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Fixed-point-free permutations

Input: A set S of permutations of {1, . . . , n}.

Problem: Does G = 〈S〉 contain a fixed-point-free
element?

This problem is NP-complete in general.
However, if we are promised that G is transitive,

then it has a constant-time algorithm (Jordan 1873)

Fixed-point-free permutations, 2
Now let’s change the problem to

Input: A set S of permutations of {1, . . . , n}, gen-
erating a transitive group.

Problem: Find a fixed-point-free element in G.

This is in RP (Cameron and Cohen 1993)
In fact it is in P, but the proof uses the Classifica-

tion of Finite Simple Groups.
Is this really necessary?

Bases
A base for a structure S should be a list B of el-

ements of S with the property that every element
of S is uniquely specified by its relationship to the
elements in B.

For example, a basis in a vector space has the
property that different vectors have different ex-
pressions as linear combinations of basis vectors.

Bases for permutation groups
If G is a permutation group on a set Ω, a base

for G is a list B of elements of Ω whose pointwise
stabiliser in G is the identity.

Our philosophy is:

A list of points of the structure S which is
a base for the automorphism group of S
should be in some sense a base for S.

That is: If we cannot move x to y by an automor-
phism fixing B pointwise, this is because the structures
of (S, [B, x]) and (S, [B, y]) are different.

We’d like to have an efficient method to recog-
nise this difference. This would have practical im-
plications for graph isomorphism, as well as its
theoretical interest.

Bases, determining sets, metric dimension, . . .
The notion of a base, and various combinato-

rial variants on it, have been rediscovered many
times in different parts of combinatorics, espe-
cially graph theory: base size has been called fixing
number, determining number, rigidity index, etc.

Robert Bailey and I have written a survey paper
attempting to describe all these and related con-
cepts and results:

• Robert F. Bailey and Peter J. Cameron, Base
size, metric dimension and other invariants of
groups and graphs, preprint (available from

http://www.math.uregina.ca/~bailey/papers/basesize metdim.pdf

A set S of vertices is a determining set for a graph
if different points outside S have different neigh-
bour sets in S. The determining number is the size
of the smallest such set.

Base size for permutation groups
If the permutation group G on Ω (where |Ω| =

n) has a base of size b, then |G| ≤ nb. Moreover, if
B is a base of minimum size, then |G| ≥ 2b.
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In other words, logn(G) ≤ b(G) ≤ log2(G),
where b(G) is the minimum base size of G.

Thus base size is closely connected with order of
permutation groups, a very important concern of
nineteenth-century group theory.

Clearly any determining set for a graph is a base
for its automorphism group; so the minimal base
size does not exceed the determining number.

Babai’s Theorem
One of the most dramatic developments in the

theory of permutation group bases came when
Laci Babai applied techniques of probabilistic
combinatorics to the problem in 1980.

The central result can be summarised like this.

Theorem 1. Let G be a primitive but not 2-transitive
permutation group of degree n. Then, for any pair x, y
of distinct points, there are at least (

√
n− 1)/2 points

z for which (x, z) and (y, z) lie in different G-orbits.

This is proved by a detailed analysis of the co-
herent configuration associated with G. (I say
more about coherent configurations later.)

Babai’s Theorem, 2
Now consider the hypergraph whose vertices

are the pairs of points of Ω, and whose edges are
indexed by points of Ω; the edge labelled z consists
of the pairs “distinguished” by z. A theorem of
Lovász shows that there are b = 4

√
n log n edges

which cover all vertices – these edges can be cho-
sen at random and cover with non-zero probabil-
ity.

The corresponding b points of Ω form a base; so
|G| ≤ nb.

The bound is best possible up to a factor of
c log n in the exponent.

The log n factor
In situations like this we expect a log n factor.

The simplest possible example is the following:

Theorem 2. Suppose that a k-uniform hypergraph on
n points has a vertex-transitive automorphism group.
Then there is a set of at most (n/k) log n edges that
cover the vertex set.

Choose m images of a fixed edge under ran-
dom automorphisms. The probability of a given

vertex being uncovered is (1 − k/n)m, and so the
expected number of uncovered vertices is n(1 −
k/n)m. If this is less than 1, then there is a choice
with no uncovered vertices.

Can we get rid of it by more intricate combina-
torics?

Symmetry and logic, 1
One of the most remarkable theorems about

symmetry for finite and countably infinite struc-
tures was proved by Engeler, Ryll-Nardzewski
and Svenonius in 1959. Structures here are al-
lowed to have relations (graphs, orders, hyper-
graphs) and functions (groups, rings). All struc-
tures are (at most) countable.

A structure M is countably categorical if any (at
most) countable structure N satisfying the same
first-order sentences as M is isomorphic to M.

In other words, such a structure can be specified
up to isomorphism by first-order axioms and the
requirement of countability.

Cantor’s theorem shows that (Q, <) is count-
ably categorical (it is the unique countable dense
total order without endpoints).

Symmetry and logic, 2
A permutation group G on Ω is oligomorphic if it

has only finitely many orbits on Ωn for all n.
Such a group is “large”, in a sense: we are ex-

cluding things like Frobenius groups.
The group of order-preserving permutations of

Q is oligomorphic: two n-tuples of distinct ele-
ments lie in the same orbit if and only if they are
themselves order-isomorphic – we can extend the
order-isomorphism to a piecewise-linear map on
Q – so there are n! orbits on n-tuples of distinct
elements.

Symmetry and logic, 3

Theorem 3. A structure M (at most countable) is
countably categorical if and only if its automorphism
group is oligomorphic.

In other words, for countable structures, a high
degree of symmetry is equivalent to axiomatisabil-
ity!

More is true. If M is countably categorical, then
two n-tuples lie in the same orbit of Aut(M) if and
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only if they satisfy the same first-order formulae
(that is, they have the same first-order type).

Symmetry and logic, 4
This wonderful theorem about the countably in-

finite tells us nothing about the finite.

• Every finite permutation group is oligomor-
phic.

• Every finite first-order structure is categorical.

Indeed, if the automorphism group of the n-
element structure M has a base of size k, then ev-
ery point of M is uniquely identified by a formula
having the elements of the base as parameters.

So our philosophical principle holds for first-
order structure.

Symmetry and regularity, 1
Is there a simpler type of formula which detects

symmetry of a graph, for example? For example,
can we bound the number of variables?

A graph is said to be t-strongly regular if, for any
set S of vertices with |S| ≤ t, the number of com-
mon neighbours of S depends only on the isomor-
phism type of the induced subgraph on S.

• Every graph is 0-strongly regular.

• A graph is 1-strongly regular if and only if it
is regular.

• A graph is 2-strongly regular if and only if it
is strongly regular in the usual sense.

In these cases, almost all such structures have no
non-trivial automorphisms.

Digression
It is not easy to make sense of the statement “al-

most all strongly regular graphs have trivial auto-
morphism group”. Here are two relevant pieces of
information.

• A theorem of Neumaier shows that strongly
regular graphs with least eigenvalue −m (an
integer) are complete multipartite with parts
of size m, or line graphs of linear spaces or
transversal designs with block size m, or one
of a finite list L(m) of exceptions. Laci Babai

showed that almost all Steiner triple systems
(linear spaces with block size 3) have triv-
ial automorphism group; the same is true for
Latin squares (equivalent to transversal de-
signs with block size 3).

• There are known to be 32548 strongly regular
graphs with parameters (36, 15, 6, 6); all but
11 of them belong to the list L(3). Most have
trivial automorphism group (but I don’t have
the exact number).

Symmetry and regularity, 2
A graph is t-homogeneous if any isomorphism be-

tween sets of at most t vertices can be extended
to an automorphism of the graph. Clearly t-
homogeneity implies t-strong regularity.

Theorem 4. A 5-strongly regular graph is t-
homogeneous for all t.

The proof involves determining by combinato-
rial methods the 5-strongly regular graphs and
showing that the class coincides with the class of
homogeneous graphs determined by Sheehan and
Gardiner.

This and some related results suggest that per-
haps there is an absolute bound on the number of
variables required in formulae “labelling” the ver-
tices of a graph in terms of a base for its automor-
phism group.

A test case: Paley graphs
Let q be a prime power congruent to 1 mod 4.

(Then −1 is a square in the field Fq.) The Paley
graph Pq has as vertex set the field Fq, with an edge
from x to y if and only if y− x is a non-zero square
in Fq. (The remark shows that this is a symmetric
relation.)

The automorphism group of Pq is the group

{x 7→ axσ + b : a, b ∈ Fq, a 6= 0, a square, σ ∈ Aut(Fq)}.

Hence

• If q is prime, then any two points form a base;

• Otherwise, some well-chosen triples form
bases, but if we choose badly we might need
as many as

√
q + 1 points in a base.
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Digression
Dima Fon-Der-Flaass and I investigated, among

other things, which groups have the property that
every set of size k is a minimal base. We showed:

Theorem 5. Let G be a permutation group with the
property that any set of k points is a minimal base. Then
G is (k − 1)-transitive. In particular, if k ≥ 5, then G
is sharply k-transitive (and so is Sk, Sk+1, Ak+2, or
M12 for k = 5).

For k = 2, 3 we have Frobenius and Zassenhaus
groups respectively.

Paley graphs
It turns out that the determining number for Pa-

ley graphs is about log q.
A different approach was proposed by Evdoki-

mov and Ponomarenko, using the notion of coher-
ent configuration (which of course also occurs in
Babai’s classic proof). This notion was developed
by Donald Higman in the west and Boris Weis-
feiler in the Soviet Union from the notion of associ-
ation scheme in statistics.

Coherent configurations
A coherent configuration on Ω is a partition C of

Ω×Ω satisfying the following conditions:

• the diagonal is a union of parts of C;

• the converse of a part of C is a part of C;

• if (x, y) ∈ Ck, then the number of z ∈ Ω such
that (x, z) ∈ Ci and (z, y) ∈ Cj depends only
on i, j, k and not on x, y.

Coherent configurations, 2
The set of partitions of Ω × Ω forms a lattice

(with “smaller”=finer), called the partition lattice.
The set of coherent configurations is a meet-

semilattice of the partition lattice.
Hence, given any family F of subsets of Ω × Ω,

there is a unique finest coherent configuration con-
taining them, which we call the coherent configu-
ration generated by F.

In particular, the partition into singletons forms
the “trivial” coherent configuration, which we de-
note by E.

EP-dimension
The EP-dimension of a coherent configuration C

is the smallest number k for which there exist k
points a1, . . . , ak ∈ Ω such that the coherent con-
figuration generated by C and (a1, a1), . . . , (ak, ak)
is the trivial configuration E.

Clearly the EP-dimension of a coherent configu-
ration is not smaller than the base size of its auto-
morphism group, and is not greater than the de-
termining number of the configuration (suitably
defined); so it might be strong enough for good
bounds on base size but simple enough that it can
be computed fairly efficiently . . .

Paley graphs

Conjecture 1. Let q be a prime congruent to 1 (mod 4).
Then the EP-dimension of the Paley graph Pq is 2.

Here is how it works for p = 13. Without
loss, choose the potential base {0, 1}. This “distin-
guishes” four sets of the remaining vertices. The
vertices joined to 0 but not 1 are 3, 9, 12, and the
induced subgraph is a path 3 ∼ 12 ∼ 9. So 12
is “distinguished”. Now 12 and 0 distinguish 11,
and we can work all the way around.

The story continues
The EP-dimension of a coherent configuration is

sandwiched between the base size of its automor-
phism group and the determining number. Both
inequalities can be strict.

Example 6. Very many, probably “almost all”,
strongly regular graphs have trivial automor-
phism group. Such graphs have base size 0, but
the EP-dimension is strictly positive.

Example 7. We certainly know that the EP-
dimension of some small Paley graphs of prime
degree is 2; but the determining number is about
log q.
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