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This is part of an investigation involving, among others, João
Araújo, Πeter Neumann, Jan Saxl, Csaba Schneider, Pablo
Spiga, and Ben Steinberg. Cristy Kazanidis, Nik Ruskuc, Colva
Roney-Dougal, Ian Gent and Tom Kelsey have also been
involved.

There is far more material than can be presented here; I will
talk about other aspects of this topic in Perth next month. See
you there!

See also Gordon Royle’s talk at this meeting for a more
combinatorial approach.
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Automata

An automaton is a machine which can be in any of a set of
internal states which cannot be directly observed.

We can force the machine to make any desired sequence of
transitions (each transition being a mapping from the set of
states to itself).

We can represent an automaton as an edge-coloured directed
graph, where the vertices are the states, and the colours are the
transitions. We require that the graph should have exactly one
edge of each colour leaving each vertex.
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Synchronization

Suppose that you are given an automaton (whose structure you
know) in an unknown state. You would like to put it into a
known state, by applying a sequence of transitions to it. Of
course this is not always possible!

A reset word is a sequence of transitions which take the
automaton from any state into a known state; in other words,
the composition of the corresponding transitions is a constant
mapping.
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You can check that (Blue, Red, Blue, Blue) is a reset word which
takes you to room 3 no matter where you start.
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Applications

I Industrial robotics: pieces arrive to be assembled by a
robot. The orientation is critical. You could equip the robot
with vision sensors and manipulators so that it can rotate
the pieces into the correct orientation. But it is much
cheaper and less error-prone to regard the possible
orientations of the pieces as states of an automaton on
which transitions can be performed by simple machinery,
and apply a reset word before the pieces arrive at the robot.

I Bioinformatics: If a soup of DNA molecules is to perform
some computation, we need the molecules to be all in a
known state first. We can simultaneously apply a reset
word to all of them, where the transitions are induced by
some chemical or biological process.
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The road-colouring problem

Trivially, a directed graph with constant out-degree can be
edge-coloured to produce an automaton. The conditions in the
next paragraph are easily seen to be necessary for the resulting
automaton to have a reset word.

Problem
Suppose that D is a directed graph in which all edges have
out-degree d. Then the edges of D can be coloured with d colours to
produce an automaton with a reset word if and only if D is connected
and the greatest common divisor of the cycle lengths in D is 1.
This was the road-colouring conjecture until it was proved by
Avraham Trahtman last year.
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The Černý conjecture

How do we decide whether a reset word exists? We can search
for one by trial and error; how far do we have to go before we
can conclude that there is no reset word?

Problem
Suppose that an n-vertex automaton has a reset word. Show that it
has one of length at most (n− 1)2.
This is the Černý conjecture, and is still open. If true, the bound
would be best possible.
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A group-theoretic approach

At the other extreme from a synchronizing automaton is one in
which all the transitions are permutations (and generate a
permutation group). One approach to the Černý conjecture is
to separate out this difficulty.

A permutation group G on a set Ω is said to be synchronizing
if, whenever f : Ω→ Ω is a mapping which is not a
permutation, the semigroup generated by G and f contains a
reset word (a constant mapping).

Problem
Which permutation groups are synchronizing?



A group-theoretic approach

At the other extreme from a synchronizing automaton is one in
which all the transitions are permutations (and generate a
permutation group). One approach to the Černý conjecture is
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Synchronizing groups

This condition can be reformulated in more group-theoretic
terms.

Proposition

A permutation group G on Ω is non-synchronizing if and only if
there is a non-trivial partition π of Ω and a subset ∆ of Ω such that,
for all g ∈ G, ∆g is a section (of transversal) of π.

Corollary

A synchronizing group is primitive.

For if there is a G-invariant partition π, then any section of π
has the required property.
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Non-synchronizing ranks

This is an attempt to measure the failure of a permutation
group to be synchronizing. We define the set M(G) of
non-synchronizing ranks of a permutation group G to be the set
of ranks of functions f on Ω for which 〈G, f 〉 contains no
constant function. Thus M(G) = ∅ if and only if G is
synchronizing.

Theorem

I n− 1 ∈ M(G) if and only if G is imprimitive.
I 2 ∈ M(G) if and only if G has (possibly trivial) blocks B1 and B2

with B1 ⊂ B2 and |B2| = 2|B1|.
I If G has a block of size k, then

{n/k, n/k + 1, . . . , n− 1} ∪ {k, 2k, . . . , n− k} ⊆ M(G).

By contrast, we conjecture that if G is primitive then M(G) is
very small.
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Separating groups

Let G be transitive on Ω, with |Ω| = n. Let Γ and ∆ be subsets
of Ω, with |Γ| = k, |∆| = l.

Lemma
if kl < n, then there exists g ∈ G with Γ ∩ ∆g = ∅.
We say that G is separating if the same conclusion holds when
kl = n.

Proposition

A separating group is synchronizing.
For if G is non-synchronizing, and Γ is a part of a partition π
for which (π, ∆) witness the non-synchronization, then by
assumption |Γ ∩ ∆g| = 1 for all g ∈ G.
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Separation and synchronization

Since synchronizing groups are primitive, the obvious first step
is to check primitive groups of small degree (up to a few
hundred) for these properties. MAGMA and GAP contain lists of
these groups. But the checking is non-trivial.

In particular, we only know a tiny handful of permutation
groups which are synchronizing but not separating; it would be
interesting to find out why this property is so rare.

Some of the examples come from finite geometry (involving
properties of ovoids and spreads in polar spaces), but others
appear to be “sporadic”.
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Graph-theoretic characterisations

These properties can be detected by undirected graphs
admitting the group G. The clique number ω(X) and the
independence number α(X) are the cardinalities of the largest
complete and null induced subgraphs of X; the chromatic
number χ(X) is the smallest number of colours required to
colour the vertices so that adjacent vertices get different
colours. Clearly ω(X) ≤ χ(X), since vertices of a complete
subgraph must get different colours.

Proposition

Let G be a permutation group on Ω, with |Ω| = n.
I G is non-synchronizing if and only if there is a non-trivial

G-invariant graph X for which ω(X) = χ(X).
I Let G be transitive. Then G is non-separating if and only if there

is a non-trivial G-invariant graph X such that
ω(X) · α(X) = n.
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Basic groups

A power structure on Ω is a hypercube with vertex set Ω, that
is, a bijection between Ω aand Xn for some set X and integer
n > 1.

A permutation group G is non-basic if it preserves a power
structure on Ω. Such a group is contained in a wreath product
of smaller permutation group.

Proposition

A synchronizing group is basic.
For, if G is non-basic, then let π be the partition of Xn according
to the value of the first coordinate, and ∆ the diagonal set
{(x, x, . . . , ) : x ∈ X}.
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The O’Nan–Scott Theorem

Theorem
A basic group is affine, diagonal, or almost simple.

So we only have to look at these three types of groups to
understand synchronizing permutation groups.

In particular, product actions of wreath products, twisted
wreath products, and “compound diagonal” groups cannot be
synchronizing; and an affine group in which the linear
subgroup (the stabiliser of the zero vector) is imprimitive (i.e.
preserves a direct sum decompositon) is not synchronizing.

I will look at a couple of examples, to illustrate that hard
problems arise!
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The symmetric group acting on k-sets

Let G be the permutation group induced by Sn on the set Ω of
k-subsets of {1, . . . , n}, for 1 < k < n/2.

Proposition

If k divides n, then G is non-synchronizing.
We use Baranyai’s Theorem: there is a partition π of Ω into
subsets each of which is a partition of {1, . . . , n}. Take ∆ to
consist of the k-subsets containing the element 1.
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The symmetric group acting on k-sets

Proposition

For k = 2, the following are equivalent:
I G is synchronizing;
I G is separating;
I n is odd.

To show the non-trivial implication, suppose that n is odd. The
G-invariant graphs are L(Kn) and its complement. Now L(Kn)
has clique number n− 1 and independence number bn/2c, so
G is separating if n is odd.
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The symmetric group acting on k-sets

Proposition

For k = 3, the following are equivalent:
I G is synchronizing;
I G is separating;
I n is not a multiple of 3, not congruent to 1 mod 6, and not equal

to 8.

One step in the proof depends on Teirlinck’s theorem that there
is a large set of Steiner triple systems if n is congruent to 1 or 3
mod 6 and n > 7 (a partition π of Ω into Steiner triple systems).
Take ∆ to consist of all 3-sets containing 1 and 2.

For k ≥ 4 the complete answer is not known, but
synchronization and separation are not always equivalent.
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A linear analogue

The linear analogue of Sn on k-sets is the linear group GL(n, q)
acting on k-dimensional subspaces of the n-dimensional vector
space, i.e. on (k− 1)-flats of PG(n− 1, q).

For k = 2 (the action on lines of the projective space), this group
is separating if and only if n is odd.
For even n, it is non-synchronizing if and only if there is a
parallelism of lines in the projective space. The existence of a
parallelism is known only in a few cases (when n is a power of
2, or when n = 6 and q is even).
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Classical groups

Let G be a classical symplectic, orthogonal or unitary group,
acting on the point set of the corresponding polar space
(embedded in a projective space). This consists of all points
which are isotropic with respect to the form. We assume that
the Witt index is at least 2 (so that the poar space contains lines
of the projective space).

A maximal flat is a projective subspace of maximal dimension
contained in the polar space. A spread is a partition of the polar
space into maximal flats. An ovoid is a set of points meeting
every maximal flat in a unique point.
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Classical groups

Proposition

Let G be a classical group and G its associated polar space.
I G is non-separating if and only if G has an ovoid.
I G is non-synchronizing if and only if G has either an ovoid and a

spread, or a partition into ovoids.

The existence of ovoids and spreads in polar spaces is not
completely resolved despite many years of study by finite
geometers; this is a very hard geometric problem!
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Towards the Černý conjecture

Suppose that G is a synchronizing permutation group. What
further properties do we need in order that the Černý
conjecture should hold for any automaton obtained by
adjoining a non-permutation to a set of generators of G?

Let f be a non-permutation. Without loss of generality, a reset
word will look like

fg1fg2f · · · fgr−1f

for g1, . . . , gr ∈ G. We need to bound r and also the expressions
for g1, . . . , gr in terms of generators.
Suppose that G is “large” enough that, for any set S, we can
move it by an element gi ∈ G to a position where its inverse
image under f is larger than |S|. Then we have r ≤ n− 1.
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QI groups

Let F be a field of characteristic zero (or not dividing n). Then
the permutation module FΩ is the direct sum of a
1-dimensional submodule V0 (the constant vectors) and an
(n− 1)-dimensional submodule V1 (the vectors with
coordinate sum zero).

I G is 2-transitive if and only if V1 is irreducible in the case
when F = C;

I G is 2-set transitive if and only if V1 is irreducible in the
case when F = R.

We say that G is QI if V1 is irreducible in the case when F = Q.
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Spreading groups

Arnold and Steinberg showed that QI-groups have the
property we noted earlier to approach the Černý conjecture.
Later, Steinberg remarked that something less is required.

The group G is not QI if and only if there exist functions v, w
from Ω to the natural numbers, which are not constant and
have support size greater than 1, such that v ·wg is constant for
g ∈ G.
We say that G is non-spreading if such v and w exist with the
additional properties

I v takes only the values 0 and 1;
I the sum of the values of w divides |Ω|.

Then G is spreading otherwise.
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Later, Steinberg remarked that something less is required.
The group G is not QI if and only if there exist functions v, w
from Ω to the natural numbers, which are not constant and
have support size greater than 1, such that v ·wg is constant for
g ∈ G.

We say that G is non-spreading if such v and w exist with the
additional properties

I v takes only the values 0 and 1;
I the sum of the values of w divides |Ω|.

Then G is spreading otherwise.



Spreading groups

Arnold and Steinberg showed that QI-groups have the
property we noted earlier to approach the Černý conjecture.
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Later, Steinberg remarked that something less is required.
The group G is not QI if and only if there exist functions v, w
from Ω to the natural numbers, which are not constant and
have support size greater than 1, such that v ·wg is constant for
g ∈ G.
We say that G is non-spreading if such v and w exist with the
additional properties

I v takes only the values 0 and 1;
I the sum of the values of w divides |Ω|.

Then G is spreading otherwise.



Spreading groups

Arnold and Steinberg showed that QI-groups have the
property we noted earlier to approach the Černý conjecture.
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A hierarchy of properties

A spreading group if separating. If Γ and ∆ witness the
non-separating property of G, their characteristic functions
witness the non-spreading property.

Hence we have the following hierarchy of properties of
transitive permutation groups, listing in order of increasing
strength:

primitive, basic, synchronizing, separating, spreading, QI,
2-set transitive, 2-transitive.

We currently have no example of a group which is spreading
but not QI. However, all the other inclusions are strict.
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Černý again

Proposition

Let G be a spreading permutation group on Ω. Then, for any map
f : Ω→ Ω which is not a permutation, there exist elements
g1, . . . , gn−2 ∈ G such that fg1fg2 · · · fgn−2f is a constant function.

“Spreading” is the right conjecture to make this work.

If G is spreading and we can show that g1, . . . , gn−2 have
average length at most n− 1 in terms of a given generating set
for G, then we have established an instance of the Černý
conjecture.
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Some open problems

I Determine the QI permutation groups.

I Is there a permutation group which is spreading but not
QI? (It is known that no affine group can have this
property.) In particular, which classical groups (if any) are
spreading?

I Determine the spreading permutation groups.
I Determine whether permutation groups in various

families such as the symmetric group Sn acting on k-sets or
uniform partitions are synchronizing or separating.(It is
known that Sn on k-sets is always non-spreading; the same
is true for Sn on uniform partitions if the Hadamard
conjecture is true.)

I Decide whether there exist parallelisms of projective
spaces, and ovoids, spreads, and partitions into ovoids in
classical polar spaces.
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