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Relational structure, age, profile

A relational structure is a set carrying a collection of relations
with specified arities.

Graphs, partial orders, circular orders,
etc. are examples.

The age of an infinite relational structure is the class of all finite
structures embeddable into it.

The profile is the sequence (f0, f1, f2, . . .), were fn is the number
of n-element structures in the age, up to isomorphism.
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Examples

I An infinite linear order

I Age: all finite linear orders
I Profile: fn = 1 for all n

I A disjoint union of edges
I Age: All finite unions of edges and isolated vertices
I Profile: fn = bn/2c+ 1

I An infinite path
I Age: All finite unions of paths
I Profile: fn = p(n) (partitions of n)

I A totally ordered set coloured with k colours, each colour
class dense

I Age: words in an alphabet of size k
I Profile: fn = kn
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I A partition into 2-sets with parts totally ordered

I Age: Ordered partitions of finite sets into parts of size 1 or 2
I Profile: fn = nth Fibonacci number

I A generic set with a total order and equivalence relation
I Age: Partitioned sets
I Profile: fn = Bn (nth Bell number)

I A universal graph
I Age: All finite graphs
I Profile: fn ∼ 2n(n−1)/2/n!
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Permutation groups

Let G be a permutation group on the countably infinite set Ω.
Then there is a relational structure R on Ω such that

I G is contained in the automorphism group of Ω;
I if two finite substructures of R are isomorphic, then there

is an element of G inducing the given isomorphism
between them. This means that R is homogeneous, and
that G is a dense subgroup of its automorphism group (in
the topology of pointwise convergence).

So the profile of R also counts orbits of G on n-element subsets
of Ω for n = 0, 1, 2, . . ..
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The growth of the profile

Quite a lot is known globally about the growth of a profile:

I Either and ≤ fn ≤ bnd for some natural number d and
a, b > 0; or fn grows faster than a polynomial in n.

I In the latter case, fn ≥ exp(n1/2−ε) for sufficiently large n.
(These two results assume that the number of relations is
finite).

I In the case of a primitive permutation group (one
preserving no non-trivial equivalence relation), there is a
constant c > 1 such that either fn = 1 for all n, or
fn ≥ cn/p(n) for some polynomial p.



The growth of the profile

Quite a lot is known globally about the growth of a profile:
I Either and ≤ fn ≤ bnd for some natural number d and

a, b > 0; or fn grows faster than a polynomial in n.

I In the latter case, fn ≥ exp(n1/2−ε) for sufficiently large n.
(These two results assume that the number of relations is
finite).

I In the case of a primitive permutation group (one
preserving no non-trivial equivalence relation), there is a
constant c > 1 such that either fn = 1 for all n, or
fn ≥ cn/p(n) for some polynomial p.



The growth of the profile

Quite a lot is known globally about the growth of a profile:
I Either and ≤ fn ≤ bnd for some natural number d and

a, b > 0; or fn grows faster than a polynomial in n.
I In the latter case, fn ≥ exp(n1/2−ε) for sufficiently large n.

(These two results assume that the number of relations is
finite).

I In the case of a primitive permutation group (one
preserving no non-trivial equivalence relation), there is a
constant c > 1 such that either fn = 1 for all n, or
fn ≥ cn/p(n) for some polynomial p.



The growth of the profile

Quite a lot is known globally about the growth of a profile:
I Either and ≤ fn ≤ bnd for some natural number d and

a, b > 0; or fn grows faster than a polynomial in n.
I In the latter case, fn ≥ exp(n1/2−ε) for sufficiently large n.

(These two results assume that the number of relations is
finite).

I In the case of a primitive permutation group (one
preserving no non-trivial equivalence relation), there is a
constant c > 1 such that either fn = 1 for all n, or
fn ≥ cn/p(n) for some polynomial p.



Local conditions

Much less is known about “local” conditions relating
individual values of fn.

Theorem
fn ≤ fn+1.

There are two known proofs of this theorem; one using a
Ramsey-type theorem (outlined on the next slide), the other
using finite combinatorics and linear algebra (see later).
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A Ramsey-type theorem

Given a colouring of the n-sets with colours c1, . . . , cr, we say
that the colour scheme of an (n + 1)-set S is the r-tuple
(a1, . . . , ar), where ai is the number of sets of colour ci in S.

Theorem
Let the n-subsets of an infinite (or sufficiently large finite) set Ω be
coloured with r colours (all of which are used). Then there are at least
r colour schemes of (n + 1)-sets. In fact, there exist (n + 1)-sets
T1, . . . , Tr so that Ti contains a set of colour ci but none of colour cj
for j > i.

The “Ramsey numbers” associated with this theorem are not
known.
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The age algebra

Let Vn be the complex vector space of all functions from (Ω
n ) to

C which are constant on isomorphism classes (or G-orbits).
Thus, dim(Vn) = fn.

There is a multiplication defined on A =
⊕

n≥0 Vn as follows:
for f ∈ Vn, g ∈ Vm, and X ∈ ( Ω

m+n), put

(fg)(X) = ∑
Y∈(X

n)

f (Y)g(X \ Y).

The multiplication is commutative and associative, and the
constant function 1 ∈ V0 is the identity.
So A is a graded algebra with Hilbert series ∑ fnxn.

In the fourth of our examples, A is the shuffle algebra on k
symbols.



The age algebra

Let Vn be the complex vector space of all functions from (Ω
n ) to

C which are constant on isomorphism classes (or G-orbits).
Thus, dim(Vn) = fn.

There is a multiplication defined on A =
⊕

n≥0 Vn as follows:
for f ∈ Vn, g ∈ Vm, and X ∈ ( Ω

m+n), put

(fg)(X) = ∑
Y∈(X

n)

f (Y)g(X \ Y).

The multiplication is commutative and associative, and the
constant function 1 ∈ V0 is the identity.
So A is a graded algebra with Hilbert series ∑ fnxn.

In the fourth of our examples, A is the shuffle algebra on k
symbols.



The age algebra

Let Vn be the complex vector space of all functions from (Ω
n ) to

C which are constant on isomorphism classes (or G-orbits).
Thus, dim(Vn) = fn.

There is a multiplication defined on A =
⊕

n≥0 Vn as follows:
for f ∈ Vn, g ∈ Vm, and X ∈ ( Ω

m+n), put

(fg)(X) = ∑
Y∈(X

n)

f (Y)g(X \ Y).

The multiplication is commutative and associative, and the
constant function 1 ∈ V0 is the identity.

So A is a graded algebra with Hilbert series ∑ fnxn.

In the fourth of our examples, A is the shuffle algebra on k
symbols.



The age algebra

Let Vn be the complex vector space of all functions from (Ω
n ) to

C which are constant on isomorphism classes (or G-orbits).
Thus, dim(Vn) = fn.

There is a multiplication defined on A =
⊕

n≥0 Vn as follows:
for f ∈ Vn, g ∈ Vm, and X ∈ ( Ω

m+n), put

(fg)(X) = ∑
Y∈(X

n)

f (Y)g(X \ Y).

The multiplication is commutative and associative, and the
constant function 1 ∈ V0 is the identity.
So A is a graded algebra with Hilbert series ∑ fnxn.

In the fourth of our examples, A is the shuffle algebra on k
symbols.



The age algebra

Let Vn be the complex vector space of all functions from (Ω
n ) to

C which are constant on isomorphism classes (or G-orbits).
Thus, dim(Vn) = fn.

There is a multiplication defined on A =
⊕

n≥0 Vn as follows:
for f ∈ Vn, g ∈ Vm, and X ∈ ( Ω

m+n), put

(fg)(X) = ∑
Y∈(X

n)

f (Y)g(X \ Y).

The multiplication is commutative and associative, and the
constant function 1 ∈ V0 is the identity.
So A is a graded algebra with Hilbert series ∑ fnxn.

In the fourth of our examples, A is the shuffle algebra on k
symbols.



The structure of A

Let e be the constant function 1 ∈ V1.

Theorem
The element e is not a zero-divisor in A.

This theorem is proved by finite combinatorial arguments. It
implies that multiplication by e is a monomorphism from Vn to
Vn+1, and hence

fn = dim(Vn) ≤ dim(Vn+1) = fn+1

for any n.
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Two conjectures

A relational structure R is said to be inexhaustible if there is no
point whose removal makes the age strictly smaller. In the
group case, this holds if and only if G has no finite orbits.

Some time ago I conjectured the group case of the following.

Conjecture

Assume that R is inexhaustible. Then
I A is an integral domain (that is, has no zero-divisors);
I e is prime in A (that is, A/〈e〉 is an integral domain).

The first of these conjectures has very recently been proved by
Maurice Pouzet.
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Local consequences

Pouzet’s Theorem has the following consequence:

Theorem
Assume that R is inexhaustible. Then fm+n ≥ fm + fn − 1.
In outline: multiplication induces a map from the Segre variety
(the rank 1 tensors modulo scalars) in Vm ⊗Vn into Vm+n
modulo scalars; so the dimension of Vm+n is at least as great as
that of the Segre variety.

In a similar way, if the second part of the conjecture is true,
then the profile of an inexhaustible structure would satisfy
gm+n ≥ gm + gn − 1, where gn = fn+1 − fn. (Apply a similar
argument to A/〈e〉, whose nth homogeneous component is
Vn+1/eVn, with dimension fn+1 − fn.)
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Sketch proof

Let Ω be an set, K a field with characteristic zero. Let
f : (Ω

n ) → K. The support of f is {X ∈ (Ω
n ) : f (X) 6= 0}. A set T

is a transversal to a family H of sets if T ∩H 6= ∅ for all H ∈ H.
The transversality of H is the cardinality of the smallest
transversal.

Pouzet proved:

Theorem
Given m, n ≥ 0, there exists t such that, for any Ω with
|Ω| ≥ m + n, any field K of characteristic zero, and any two
non-zero maps f : (Ω

n ) → K, g : (Ω
m) → K such that fg = 0, the

transversality of supp(f ) ∪ supp(g) is at most t.

The result follows since removal of a transversal would
decrease the age, which is impossible in an inexhaustible
structure.
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transversality of supp(f ) ∪ supp(g) is at most t.

The result follows since removal of a transversal would
decrease the age, which is impossible in an inexhaustible
structure.
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Ramsey numbers

The theorem is a Ramsey-type theorem, and one can ask for an
evaluation of τ(m, n), the smallest number t for which the
conclusion of the theorem is true. It is not hard to show that
τ(1, n) = 2n: this is the combinatorics underlying the proof that
fn ≤ fn+1.

Pouzet’s proof shows that

7 ≤ τ(2, 2) ≤ 2(R2
k(4) + 2),

where k = 530 and R2
k(4) is the classical Ramsey number, the

least p such that in any k-colouring of the edges of the complete
graph on p vertices, there is a monochromatic subgraph of
order 4.

This is rather a large gap – can it be reduced?
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Where next?

The conjecture that, if R is inexhaustible, then e is prime in
A(R), remains to be proved.

A more interesting possibility involves showing that, under
suitable hypotheses to be determined, if f1, . . . , fr ∈ Vn and
g1, . . . , gr ∈ Vm are linearly independent, then

f1g1 + · · ·+ frgr 6= 0.

If this were true, the dimension argument would give a much
stronger lower bound for fm+n in terms of fm and fn.

But it cannot be true in general since the earlier bound is tight
in some cases!
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