in our exam-
ple).

Algebraically, an automaton is a submonoid of
the full transformation monoid Tn on {1, . . . , n} with
a distinguished set of generators; it is synchroniz-
ing if and only if it contains a constant function.

Monoids and graphs
There is a very close connection between trans-

formation monoids and graphs. A graph is non-
trivial if it is not complete or null.

Theorem 3. Let M be a submonoid of Tn which is not
contained in the symmetric group Sn. Then the follow-
ing are equivalent:

• M is not synchronizing (that is, contains no con-
stant function);

• M ≤ End(X), where X is a non-trivial graph
which is not a core;

• M ≤ End(X), where X is a non-trivial graph
whose core is complete.

Note that the third condition on X is much
stronger than the second. We will return to this!

Proof of the theorem
The implications from bottom to top are trivial.

We show that the first condition implies the last.
Let M be a submonoid of Tn which is not con-

tained in Sn and contains no constant function.
Define a graph X on the vertex set {1, . . . , n} by
the rule that v ∼ w if and only if there is no f ∈ M
with v f = w f .

If v ∼ w and f ∈ M, then v f 6= w f by defini-
tion. Moreover, if v f 6∼ w f then (v f )h = (w f )h
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for some h, contradicting the fact that v ∼ w (since
f h ∈ M). So M ≤ End(X).

Finally, if f ∈ M has minimum rank, then the
image of f carries a complete graph Y (since it can-
not be made smaller by any element of M), and so
Y is the core of X.

Synchronizing permutation groups
João Araújo and Ben Steinberg proposed a new

approach to the Černý conjecture.

A permutation group G on a set V is synchroniz-
ing if, given any function f : V → V which is not
a permutation, the semigroup generated by G and
f contains a constant function.

Theorem 4. A permutation group G on V is non-
synchronizing if and only if there is a non-trivial graph
X on V with core(X) complete such that G ≤ Aut(X).

Proof. In the forward direction, apply the preced-
ing theorem to M = 〈G, f 〉, where f is such that M
contains no constant function.

In the reverse direction, if X is non-null, then no
endomorphism of it is constant; and if X is not a
core, then it has an endomorphism which is not an
automorphism.

Cores revisited
These considerations gave me the idea for the

following theorem:

Theorem 5. Let X be a nonedge-transitive graph.
Then either

• core(X) is complete, or

• X is a core.

The hull of a graph
We have seen that we can replace a graph which

is not a core by one whose core is complete with-
out losing any endomorphisms. We now formalise
this.

The hull of a graph X is defined as follows:

• hull(X) has the same vertex set as X;

• v ∼ w in hull(X) if and only if there is no ele-
ment f ∈ End(X) with v f = w f .

Theorem 6. • X is a spanning subgraph of
hull(X);

• End(X) ≤ End(hull(X)) and Aut(X) ≤
Aut(hull(X));

• if core(X) has m vertices then core(hull(X)) is
the complete graph on m vertices.

An example

u u

u u

x y

No homomorphism can identify x and y, so they
are joined in the hull.

Note the increase in symmetry: |Aut(X)| = 2
but |Aut(hull(X))| = 8.

Proof of the theorem
Let X be non-edge transitive. Then hull(X) con-

sists of X with some orbits on non-edges changed
to edges. So there are two possibilities:

• hull(X) = X. Then core(X) = core(hull(X))
is complete;

• hull(X) is the complete graph on the vertex
set of X. Then core(X) has as many vertices
as X, so that core(X) = X.

Remark: For any graph X,

• hull(X) is complete if and only if X is a core;

• if hull(X) = X then core(X) is complete (but
our example shows that the converse is false).

Questions about hulls
Let h(X) be the smallest number of vertices of a

graph containing X as induced subgraph which is
a hull.

Theorem 7. h(X) ∈ {χ(X) − ω(X), χ(X) −
ω(X) + 1}.
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Problem 8. Given a graph X, what is the complexity
of deciding:

• Is X a hull?

• Is h(X) = χ(X)−ω(X)?

• Is X a hull, given that χ(X) = ω(X)?

If the third question is hard, so are the other two.
Note that deciding if hull(X) is a complete

graph is NP-complete (this is equivalent to decid-
ing if X is a core).

Strongly regular graphs
A graph X is strongly regular, with parameters

k, λ, µ, if

• every vertex has k neighbours;

• two adjacent vertices have λ neighbours;

• two non-adjacent vertices have µ neighbours.

Thus, a rank 3 graph is strongly regular, but the
converse is far from true; many strongly regular
graphs have no non-trivial automorphisms at all.

Problem 9. Is it true that, if X is strongly regular,
then either the core of X is complete, or X is a core?

Godsil and Royle have some results on this
question.

Homomorphisms revisited
We’ve seen that, if X is edge-transitive and not

a core, then its core is complete, so that among
its endomorphisms we have both automorphisms
(of maximum rank) and proper colourings (of mini-
mum rank).

There may be other endomorphisms interme-
diate between these two extremes. For example,
in a complete k-partite graph, with partite sets
B1, . . . , Bk, take any map fi from Bi to itself for
i = 1, . . . , k; combining these will be a homomor-
phism.

Perhaps in other cases things are more re-
stricted.

Pseudocores
Let us say that a graph X is a pseudocore if every

endomorphism of X is either an automorphism or
a proper colouring (a homomorphism onto a com-
plete graph).

Clearly a pseudocore has the property we
showed for nonedge-transitive graphs: either it is
a core or its core is complete.

Problem 10. Let X be a rank 3 graph whose automor-
phism group is primitive (so X is connected and not
complete multipartite). Is it true that X is a pseudo-
core?

This is true for the triangular graphs T(n) =
L(Kn) for n ≥ 5, for example.

Maybe this is also true for strongly regular
graphs which are not complete multipartite . . .

Core-transitive graphs
A graph X is core-transitive if any isomorphism

between cores of X can be extended to an auto-
morphism of X.

This looks like a very strong symmetry con-
dition until you realise that any core is core-
transitive. On the other hand, for graphs whose
core is complete, it is indeed a strong condition.

So I will state a fairly vague question here:

Problem 11. What can be said about core-transitive
graphs?

Other classes of permutation groups
We defined the class of synchronizing permuta-

tion groups earlier, and saw that a synchronizing
group is primitive. Further, such a group is ba-
sic, and so by the O’Nan–Scott theorem, it is affine
(with the stabiliser of the origin a primitive linear
group), simple diagonal, or almost simple.

Thus, wreath products (in the product action),
twisted wreath products, and “compound diago-
nal” groups cannot be synchronizing.

Not every basic group is synchronizing, how-
ever. For example, the symmetric group Sn acting
on 2-sets is primitive and basic for n ≥ 5 but is
synchronizing if and only if n is odd.

There is a body of work about which such
groups are synchronizing, but we do not have
complete answers yet.
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Other classes of permutation groups
The connection with automata leads to other in-

teresting classes of permutation groups. For ex-
ample, a permutation group G on Ω is QI if the
rational permutation module QΩ is the sum of a
1-dimensional trivial module and an irreducible
module. Arnold and Steinberg showed that this
condition (which is stronger than synchronizing)
suffices to prove the Černý conjecture for au-
tomata containing G in their transition monoid.

In fact, a formally weaker condition which we
have called spreading suffices for this implication.
But as yet we have no example of a group which is
spreading but not QI.

Πeter Neuman’s workshop next week will give
more details about this.
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