
Combinatorics of optimal designs

R. A. Bailey and Peter J. Cameron

p.j.cameron@qmul.ac.uk

British Combinatorial Conference, St Andrews, July 2009

Mathematicians and statisticians

There is a very famous joke about Bose’s
work in Giridh. Professor Mahalanobis
wanted Bose to visit the paddy fields and
advise him on sampling problems for the
estimation of yield of paddy. Bose did
not very much like the idea, and he used
to spend most of the time at home work-
ing on combinatorial problems using Ga-
lois fields. The workers of the ISI used
to make a joke about this. Whenever Pro-
fessor Mahalanobis asked about Bose, his
secretary would say that Bose is working
in fields, which kept the Professor happy.

Bose memorial session, in Sankhyā 54 (1992)
(special issue devoted to the memory of Raj

Chandra Bose), i–viii.

First topic
A block design with block size 2 is just a

(multi)graph.

What graph-theoretic properties make it a
“good” block design (in the sense that the infor-
mation obtained from an experiment is as accurate
as possible given the resources?

Which graph is best?
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Of course the question is not well defined.
But which would you choose for a network, if
you were concerned about connectivity, reliability,
etc.?

Which graph is best connected?
Here are some ways of measuring the “connec-

tivity” of a graph.

• How many spanning trees does it have? The
more spanning trees, the better connected.
The first graph has 2000 spanning trees, the
second has 576.

• Electrical resistance. Imagine that the graph
is an electrical network with each edge being
a 1-ohm resistor. Now calculate the resistance
between each pair of terminals, and sum over
all pairs; the lower the total, the better con-
nected. In the first graph, the sum is 33; in the
second, it is 206/3.

Which graph is best connected?

• Isoperimetric number. This is defined to be

i(G) = min
{
|∂S|
|S| : S ⊆ V(G), 0 < |S| ≤ v/2

}
,
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where, for a set S of vertices, ∂S is the set
of edges from S to its complement. Large
isoperimetric number means that there are
many edges out of any set of vertices. The
isoperimetric number for the first graph is
1 (there are just five edges between the in-
ner and outer pentagons), that of the second
graph is 1/5 (there is just one edge between
the top and bottom components).

Laplacian eigenvalues
Let G be a graph on n vertices. (Multiple edges

are allowed but loops are not.)
The Laplacian matrix of G is the n × n matrix

L(G) whose (i, i) entry is the number of edges con-
taining vertex i, while for i 6= j the (i, j) entry is the
negative of the number of edges joining vertices i
and j.

This is a real symmetric matrix; its eigenvalues
are the Laplacian eigenvalues of G. Note that its row
sums are zero.

Laplacian eigenvalues

• L(G) is positive semi-definite, so its eigenval-
ues are non-negative.

• The multiplicity of 0 as an eigenvalue of G
is equal to the number of connected compo-
nents of G. In particular, if G is connected,
then 0 is a simple eigenvalue (called the triv-
ial eigenvalue) corresponding to the all-1 eigen-
vector, and the non-trivial eigenvalues are
positive.

• The number of spanning trees of G is the
product of the non-trivial Laplacian eigenval-
ues, divided by v: this is Kirchhoff’s Matrix-
Tree Theorem.

Laplacian eigenvalues

• The sum of resistances between all pairs of
vertices is the sum of reciprocals of the non-
trivial Laplacian eigenvalues, multiplied by v.

• The isoperimetric number is at least half of the
smallest non-trivial eigenvalue of G.

There is also an upper bound for i(G) in terms
of µ1, an inequality of Cheeger type, which is crucial
for other applications (to random walks etc.)

Recently, Krivelevich and Sudakov have shown
that, in a k-regular graph G on v vertices, if µ1 is
large enough in terms of v and k, then G is Hamil-
tonian. Pyber used this to show that all but finitely
many strongly regular graphs are Hamiltonian.

Graphs as block designs
Suppose that we have ten “treatments” that we

want to compare. We have enough resources to
perform fifteen trials, each one of which compares
two of the treatments.

The trials can be regarded as the edges of a
graph with 10 vertices and 15 edges. So our
two examples are among the graphs we could
use. Which will give the best possible information
about treatment differences?

We model the result of each trial as giving a
number for each of the two treatments in the trial,
which is the sum of an effect due to a treatment, an
effect due to the trial, and some random variation.

Treatment contrasts
We cannot estimate treatment effects directly,

because adding the same quantity to each treat-
ment effect and subtracting it from each trial effect
will not change the results.

We can estimate treatment differences, or more
generally treatment contrasts, linear combinations
of treatment effects where the coefficients sum to
zero.

Each treatment contrast estimator is a random
variable, and the smaller its variance, the more ac-
curate the estimate. Accurate estimates are impor-
tant to reduce the risk that we rate one treatment
better than another just because of random varia-
tion.

Optimality criteria
Among desirable criteria we might ask for an

experimental design to do one of the following:

• minimize the average variance of the treat-
ment differences (such a design is called A-
optimal);
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• minimize the volume of a confidence ellipsoid
containing the estimated treatment contrasts
(such a design is called D-optimal;

• minimize the maximum variance of any nor-
malised treatment contrast (such a design is
called E-optimal).

There are other types of optimality too, but these
will do for now! (For D-optimality, we need to as-
sume the errors are independent normal.)

Optimality and graph properties

Theorem 1. In any given class of graphs,

• the A-optimal graph mimimizes the sum of resis-
tances between all pairs of vertices;

• the D-optimal graph maximizes the number of
spanning trees in the graph;

• the E-optimal graph maximizes the minimum non-
trivial Laplacian eigenvalue of the graph.

So E-optimal graphs will tend to have large
isoperimetric numbers.

Second topic
A block design with block size greater than 2 is

not a graph. Perhaps we should regard it as a hy-
pergraph of some kind?

It will turn out that optimality properties of such
a block design are determined by a graph, the con-
currence graph of the block design, no matter what
the block size. So we do not need a new theory!

What is a block design?
We wish to do an experiment to test v differ-

ent treatments. We have available bk experimen-
tal units, divided into b “blocks” of k; there are
systematic but unknown differences between the
blocks. We model the response of an experimental
unit as the sum of a treatment effect, a block effect,
and random variation, and we want to estimate
treatment differences, or more generally, treatment
contrasts.

For example, we may be testing varieties of
seed, and have k plots available for planting the
seed on each of b farms in different geographic and
climatic areas.

Mathematicians tend to represent a block de-
sign by a family of subsets of the treatment set,
where each block corresponds to a set of k treat-
ments. There are different schools of thought
about whether “repeated blocks” should be al-
lowed.

In fact there is a much more serious problem . . .

An example
We have five treatments numbered 1, . . . , 5, and

21 experimental units, divided into seven blocks
of three.

The design is given in the following table:

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

A combinatorialist wanting to represent this
block design in the “traditional” way, with blocks
as subsets of the set of treatments, has a problem:
the first block is a multiset [1, 1, 2].

Nevertheless, to a statistician there is no prob-
lem with this; indeed, it can be shown that this
design is E-optimal among all designs for 5 treat-
ments and 7 blocks of size 3.

An example, continued
Look at the example again:

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

1 and 2 occur together twice in the first block.
With this convention, you can easily check that

the block design is balanced, that is, the equivalent
of a 2-design: every pair of treatments lie together
in exactly two blocks.

We have called these designs “variance-
balanced designs” or VB-designs in the paper;
some statisticians call them “completely sym-
metric designs” (a term unlikely to appeal to
mathematicians)!

It is known that VB-designs are E-optimal as
long as they don’t have too much “badness” (mul-
tiple occurrences of treatments in blocks). See the
paper for details.
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The concurrence graph
The concurrence graph of a block design is de-

fined as follows. The vertex set is the set of v treat-
ments. There are no loops. For every occurrence
of treatments i and j together in a block, we put an
edge from i to j. (For example, if a block contains
p occurrences of treatment i and q of treatment j,
then it contributes pq edges from i to j.)

In our example, the concurrence graph is the
complete multigraph on 5 vertices, where every
edge has multiplicity 2.

We form the Laplacian matrix of this graph in
the usual way: the (i, i) entry is the valency of ver-
tex i; and for i 6= j, the (i, j) entry is the negative of
the number of edges from i to j.

Estimation and variance
This topic is covered in detail in the paper. The

upshot is that, in order to extract information
about treatment differences from the experimental
results, we require a matrix called the information
matrix of the design, and we require its non-trivial
eigenvalues to be “large”.

Now in the case of a block design with v treat-
ments and b blocks of size k, we have the following
result:

Theorem 2. The information matrix of a block design
with block size k is equal to the Laplacian matrix of its
concurrence graph divided by k.

So optimality criteria can be expressed in terms
of the Laplacian eigenvalues . . .

Optimality and Laplace eigenvalues
LetD be a class of connected block designs (with

fixed v, b, k), and G the set of concurrence graphs of
designs in D.

• A design in D is A-optimal if and only if its
concurrence graph maximizes the harmonic
mean of the non-trivial Laplace eigenvalues
over the class G.

• A design in D is D-optimal if and only if its
concurrence graph maximizes the geometric
mean of the non-trivial Laplace eigenvalues
over the class G.

• A design in D is E-optimal if and only if its
concurrence graph maximizes the minimum

non-trivial Laplace eigenvalue over the class
G.

The interpretation of A- and D-optimality in
terms of resistances and spanning trees is exactly
as before.

Which graphs are concurrence graphs?
Let w1, . . . , wm be positive integers with sum k.

Define a weighted clique with weights w1, . . . , wm
in a graph to be a clique of m vertices, numbered
1, . . . , m, such that the number of edges joining i to
j is wiwj.

Theorem 3. A graph is the concurrence graph of a
block design with block size k if and only if the edge
set of G can be partitioned into weighted cliques with
total weight k.

Our example corresponds to a partition of 2K5
into six triangles and one double edge (with
weights 1 and 2).

Third topic
Different optimality criteria do not always agree

on what is the best design to use.
We will see an example shortly, but first, here is

Kiefer’s theorem:

Theorem 4. A 2-design (that is, a balanced
incomplete-block design in which treatments are not re-
peated in blocks) is optimal with respect to the A-, D-
and E-criteria (and indeed all other proposed criteria).

Now we look at the case where k = 2 and b = v
(so the design is a unicyclic graph). What is the
“nicest” unicyclic graph?

Optimal designs when b = v, k = 2

v = 6 v = 7 v = 8

D-optimal pppp p p .
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Optimal designs when b = v, k = 2

v = 9 v = 10 v = 11

D-optimal pppppp p p p .
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More generally . . .
Let us just consider the set G of designs with

block size 2 (that is, graphs), having v vertices and
e edges, where e ≥ v.

Theorem 5. • A graph having a leaf cannot be D-
optimal in G.

• On the other hand, if 20 ≤ v ≤ e < 5v/4, then
any E-optimal graph in G has a leaf.

You can find the proof in the paper.

Things to do (a short list)

• Develop an existence theory for VB-designs
similar to Wilson’s existence theory for 2-
designs. (The number of blocks is not deter-
mined by the parameters v, k, λ; the theory
should also take account of possible numbers
of blocks.)

• For designs with block size 2, is there a
“threshold” for edge density below which the
A- and E-optimal designs look very different?
What about larger block size?
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