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Relational structure, age, profile
A relational structure is a set carrying a collection

of relations with specified arities. Graphs, partial
orders, circular orders, etc. are examples.

The age of an infinite relational structure is the
class of all finite structures embeddable into it.

The profile is the sequence ( f0, f1, f2, . . .), were fn
is the number of n-element structures in the age,
up to isomorphism.

Examples

• An infinite linear order

– Age: all finite linear orders

– Profile: fn = 1 for all n

• A disjoint union of edges

– Age: All finite unions of edges and iso-
lated vertices

– Profile: fn = bn/2c+ 1

• An infinite path

– Age: All finite unions of paths

– Profile: fn = p(n) (partitions of n)

• A totally ordered set coloured with k colours,
each colour class dense

– Age: words in an alphabet of size k

– Profile: fn = kn

• A partition into 2-sets with parts totally or-
dered

– Age: Ordered partitions of finite sets into
parts of size 1 or 2

– Profile: fn = nth Fibonacci number

• A generic set with a total order and equiva-
lence relation

– Age: Partitioned sets

– Profile: fn = Bn (nth Bell number)

• A universal graph

– Age: All finite graphs

– Profile: fn ∼ 2n(n−1)/2/n!

Permutation groups
Let G be a permutation group on the countably

infinite set Ω. Then there is a relational structure
R on Ω such that

• G is contained in the automorphism group of
Ω;

• if two finite substructures of R are isomor-
phic, then there is an element of G inducing
the given isomorphism between them. This
means that R is homogeneous, and that G is a
dense subgroup of its automorphism group (in
the topology of pointwise convergence).

So the profile of R also counts orbits of G on n-
element subsets of Ω for n = 0, 1, 2, . . ..

The growth of the profile
Quite a lot is known globally about the growth

of a profile:
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• Either and ≤ fn ≤ bnd for some natural num-
ber d and a, b > 0; or fn grows faster than a
polynomial in n.

• In the latter case, fn ≥ exp(n1/2−ε) for suffi-
ciently large n. (These two results assume that
the number of relations is finite).

• In the case of a primitive permutation group
(one preserving no non-trivial equivalence re-
lation), there is a constant c > 1 such that ei-
ther fn = 1 for all n, or fn ≥ cn/p(n) for some
polynomial p.

Local conditions
Much less is known about “local” conditions re-

lating individual values of fn.

Theorem 1. fn ≤ fn+1.

There are two known proofs of this theorem;
one using a Ramsey-type theorem (outlined on the
next slide), the other using finite combinatorics
and linear algebra (see later).

A Ramsey-type theorem
Given a colouring of the n-sets with colours

c1, . . . , cr, we say that the colour scheme of an (n +
1)-set S is the r-tuple (a1, . . . , ar), where ai is the
number of sets of colour ci in S.

Theorem 2. Let the n-subsets of an infinite (or suf-
ficiently large finite) set Ω be coloured with r colours
(all of which are used). Then there are at least r colour
schemes of (n + 1)-sets. In fact, there exist (n + 1)-sets
T1, . . . , Tr so that Ti contains a set of colour ci but none
of colour cj for j > i.

The “Ramsey numbers” associated with this
theorem are not known.

The age algebra
Let Vn be the complex vector space of all func-

tions from (Ω
n ) to C which are constant on isomor-

phism classes (or G-orbits). Thus, dim(Vn) = fn.

There is a multiplication defined on A =⊕
n≥0 Vn as follows: for f ∈ Vn, g ∈ Vm, and

X ∈ ( Ω
m+n), put

( f g)(X) = ∑
Y∈(X

n)

f (Y)g(X \Y).

The multiplication is commutative and associa-
tive, and the constant function 1 ∈ V0 is the iden-
tity.

So A is a graded algebra with Hilbert series ∑ fnxn.

In the fourth of our examples, A is the shuffle
algebra on k symbols.

The structure of A
Let e be the constant function 1 ∈ V1.

Theorem 3. The element e is not a zero-divisor in A.

This theorem is proved by finite combinatorial
arguments. It implies that multiplication by e is a
monomorphism from Vn to Vn+1, and hence

fn = dim(Vn) ≤ dim(Vn+1) = fn+1

for any n.

Two conjectures
A relational structure R is said to be inexhaustible

if there is no point whose removal makes the age
strictly smaller. In the group case, this holds if and
only if G has no finite orbits.

Some time ago I conjectured the group case of
the following.

Conjecture 1. Assume that R is inexhaustible. Then

• A is an integral domain (that is, has no zero-
divisors);

• e is prime in A (that is, A/〈e〉 is an integral do-
main).

The first of these conjectures has very recently
been proved by Maurice Pouzet.

Local consequences
Pouzet’s Theorem has the following conse-

quence:

Theorem 4. Assume that R is inexhaustible. Then
fm+n ≥ fm + fn − 1.
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In outline: multiplication induces a map from
the Segre variety (the rank 1 tensors modulo
scalars) in Vm ⊗ Vn into Vm+n modulo scalars; so
the dimension of Vm+n is at least as great as that of
the Segre variety.

In a similar way, if the second part of the con-
jecture is true, then the profile of an inexhaustible
structure would satisfy gm+n ≥ gm + gn − 1, where
gn = fn+1 − fn. (Apply a similar argument
to A/〈e〉, whose nth homogeneous component is
Vn+1/eVn, with dimension fn+1 − fn.)

Sketch proof
Let Ω be an set, K a field with characteristic

zero. Let f : (Ω
n ) → K. The support of f is

{X ∈ (Ω
n ) : f (X) 6= 0}. A set T is a transversal to a

family H of sets if T ∩ H 6= ∅ for all H ∈ H. The
transversality of H is the cardinality of the smallest
transversal.

Pouzet proved:

Theorem 5. Given m, n ≥ 0, there exists t such that,
for any Ω with |Ω| ≥ m + n, any field K of character-
istic zero, and any two non-zero maps f : (Ω

n ) → K,
g : (Ω

m) → K such that f g = 0, the transversality of
supp( f ) ∪ supp(g) is at most t.

The result follows since removal of a transversal
would decrease the age, which is impossible in an
inexhaustible structure.

Ramsey numbers
The theorem is a Ramsey-type theorem, and one

can ask for an evaluation of τ(m, n), the smallest
number t for which the conclusion of the theorem
is true. It is not hard to show that τ(1, n) = 2n:
this is the combinatorics underlying the proof that
fn ≤ fn+1.

Pouzet’s proof shows that

7 ≤ τ(2, 2) ≤ 2(R2
k(4) + 2),

where k = 530 and R2
k(4) is the classical Ramsey

number, the least p such that in any k-colouring
of the edges of the complete graph on p vertices,
there is a monochromatic subgraph of order 4.

This is rather a large gap – can it be reduced?

Where next?
The conjecture that, if R is inexhaustible, then e

is prime in A(R), remains to be proved.

A more interesting possibility involves showing
that, under suitable hypotheses to be determined,
if f1, . . . , fr ∈ Vn and g1, . . . , gr ∈ Vm are linearly
independent, then

f1g1 + · · ·+ frgr 6= 0.

If this were true, the dimension argument would
give a much stronger lower bound for fm+n in
terms of fm and fn.

But it cannot be true in general since the earlier
bound is tight in some cases!
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