Cores, hulls and synchronization

Peter J. Cameron

Queen Mary
University of London

p.j.cameron@qmul.ac.uk

ROGICS'08, 12 May 2008

Notation

In this talk, Γ is a graph, G is a group.

Notation

In this talk, Γ is a graph, G is a group.

For a graph Γ , we use $\omega(\Gamma)$ for the clique number, $\chi(\Gamma)$ for the chromatic number, $\overline{\Gamma}$ for the complement, $\alpha(\Gamma)$ for the independence number (so that $\alpha(\Gamma) = \omega(\overline{\Gamma})$), and $\operatorname{Aut}(\Gamma)$ for the automorphism group of Γ .

A homomorphism from a graph Γ to a graph Γ' is a map from vertices of Γ to vertices of Γ' which maps edges to edges. (We don't care what it does to non-edges.)

A homomorphism from a graph Γ to a graph Γ' is a map from vertices of Γ to vertices of Γ' which maps edges to edges. (We don't care what it does to non-edges.)

Write $\Gamma \to \Gamma'$ if there is a homomorphism, and $\Gamma \equiv \Gamma'$ if there are homomorphisms in both directions.

A homomorphism from a graph Γ to a graph Γ' is a map from vertices of Γ to vertices of Γ' which maps edges to edges. (We don't care what it does to non-edges.)

Write $\Gamma \to \Gamma'$ if there is a homomorphism, and $\Gamma \equiv \Gamma'$ if there are homomorphisms in both directions.

We use $End(\Gamma)$ for the semigroup of endomorphisms of Γ (homomorphisms from Γ to Γ).

A homomorphism from a graph Γ to a graph Γ' is a map from vertices of Γ to vertices of Γ' which maps edges to edges. (We don't care what it does to non-edges.)

Write $\Gamma \to \Gamma'$ if there is a homomorphism, and $\Gamma \equiv \Gamma'$ if there are homomorphisms in both directions.

We use $End(\Gamma)$ for the semigroup of endomorphisms of Γ (homomorphisms from Γ to Γ).

Example:

A homomorphism from a graph Γ to a graph Γ' is a map from vertices of Γ to vertices of Γ' which maps edges to edges. (We don't care what it does to non-edges.)

Write $\Gamma \to \Gamma'$ if there is a homomorphism, and $\Gamma \equiv \Gamma'$ if there are homomorphisms in both directions.

We use $End(\Gamma)$ for the semigroup of endomorphisms of Γ (homomorphisms from Γ to Γ).

Example:

► $K_m \to \Gamma$ if and only if $\omega(\Gamma) \ge m$;

A homomorphism from a graph Γ to a graph Γ' is a map from vertices of Γ to vertices of Γ' which maps edges to edges. (We don't care what it does to non-edges.)

Write $\Gamma \to \Gamma'$ if there is a homomorphism, and $\Gamma \equiv \Gamma'$ if there are homomorphisms in both directions.

We use $End(\Gamma)$ for the semigroup of endomorphisms of Γ (homomorphisms from Γ to Γ).

Example:

- ► $K_m \to \Gamma$ if and only if $\omega(\Gamma) \ge m$;
- ▶ $\Gamma \to K_m$ if and only if $\chi(\Gamma) \le m$.

Cores

The core of Γ is the (unique) smallest graph Δ such that $\Delta \equiv \Gamma$. It is an induced subgraph (indeed, a retract) of Γ .

Cores

The core of Γ is the (unique) smallest graph Δ such that $\Delta \equiv \Gamma$. It is an induced subgraph (indeed, a retract) of Γ . Thus, the core of Γ is complete if and only if $\omega(\Gamma) = \chi(\Gamma)$.

Cores

The core of Γ is the (unique) smallest graph Δ such that $\Delta \equiv \Gamma$. It is an induced subgraph (indeed, a retract) of Γ . Thus, the core of Γ is complete if and only if $\omega(\Gamma) = \chi(\Gamma)$.

Proposition

If Γ is vertex-transitive, then so is $core(\Gamma)$. Similarly for other kinds of transitivity.

Rank 3 graphs

A graph Γ is a rank 3 graph if its automorphism group is transitive on vertices, ordered edges and ordered non-edges; in other words, $\operatorname{Aut}(\Gamma)$ is a rank 3 permutation group. (The rank of a permutation group G on a set V is the number of G-orbits on $V \times V$.)

Rank 3 graphs

A graph Γ is a rank 3 graph if its automorphism group is transitive on vertices, ordered edges and ordered non-edges; in other words, $\operatorname{Aut}(\Gamma)$ is a rank 3 permutation group. (The rank of a permutation group G on a set V is the number of G-orbits on $V \times V$.)

After working out a lot of examples, Cristy Kazanidis and I made the following conjecture:

Conjecture

If Γ *is a rank* 3 *graph, then either the core of* Γ *is complete, or* Γ *is a core.*

Rank 3 graphs

A graph Γ is a rank 3 graph if its automorphism group is transitive on vertices, ordered edges and ordered non-edges; in other words, $\operatorname{Aut}(\Gamma)$ is a rank 3 permutation group. (The rank of a permutation group G on a set V is the number of G-orbits on $V \times V$.)

After working out a lot of examples, Cristy Kazanidis and I made the following conjecture:

Conjecture

If Γ *is a rank* 3 *graph, then either the core of* Γ *is complete, or* Γ *is a core.*

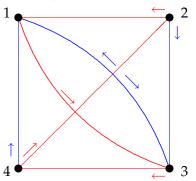
This is true; the proof came from an unexpected direction: automata theory.

The cave

You are in a dungeon consisting of a number of rooms. Passages are marked with coloured arrows. Each room contains a special door; in one room, the door leads to freedom, but in all the others, to instant death. You have a schematic map of the dungeon, but you do not know where you are.

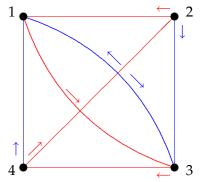
The cave

You are in a dungeon consisting of a number of rooms. Passages are marked with coloured arrows. Each room contains a special door; in one room, the door leads to freedom, but in all the others, to instant death. You have a schematic map of the dungeon, but you do not know where you are.



The cave

You are in a dungeon consisting of a number of rooms. Passages are marked with coloured arrows. Each room contains a special door; in one room, the door leads to freedom, but in all the others, to instant death. You have a schematic map of the dungeon, but you do not know where you are.



You can check that (Blue, Red, Blue, Blue) is a reset word which takes you to room 3 no matter where you start.

Automata and reset words

An automaton is an edge-coloured digraph with one edge of each colour out of each vertex. Vertices are states, colours are transitions. A reset word is a word in the colours such that following edges of these colours from any starting vertex always brings you to the same state. An automaton which possesses a reset word is called synchronizing.

Automata and reset words

An automaton is an edge-coloured digraph with one edge of each colour out of each vertex. Vertices are states, colours are transitions. A reset word is a word in the colours such that following edges of these colours from any starting vertex always brings you to the same state. An automaton which possesses a reset word is called synchronizing.

Not every finite automaton has a reset word; the $\check{C}ern\acute{y}$ conjecture, states that, if a reset word exists, then there is one of length at most $(n-1)^2$, where n is the number of states (or rooms in our example).

J. Araújo and B. Steinberg proposed a new approach to the Černý conjecture.

J. Araújo and B. Steinberg proposed a new approach to the Černý conjecture.

A permutation group G on a set V is *synchronizing* if, given any function $f:V\to V$ which is not a permutation, the semigroup generated by G and f contains a constant function.

J. Araújo and B. Steinberg proposed a new approach to the Černý conjecture.

A permutation group G on a set V is *synchronizing* if, given any function $f:V\to V$ which is not a permutation, the semigroup generated by G and f contains a constant function.

Theorem

A permutation group G on V is non-synchronizing if and only if there is a non-complete and non-null graph Γ on V with $core(\Gamma)$ complete such that $G \leq Aut(\Gamma)$.

J. Araújo and B. Steinberg proposed a new approach to the Černý conjecture.

A permutation group G on a set V is *synchronizing* if, given any function $f:V\to V$ which is not a permutation, the semigroup generated by G and f contains a constant function.

Theorem

A permutation group G on V is non-synchronizing if and only if there is a non-complete and non-null graph Γ on V with $core(\Gamma)$ complete such that $G \leq Aut(\Gamma)$.

Proof.

Let *S* be a semigroup containing *G* but no constant function: join *v* to *w* if no $f \in S$ satisfies $v^f = w^f$.

Cores revisited

This gave me the clue for proving the following theorem:

Cores revisited

This gave me the clue for proving the following theorem:

Theorem

Let Γ be a nonedge-transitive graph. Then either

- ightharpoonup core(Γ) is complete, or
- Γ is a core.

The hull of a graph

The **hull** of a graph Γ is defined as follows:

- ▶ hull(Γ) has the same vertex set as Γ ;
- $v \sim w$ in hull(Γ) if and only if there is no element $f \in \operatorname{End}(\Gamma)$ with $v^f = w^f$.

The hull of a graph

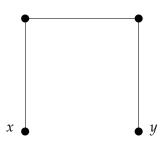
The hull of a graph Γ is defined as follows:

- ▶ hull(Γ) has the same vertex set as Γ ;
- $v \sim w$ in hull(Γ) if and only if there is no element $f \in \operatorname{End}(\Gamma)$ with $v^f = w^f$.

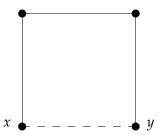
Theorem

- ightharpoonup Γ is a spanning subgraph of hull(Γ);
- ▶ End(Γ) ≤ End(hull(Γ)) and Aut(Γ) ≤ Aut(hull(Γ));
- if $core(\Gamma)$ has m vertices then $core(hull(\Gamma))$ is the complete graph on m vertices.

An example

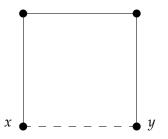


An example



No homomorphism can identify x and y, so they are joined in the hull.

An example



No homomorphism can identify x and y, so they are joined in the hull.

Note the increase in symmetry: $|\operatorname{Aut}(\Gamma)|=2$ but $|\operatorname{Aut}(\operatorname{hull}(\Gamma))|=8$.

Proof of the theorem

Let Γ be non-edge transitive. Then $hull(\Gamma)$ consists of Γ with some orbits on non-edges changed to edges. So there are two possibilities:

Proof of the theorem

Let Γ be non-edge transitive. Then $hull(\Gamma)$ consists of Γ with some orbits on non-edges changed to edges. So there are two possibilities:

- ▶ $hull(\Gamma) = \Gamma$. Then $core(\Gamma) = core(hull(\Gamma))$ is complete;
- ▶ hull(Γ) is the complete graph on the vertex set of Γ . Then core(Γ) has as many vertices as Γ , so that core(Γ) = Γ .

Questions about hulls

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Questions about hulls

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Theorem

$$h(\Gamma) \in \{\chi(\Gamma) - \omega(\Gamma), \chi(\Gamma) - \omega(\Gamma) + 1\}.$$

Questions about hulls

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Theorem

$$h(\Gamma) \in \{\chi(\Gamma) - \omega(\Gamma), \chi(\Gamma) - \omega(\Gamma) + 1\}.$$

What is the complexity of deciding:

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Theorem

$$h(\Gamma) \in \{\chi(\Gamma) - \omega(\Gamma), \chi(\Gamma) - \omega(\Gamma) + 1\}.$$

What is the complexity of deciding:

▶ Is Γ a hull?

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Theorem

$$h(\Gamma) \in \{\chi(\Gamma) - \omega(\Gamma), \chi(\Gamma) - \omega(\Gamma) + 1\}.$$

What is the complexity of deciding:

- ▶ Is Γ a hull?
- Is $h(\Gamma) = \chi(\Gamma) \omega(\Gamma)$?

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Theorem

$$h(\Gamma) \in \{\chi(\Gamma) - \omega(\Gamma), \chi(\Gamma) - \omega(\Gamma) + 1\}.$$

What is the complexity of deciding:

- ► Is Γ a hull?
- Is $h(\Gamma) = \chi(\Gamma) \omega(\Gamma)$?
- ▶ Is Γ a hull, given that $\chi(\Gamma) = \omega(\Gamma)$?

Let $h(\Gamma)$ be the smallest number of vertices of a graph containing Γ as induced subgraph which is a hull.

Theorem

$$h(\Gamma) \in \{\chi(\Gamma) - \omega(\Gamma), \chi(\Gamma) - \omega(\Gamma) + 1\}.$$

What is the complexity of deciding:

- ▶ Is Γ a hull?
- Is $h(\Gamma) = \chi(\Gamma) \omega(\Gamma)$?
- ► Is Γ a hull, given that χ (Γ) = ω (Γ)?

If the third question is hard, so are the other two.

Separating permutation groups

Neumann's separation lemma states:

Proposition

Let G be a transitive permutation group on V, with |V| = n, and let A, B be subsets of V. If $|A| \cdot |B| < n$, then there exists $g \in G$ with $A^g \cap B = \emptyset$.

Separating permutation groups

Neumann's separation lemma states:

Proposition

Let G be a transitive permutation group on V, with |V| = n, and let A, B be subsets of V. If $|A| \cdot |B| < n$, then there exists $g \in G$ with $A^g \cap B = \emptyset$.

We call a transitive permutation group separating if, for any sets A, B with |A|, |B| > 1 and $|A| \cdot |B| = n$, there exists g with $A^g \cap B = \emptyset$.

Proposition

 $2 \textit{-transitive} \Rightarrow \textit{separating} \Rightarrow \textit{synchronizing} \Rightarrow \textit{primitive}.$

Proposition

 $2 \textit{-transitive} \Rightarrow \textit{separating} \Rightarrow \textit{synchronizing} \Rightarrow \textit{primitive}.$

None of these implications reverses. (But I have only a single example of a permutation group which is synchronizing but not separating, namely $P\Omega(5,3)$, acting on 40 points.)

Proposition

2-transitive \Rightarrow separating \Rightarrow synchronizing \Rightarrow primitive.

None of these implications reverses. (But I have only a single example of a permutation group which is synchronizing but not separating, namely $P\Omega(5,3)$, acting on 40 points.)

Proposition

► The permutation group G is non-synchronizing if and only if there is a graph Γ (not complete or null) with $\omega(\Gamma) = \chi(\Gamma)$ and $G \leq \operatorname{Aut}(\Gamma)$.

Proposition

 $2 \textit{-transitive} \Rightarrow \textit{separating} \Rightarrow \textit{synchronizing} \Rightarrow \textit{primitive}.$

None of these implications reverses. (But I have only a single example of a permutation group which is synchronizing but not separating, namely $P\Omega(5,3)$, acting on 40 points.)

Proposition

- ▶ The permutation group G is non-synchronizing if and only if there is a graph Γ (not complete or null) with $\omega(\Gamma) = \chi(\Gamma)$ and $G \leq \operatorname{Aut}(\Gamma)$.
- ► The transitive permutation group G is non-separating if and only if there is a graph Γ (not complete or null) with $\omega(\Gamma) \cdot \alpha(\Gamma) = |V(\Gamma)|$ and $G \leq \operatorname{Aut}(\Gamma)$.

The classes of synchronizing and separating group are upward-closed. They have some downward closure properties too.

The classes of synchronizing and separating group are upward-closed. They have some downward closure properties too.

The 2-closure of a permutation group G on V consists of all the permutations of V which preserve every G-orbit on $V \times V$.

The classes of synchronizing and separating group are upward-closed. They have some downward closure properties too.

The 2-closure of a permutation group G on V consists of all the permutations of V which preserve every G-orbit on $V \times V$.

Proposition

A permutation group is synchronizing (resp. separating) if and only if its 2-closure is synchronizing (resp. separating).

The classes of synchronizing and separating group are upward-closed. They have some downward closure properties too.

The 2-closure of a permutation group G on V consists of all the permutations of V which preserve every G-orbit on $V \times V$.

Proposition

A permutation group is synchronizing (resp. separating) if and only if its 2-closure is synchronizing (resp. separating).

This is because failure of these properties is "detected" by a graph admitting the group (and hence admitting its 2-closure).

This is based on an idea of Arnold and Steinberg.

This is based on an idea of Arnold and Steinberg.

Let *F* be a field, and *G* a permutation group on *V*. The *F*-closure of *G* consists of all permutations of *V* which preserve all the *FG*-submodules of the permutation module *FV*.

This is based on an idea of Arnold and Steinberg.

Let F be a field, and G a permutation group on V. The F-closure of G consists of all permutations of V which preserve all the FG-submodules of the permutation module FV.

It is easy to see that \mathbb{C} -closure is equivalent to 2-closure.

This is based on an idea of Arnold and Steinberg.

Let F be a field, and G a permutation group on V. The F-closure of G consists of all permutations of V which preserve all the FG-submodules of the permutation module FV.

It is easy to see that C-closure is equivalent to 2-closure.

Proposition

For any field F, a permutation group is synchronizing (resp. separating) if and only if its F-closure is synchronizing (resp. separating).

The group $PSL(2,2^n)$ has permutation actions of degrees $2^{n-1}(2^n \pm 1)$, on the cosets of its maximal dihedral subgroups of orders $2(2^n \mp 1)$. It is 2-closed in both actions.

The group PSL(2, 2^n) has permutation actions of degrees $2^{n-1}(2^n \pm 1)$, on the cosets of its maximal dihedral subgroups of orders $2(2^n \mp 1)$. It is 2-closed in both actions.

Suppose that $2^n - 1$ is a Mersenne prime.

The group PSL(2, 2^n) has permutation actions of degrees $2^{n-1}(2^n \pm 1)$, on the cosets of its maximal dihedral subgroups of orders $2(2^n \mp 1)$. It is 2-closed in both actions.

Suppose that $2^n - 1$ is a Mersenne prime.

The permutation character of the action of degree $2^{n-1}(2^n - 1)$ is the sum of the trivial character and a family of algebraically conjugate characters, whose sum is Q-irreducible. So the Q-closure is the symmetric group, which is trivially separating; so the original group is separating, and hence synchronizing. (This was the example of Arnold and Steinberg.)

The group PSL(2, 2^n) has permutation actions of degrees $2^{n-1}(2^n \pm 1)$, on the cosets of its maximal dihedral subgroups of orders $2(2^n \mp 1)$. It is 2-closed in both actions.

Suppose that $2^n - 1$ is a Mersenne prime.

The permutation character of the action of degree $2^{n-1}(2^n-1)$ is the sum of the trivial character and a family of algebraically conjugate characters, whose sum is Q-irreducible. So the Q-closure is the symmetric group, which is trivially separating; so the original group is separating, and hence synchronizing. (This was the example of Arnold and Steinberg.)

The permutation character of the action of degree $2^{n-1}(2^n+1)$ is equal to the above character plus an irreducible of degree 2^n . So its Q-closure is the group S_{2^n+1} acting on 2-sets, which is separating. (The only invariant graphs are the line graph of K_{2^n+1} and its complement; and if $\Gamma = L(K_{2^n+1})$, then $\omega(\Gamma) = 2^n$, but $\alpha(\Gamma) = 2^{n-1}$.) So again, the original group is separating, and hence synchronizing.