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Notation
In this talk, Γ is a graph, G is a group.

For a graph Γ, we use ω(Γ) for the clique num-
ber, χ(Γ) for the chromatic number, Γ for the com-
plement, α(Γ) for the independence number (so
that α(Γ) = ω(Γ)), and Aut(Γ) for the automor-
phism group of Γ.

Graph homomorphisms
A homomorphism from a graph Γ to a graph Γ′

is a map from vertices of Γ to vertices of Γ′ which
maps edges to edges. (We don’t care what it does
to non-edges.)

Write Γ → Γ′ if there is a homomorphism, and
Γ ≡ Γ′ if there are homomorphisms in both direc-
tions.

We use End(Γ) for the semigroup of endomor-
phisms of Γ (homomorphisms from Γ to Γ).

Example:

• Km → Γ if and only if ω(Γ) ≥ m;

• Γ → Km if and only if χ(Γ) ≤ m.

Cores
The core of Γ is the (unique) smallest graph ∆

such that ∆ ≡ Γ. It is an induced subgraph (in-
deed, a retract) of Γ.

Thus, the core of Γ is complete if and only if
ω(Γ) = χ(Γ).

Proposition 1. If Γ is vertex-transitive, then so is
core(Γ). Similarly for other kinds of transitivity.

Rank 3 graphs
A graph Γ is a rank 3 graph if its automorphism

group is transitive on vertices, ordered edges and
ordered non-edges; in other words, Aut(Γ) is a
rank 3 permutation group. (The rank of a permu-
tation group G on a set V is the number of G-orbits
on V ×V.)

After working out a lot of examples, Cristy
Kazanidis and I made the following conjecture:

Conjecture 2. If Γ is a rank 3 graph, then either the
core of Γ is complete, or Γ is a core.

This is true; the proof came from an unexpected
direction: automata theory.

The cave
You are in a dungeon consisting of a number

of rooms. Passages are marked with coloured ar-
rows. Each room contains a special door; in one
room, the door leads to freedom, but in all the oth-
ers, to instant death. You have a schematic map of
the dungeon, but you do not know where you are.
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You can check that (Blue, Red, Blue, Blue) is a
reset word which takes you to room 3 no matter
where you start.

Automata and reset words
An automaton is an edge-coloured digraph with

one edge of each colour out of each vertex. Vertices
are states, colours are transitions. A reset word is
a word in the colours such that following edges
of these colours from any starting vertex always
brings you to the same state. An automaton which
possesses a reset word is called synchronizing.

Not every finite automaton has a reset word; the
Černý conjecture, states that, if a reset word exists,
then there is one of length at most (n− 1)2, where
n is the number of states (or rooms in our exam-
ple).

Synchronizing permutation groups
J. Araújo and B. Steinberg proposed a new ap-

proach to the Černý conjecture.

A permutation group G on a set V is synchroniz-
ing if, given any function f : V → V which is not
a permutation, the semigroup generated by G and
f contains a constant function.

Theorem 3. A permutation group G on V is non-
synchronizing if and only if there is a non-complete and
non-null graph Γ on V with core(Γ) complete such that
G ≤ Aut(Γ).

Proof. Let S be a semigroup containing G but no
constant function: join v to w if no f ∈ S satisfies
v f = w f .

Cores revisited
This gave me the clue for proving the following

theorem:

Theorem 4. Let Γ be a nonedge-transitive graph. Then
either

• core(Γ) is complete, or

• Γ is a core.

The hull of a graph
The hull of a graph Γ is defined as follows:

• hull(Γ) has the same vertex set as Γ;

• v ∼ w in hull(Γ) if and only if there is no ele-
ment f ∈ End(Γ) with v f = w f .

Theorem 5. • Γ is a spanning subgraph of
hull(Γ);

• End(Γ) ≤ End(hull(Γ)) and Aut(Γ) ≤
Aut(hull(Γ));

• if core(Γ) has m vertices then core(hull(Γ)) is the
complete graph on m vertices.

An example

u u

u u

x y

No homomorphism can identify x and y, so they
are joined in the hull.

Note the increase in symmetry: |Aut(Γ)| = 2
but |Aut(hull(Γ))| = 8.

Proof of the theorem
Let Γ be non-edge transitive. Then hull(Γ) con-

sists of Γ with some orbits on non-edges changed
to edges. So there are two possibilities:

• hull(Γ) = Γ. Then core(Γ) = core(hull(Γ)) is
complete;

• hull(Γ) is the complete graph on the vertex set
of Γ. Then core(Γ) has as many vertices as Γ,
so that core(Γ) = Γ.

Questions about hulls
Let h(Γ) be the smallest number of vertices of a

graph containing Γ as induced subgraph which is
a hull.

Theorem 6. h(Γ) ∈ {χ(Γ) − ω(Γ), χ(Γ) − ω(Γ) +
1}.
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What is the complexity of deciding:

• Is Γ a hull?

• Is h(Γ) = χ(Γ)−ω(Γ)?

• Is Γ a hull, given that χ(Γ) = ω(Γ)?

If the third question is hard, so are the other two.

Separating permutation groups
Neumann’s separation lemma states:

Proposition 7. Let G be a transitive permutation
group on V, with |V| = n, and let A, B be subsets
of V. If |A| · |B| < n, then there exists g ∈ G with
Ag ∩ B = ∅.

We call a transitive permutation group separat-
ing if, for any sets A, B with |A|, |B| > 1 and
|A| · |B| = n, there exists g with Ag ∩ B = ∅.

Separating and synchronizing groups

Proposition 8. 2-transitive⇒ separating⇒ synchro-
nizing⇒ primitive.

None of these implications reverses. (But I have
only a single example of a permutation group
which is synchronizing but not separating, namely
PΩ(5, 3), acting on 40 points.)

Proposition 9. • The permutation group G is non-
synchronizing if and only if there is a graph Γ (not
complete or null) with ω(Γ) = χ(Γ) and G ≤
Aut(Γ).

• The transitive permutation group G is non-
separating if and only if there is a graph Γ (not
complete or null) with ω(Γ) · α(Γ) = |V(Γ)| and
G ≤ Aut(Γ).

2-closure
The classes of synchronizing and separating

group are upward-closed. They have some down-
ward closure properties too.

The 2-closure of a permutation group G on V
consists of all the permutations of V which pre-
serve every G-orbit on V ×V.

Proposition 10. A permutation group is synchroniz-
ing (resp. separating) if and only if its 2-closure is syn-
chronizing (resp. separating).

This is because failure of these properties is “de-
tected” by a graph admitting the group (and hence
admitting its 2-closure).

More general closure properties
This is based on an idea of Arnold and Stein-

berg.

Let F be a field, and G a permutation group on
V. The F-closure of G consists of all permutations
of V which preserve all the FG-submodules of the
permutation module FV.

It is easy to see that C-closure is equivalent to
2-closure.

Proposition 11. For any field F, a permutation group
is synchronizing (resp. separating) if and only if its F-
closure is synchronizing (resp. separating).

An example
The group PSL(2, 2n) has permutation actions

of degrees 2n−1(2n ± 1), on the cosets of its max-
imal dihedral subgroups of orders 2(2n ∓ 1). It is
2-closed in both actions.

Suppose that 2n − 1 is a Mersenne prime.

The permutation character of the action of de-
gree 2n−1(2n − 1) is the sum of the trivial character
and a family of algebraically conjugate characters,
whose sum is Q-irreducible. So the Q-closure is
the symmetric group, which is trivially separating;
so the original group is separating, and hence syn-
chronizing. (This was the example of Arnold and
Steinberg.)

The permutation character of the action of de-
gree 2n−1(2n + 1) is equal to the above character
plus an irreducible of degree 2n. So its Q-closure is
the group S2n+1 acting on 2-sets, which is separat-
ing. (The only invariant graphs are the line graph
of K2n+1 and its complement; and if Γ = L(K2n+1),
then ω(Γ) = 2n, but α(Γ) = 2n−1.) So again, the
original group is separating, and hence synchro-
nizing.
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