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My first reading matter in Oxford

Peter M. Neumann, Leonard L. Scott and Olaf
Tamaschke, Primitive permutation groups of de-
gree 3p, unpublished manuscript.

The group PSL(2, 19) acts as a primitive permu-
tation group on 57 points.

The stabiliser of a point is isomorphic to
PSL(2, 5). It has orbits of sizes 1, 6, 20, 30, and is
2-transitive on the orbit of size 6.

Orbital graphs
We construct a graph of valency 6 on 57 vertices

by joining each point α to the points in the Gα-orbit
of size 6.
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The automorphism group of the graph is transi-
tive on paths of length 2. So there are no triangles,
and the ends of the paths of length 2 starting at α

form a single Gα-orbit of size 6 · 5/k for some k.
Clearly k = 1.

Triangle-free graphs with a lot of symmetry will
appear very often in this talk!

The Higman–Sims group

A better example is the Higman–Sims group.
This is a primitive permutation group on 100

points. The point stabiliser is the Mathieu group
M22, having orbits of sizes 1, 22 and 77, and acts
3-transitively on its orbit of size 22.

Note that 77 = 22 · 21/6, so two points at dis-
tance 2 in the orbital graph of valency 22 have six
common neighbours.

The Higman–Sims group acts transitively on 3-
claws, on 4-cycles, and on paths of length 3 not
contained in 4-cycles.

(The graph was constructed earlier by Dale Mes-
ner, who never thought to look at its automor-
phism group. The group was constructed in a dif-
ferent action by Graham Higman.)

Designs
Take a vertex of the Higman–Sims graph.

Call its neighbours points and its non-neighbours
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blocks; a point is incident with a block if they are
adjacent in the graph. The structure D satisfies

• there are 22 points;

• each block is incident with 6 points;

• any 3 points are incident with a unique block.

In other words, it is a 3-(22, 6, 1) design, the fa-
mous Witt design. (This is how Higman and Sims
constructed the graph!)

Note that, if β is a point of the design, then the
number of points different from β and the num-
ber of blocks incident with β are both 21. In other
words, D is an extension of a symmetric design
(the projective plane of order 4).

Cameron’s Theorem

Theorem 1. If a 3-(v, k, λ) design is an extension of a
symmetric 2-design then one of the following holds:

• v = 4(λ + 1), k = 2(λ + 1) (Hadamard design);

• v = (λ + 1)(λ2 + 5λ + 5), k = (λ + 1)(λ + 2);

• v = 112, k = 12, λ = 1 (extension of projective
plane of order 10);

• v = 496, k = 40, λ = 3.

This is “Cameron’s Theorem” in the book Design
Theory by Hughes and Piper.

The only new thing we know now is that there
is no projective plane of order 10 (Lam et al.).

Fun with permutation groups
Livingstone and Wagner showed that a (t + 1)-

set transitive permutation group of degree n ≥
2t + 1 is t-set transitive.

I showed that such a group is primitive on t-sets,
with known exceptions (the most interesting being
the Mathieu group M24 with t = 4).

The proof makes a long detour. First, a coun-
terexample preserves a parallelism of the t-subsets
of {1, . . . , n}. From this one constructs a symmet-
ric triangle-free graph which is locally like a cube.

Then one shows that it is a quotient of a cube by
a subspace of GF(2)n. This subspace turns out to
be an extension of a perfect (t− 1)-error-correcting
code; the theorem of van Lint and Tietäväinen
identifies the code and hence the group.

The Cameron–Kantor Theorem

In the late 1970s, Bill Kantor and I proved a con-
jecture of Marshall Hall:

Theorem 2. A 2-transitive subgroup of PΓL(n, q) ei-
ther contains PSL(n, q) or is A7 inside PSL(4, 2) ∼=
A8.

The proof used a lot of nice geometry, includ-
ing spreads in projective space and generalised
polygons (for which the Feit–Higman theorem ap-
plies).

But this kind of fun was soon to come to an end!

CFSG

In 1980, the Classification of Finite Simple
Groups was announced. The proof was admit-
tedly incomplete (though I think nobody expected
it would take a quarter of a century to finish it).

But people started using it right away. It has
very powerful consequences for the theory of fi-
nite permutation groups, some of which appeared
in my most cited paper in 1981.

In particular, all 2-transitive groups were now
“known” modulo CFSG, so proving theorems like
those on the last two slides would no longer bring
promotion and pay!
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A new direction

Livingstone and Wagner had shown that a finite
permutation group of degree n ≥ 2t + 1 which is
(t + 1)-set transitive is t-set transitive, and is actu-
ally t-transitive if t ≥ 5.

John McDermott visited Oxford in the 1970s and
provoked me into thinking about an infinite ver-
sion of this result.

Theorem 3. Let G be an infinite permutation group
which is t-set transitive for all natural numbers t. Then
either

• G is t-transitive for all natural numbers t; or

• there is a linear or circular order preserved or re-
versed by G.

An infinite HS-like graph

At the British Combinatorial Conference in Lon-
don in 1977, I talked about (among other things)
the Higman–Sims graph.

The next time the Conference was held in Lon-
don, in 1987, I talked about a countably infinite
graph with strikingly similar properties. This
graph H was discovered by Ward Henson and
characterised by Robert Woodrow.

• H is triangle-free;

• every finite triangle-free graph is embeddable
in H;

• the automorphism group of H is transitive on
induced subgraphs of any given isomorphism
type (that is, H is homogeneous).

Woodrow showed that, with some trivial excep-
tions, the first and third properties characterise H.

The “random graph”

In fact, there is an even more interesting count-
able graph R, characterised by Erdős and Rényi
and constructed by Rado.

• every finite graph is embeddable in R;

• the automorphism group of H is transitive on
induced subgraphs of any given isomorphism
type (that is, H is homogeneous).

Erdős and Rényi showed:

Theorem 4. If a countable random graph is chosen by
selecting edges independently with probability 1

2 from
all pairs of vertices, the resulting graph is isomorphic to
R with probability 1.

In other words, R is the countable random graph.

Cyclic automorphisms
Henson showed that both the graphs R and H

have cyclic automorphisms (permuting all vertices
in a single cycle).

Since R is the random graph, we’d like to use
random methods to prove this.

A graph with a cyclic automorphism is a Cayley
graph for Z, say Cay(Z, S∪ (−S)) for some set S of
positive integers; in other words, the vertex set is
Z, and we join x and y if and only if |x − y| ∈ S.
The cyclic shift x 7→ x + 1 is an automorphism.

Theorem 5. Choose S at random by including positive
integers independently with probability 1

2 . Then, with
probability 1, Cay(Z, S ∪ (−S)) ∼= R.

In other words, R is the random Cayley graph
for Z.

Cayley graphs and B-groups
More generally, Ken Johnson and I showed:

Theorem 6. Let X be a countable group with the prop-
erty that X cannot be written as the union of finitely
many translates of square root sets and a finite set.
Then, with probability 1, a random Cayley graph for
X is isomorphic to R.
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A B-group is a group X with the property that
any primitive group G which contains X act-
ing regularly is 2-transitive. Burnside and Schur
showed that an cyclic group of prime power, non-
prime order is a B-group.

Problem 7. Is there a countable B-group?

Corollary 8. A countable group satisfying the condi-
tions of the theorem above is not a B-group.

Cyclic automorphisms of H
let S be a set of positive integers. Then

Cay(Z, S ∪ (−S)) is triangle-free if and only if S
is sum-free, that is, x, y ∈ S ⇒ x + y /∈ S.

Call a sum-free set S sf-universal if Cay(Z, S ∪
(−S)) ∼= H. This can be phrased otherwise: any
pattern of membership in S of an interval in N,
which is not obviously excluded, occurs in S.

Theorem 9. Almost every sum-free set (in the sense of
Baire category) is sf-universal.

So H has many cyclic automorphisms.

Combinatorial number theory

Van der Waerden’s theorem states that, if N is
partitioned into finitely many classes, then some
class contains arbitrarily long arithmetic progres-
sions.

Szemerédi proved a “density” version of this
theorem: a set of natural numbers which does not
contain arbitrarily long arithmetic progressions
must have density zero.

Schur’s theorem states that, if N is partitioned
into finitely many classes, then some class is not
sum-free.

There is no density version of Schur’s theorem.
The odd numbers have density 1

2 and clearly form
a sum-free set.

But what if . . . ?
Maybe there is almost a density version of

Schur’s Theorem.

Problem 10. Prove that a sf-universal set has density
zero.

This would imply that almost all sum-free sets
(in the sense of Baire category) have density zero.

What happens if we use measure instead of cat-
egory?

Random sum-free sets
Choose S by considering the natural numbers in

turn. When considering n, if n = x + y with x, y ∈
S, then n /∈ S; otherwise toss a fair coin to decide.

Experimentally, the density of a large random
sum-free set looks like this:

Sum-free sets

The probability that a random sum-free set con-
sists entirely of odd numbers is non-zero (roughly
0.218 . . . ).

Almost all sum-free sets consisting of odd num-
bers have density 1

4 . This explains the big spike on
the right of the picture.

The next spike comes from sets all of whose el-
ements are congruent to 1 or 4 mod 5, or to 2 or 3
mod 5 (these almost all have density 1

5 . Then come
{1, 4, 7}mod 8 and {3, 4, 5}mod 8, with density 3

16 ;
and so on.
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But that is not all. Neil Calkin and I showed that
the event that 2 is the only even number in a ran-
dom sum-free set has positive (though quite small)
probability. There are other similar sets with posi-
tive probability.

Maybe the density spectrum has a continuous
part???

Erdős number 1

How many sum-free subsets of {1, . . . , n} are
there?

Paul Erdős and I conjectured that the number is
asymptotically ce2n/2 or co2n/2 as n → ∞ through
even or odd values respectively. Moreover, almost
all of these sets either consist of odd numbers, or
contain no member smaller than n/3.

This conjecture was proved by Ben Green, and
independently by Sasha Sapozhenko.

The numbers ce ≈ 6.0 and co ≈ 6.8 are two
of “Cameron’s sum-free set constants” in Steven
Finch’s book Mathematical Constants.

The Urysohn space

In 2000 I lectured about the random graph at the
ECM in Barcelona. Anatoly Vershik came to my
talk. Afterwards he told me about the Urysohn
metric space.

A Polish space is a complete separable metric
space. In a posthumous paper in 1927, Urysohn
proved:

Theorem 11. There is a Polish space U with the prop-
erties

• U is universal (it contains an isometric copy of
every Polish space);

• U is homogeneous (any isometry between finite
subsets of U can be extended to an isometry of the
whole space).

Moreover, a space with these properties is unique up to
isometry.

Metric spaces
A graph of diameter 2 is the same as a metric

space in which the metric takes only the values 1
and 2. The graph R is the unique countable homo-
geneous metric space with these properties.

By the same methods we can construct count-
able universal homogeneous metric spaces with
other sets of values of the metric:

• {1, 2, . . . , d} for any d ≥ 2;

• the positive integers;

• the positive rationals.

In the first two cases we can modify the con-
struction to produce the analogue of Henson’s
graph (i.e. no equilateral triangles with side 1), or
a bipartite graph (all triangles have even perime-
ter).

Problem 12. What are the countable homogeneous
metric spaces?

The Urysohn space
The Urysohn space U can be defined to be the

completion of the countable homogeneous univer-
sal rational metric space. Despite different lan-
guage, this is not so different from Urysohn’s orig-
inal construction.

Vershik showed that “almost all” Polish spaces
are isomorphic to U, in each of two senses. A Pol-
ish space is the completion of a countable metric
space, and the latter can be constructed by adding
points one at a time, so the notions of Baire cate-
gory and measure can both be applied to the prod-
uct space. Now U is residual in the sense of Baire
category, and is the random Polish space for any
of a wide variety of measures on the set of possi-
ble points that can be added at each stage.

Isometries of U

Any isometry of the universal rational metric
space QU can be extended to an isometry of its
completion U.
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There is an isometry σ of QU permuting all its
points in a single cycle (analogous to the cyclic au-
tomorphism of the random graph).

The isometry of U induced by σ has the prop-
erty that all its orbits are dense.

Problem 13. What other countable groups have this
property?

All we know is that the elementary abelian 2-
group has this property but the elementary abelian
3-group does not.

Abelian group structure of U

The closure of 〈σ〉 is an abelian group acting
transitively on U (so U has an abelian group struc-
ture).

There are many such σ, and so the abelian group
structure of U is not canonical.

Problem 14. What isomorphism types of abelian
groups can occur as the closure of 〈σ〉?

The closure of the countable elementary abelian
2-group with dense orbits is an elementary abelian
2-group acting transitively on U.
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