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The definition
Let G be a permutation group on an infinite set Ω.

Then G has a natural induced action on the set of all
n-tuples of elements of Ω, or on the set of n-tuples
of distinct elements of Ω, or on the set of n-element
subsets of Ω. It is easy to see that if there are only
finitely many orbits on one of these sets, then the
same is true for the others.

We say that G is oligomorphic if it has only finitely
many orbits on Ωn for all natural numbers n.

We denote the number of orbits on all n-tuples,
resp. n-tuples of distinct elements, n-sets, by F∗n (G),
Fn(G), fn(G) respectively.

Examples, 1
Let S be the symmetric group on an infinite set X.

Then S is oligomorphic and

• Fn(S) = fn(S) = 1,

• F∗n (S) = B(n), the nth Bell number (the number
of partitions of a set of size n.

Let A = Aut(Q, <), the group of order-preserving
permutations of Q. Then A is oligomorphic and

• fn(A) = 1;

• Fn(A) = n!;

• F∗n (A) is the number of preorders of an n-set.

Examples, 2
Consider the group Sr acting on the disjoint union

of r copies of X.

• Fn(Sr) = rn;

• fn(Sr) = (n+r−1
r−1 ).

Consider Sr acting on Ωr. Then F∗n (Sr) = B(n)r.
From this we can find Fn(Sr) by inversion:

Fn(G) =
n

∑
k=1

s(n, k)F∗k (G)

for any oligomorphic group G, where s(n, k) is the
signed Stirling number of the second kind.

For A2 acting on Q2, fn(A2) is the number of zero-
one matrices (of unspecified size) with n ones and no
rows or columns of zeros.

Examples, 3
Let G = S Wr S, the wreath product of two copies

of S. Then Fn(G) = B(n) and fn(G) = p(n), the
number of partitions of n.

Let G = S2 Wr A, where S2 is the symmetric group
of degree 2. Then fn(G) is the nth Fibonacci number.
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Examples, 4
There is a unique countable random graph R: that

is, if we choose a countable graph at random (edges
independent with probability 1

2 , then with probabil-
ity 1 it is isomorphic to R.

• R is universal, that is, it contains every finite or
countable graph as an induced subgraph;

• R is homogeneous, that is, any isomorphism be-
tween finite induced subgraphs of R can be ex-
tended to an automorphism of R.

If G = Aut(R), then Fn(G) and fn(G) are the num-
bers of labelled and unlabelled graphs on n vertices.

Connection with model theory, 1
If a set of sentences in a first-order language has

an infinite model, then it has arbitrarily large infi-
nite models. In other words, we cannot specify the
cardinality of an infinite structure by first-order ax-
ioms.

Cantor proved that a countable dense total order
without endpoints is isomorphic to Q. Apart from
countability, the conditions in this theorem are all
first-order sentences.

What other structures can be specified by count-
ability and first-order axioms? Such structures are
called countably categorical.

Connection with model theory, 2
In 1959, the following result was proved indepen-

dently by Engeler, Ryll-Nardzewski and Svenonius:

Theorem 1. A countable structure M over a first-order
language is countably categorical if and only if Aut(M)
is oligomorphic.

In fact, more is true: the types over the theory of M
are all realised in M, and the sets of n-tuples which
realise the n-types are precisely the orbits of Aut(M)
on Mn.

Growth of ( fn(G)), 1
Several things are known about the behaviour of

the sequence ( fn(G)):

• it is non-decreasing;

• either it grows like a polynomial (that is, ank ≤
fn(G) ≤ bnk for some a, b > 0 and k ∈ N), or it
grows faster than any polynomial;

• if G is primitive (that is, it preserves no non-
trivial equivalence relation on Ω), then either
fn(G) = 1 for all n, or fn(G) grows at least ex-
ponentially;

• if G is highly homogeneous (that is, if fn(G) = 1
for all n), then either there is a linear or circular
order on Ω preserved or reversed by G, or G is
highly transitive (that is, Fn(G) = 1 for all n).

• There is no upper bound on the growth rate of
( fn(G)).

Growth of ( fn(G)), 2
Examples suggest that much more is true. For any

reasonable growth rate, appropriate limits should
exist:

• for polynomial growth of degree k,
lim( fn(G)/nk) should exist;

• for fractional exponential growth (like exp(nc)),
lim(log log fn(G)/ log n) should exist;

• for exponential growth, lim(log fn(G)/n)
should exist;

and so on.
I do not know how to prove any of these things;

and I do not know how to formulate a general con-
jecture.

A Ramsey-type theorem

Theorem 2. Let X be an infinite set, and suppose that
the n-element subsets of Ω are coloured with r different
colours (all of which are used). Then there is an ordering
(c1, . . . , cr) of the colours, and infinite subsets Y1, . . . , Yr
of X, such that, for i = 1, . . . , r, the set Yi contains an
n-set of colour ci but none of colour cj for j > i.
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The existence of Y1 is the classical theorem of Ram-
sey.

There is a finite version of the theorem, and so
there are corresponding ‘Ramsey numbers’. But
very little is known about them!

Monotonicity

Corollary 3. The sequence ( fn(G)) is non-decreasing.

Proof. Let r = fn(G), and colour the n-subsets with
r colours according to the orbits. Then by the Theo-
rem, there exists an (n + 1)-set containing a set of
colour ci but none of colour cj for j > i. These
(n + 1)-sets all lie in different orbits; so fn+1(G) ≥
r.

There is also an algebraic proof of this corollary.
We’ll discuss this later.

A graded algebra, 1
Let (Ω

n ) denote the set of n-subsets of Ω, and Vn

the vector space of functions from (Ω
n ) to C.

We make A =
⊕

n≥0 Vn into an algebra by defin-
ing, for f ∈ Vn, g ∈ Vm, the product f g ∈ Vn+m by

( f g)(K) = ∑
M∈(K

m)

f (M)g(K \ M)

for K ∈ ( Ω
m+n), and extending linearly.

A is a commutative and associative graded alge-
bra over C, sometimes referred to as the reduced inci-
dence algebra of finite subsets of Ω.

A graded algebra, 2
Now let G be a permutation group on Ω, and let

VG
n denote the set of fixed points of G in Vn. Put

A[G] =
⊕
n≥0

VG
n ,

a graded subalgebra of A.

If G is oligomorphic, then the dimension of VG
n is

fn(G), and so the Hilbert series of the algebra A[G]
is the ordinary generating function of the sequence
( fn(G)).

What properties does this algebra have?

Note that it is not usually finitely generated since
the growth of ( fn(G)) is polynomial only in special
cases.

A non-zero-divisor
Let e be the constant function in V1 with value 1.

Of course, e lies in A[G] for any permutation group
G.

Theorem 4. The element e is not a zero-divisor in A.

This theorem gives another proof of the mono-
tonicity of ( fn(G)). For multiplication by e is a
monomorphism from VG

n to VG
n+1, and so fn+1(G) =

dim vG
n+1 ≥ dim VG

n = fn(G).

An integral domain
If G has a finite orbit ∆, then any function whose

support is contained in ∆ is nilpotent.

The converse, a long-standing conjecture, has re-
cently been proved by Maurice Pouzet:

Theorem 5. If G has no finite orbits on Ω, then A[G] is
an integral domain.

Consequences
Pouzet’s Theorem has a consequence for the

growth rate:

Theorem 6. If G is oligomorphic, then

fm+n(G) ≥ fm(G) + fn(G)− 1.

Proof. Multiplication maps VG
m ⊗ VG

n into VG
m+n; by

Pouzet’s result, it is injective on the projective Segre
variety, and a little dimension theory gets the result.

It seems very likely that better understanding of
the algebra A[G] would have further implications
for growth rate.
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Brief sketch of the proof
Let F be a family of subsets of Ω. A subset T is

transversal to F if it intersects each member of F .
The transversality of F is the minimum cardinality
of a transversal.

A lemma due to Peter Neumann shows that, if G
has no finite orbits on Ω, then any orbit of G On fi-
nite sets has infinite transversality.

Pouzet shows that, if f ∈ Vm and g ∈ Vn satisfy
f g = 0, then the transversality of supp( f )∪ supp(g)
is finite, and is bounded by a function of m and n.
(Here supp( f ) denotes the support of f .)

These two results clearly conflict with each other.

Comments
Here is Pouzet’s theorem again:

Theorem 7. If f ∈ Vm and g ∈ Vn satisfy f g = 0, then
the transversality of supp( f ) ∪ supp(g) is finite, and is
bounded by a function of m and n.

The proof of this makes it clear that it is another
kind of ‘Ramsey theorem’. If τ(m, n) denotes the
smallest t such that the transversality is at most t,
then we have the interesting problem of finding
τ(m, n). Pouzet shows that τ(m, n) ≥ (m + 1)(n +
1)− 1. On the other hand, the upper bounds coming
from his proof are really astronomical!
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