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Chromatic roots

A proper colouring of a graph G is a function from the vertices
of G to a set of q colours with the property that adjacent vertices
receive different colours.

The chromatic polynomial PG(q) of G is the function whose
value at the positive integer q is the number of proper
colourings of G with q colours. It is a monic polynomial in q
with integer coefficients, whose degree is the number of
vertices of G.

A chromatic root is a complex number α which is a root of some
chromatic polynomial.
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Integer chromatic roots

An integer m is a root of PG(q) = 0 if and only if the chromatic
number of G (the smallest number of colours required for a
proper colouring of G) is greater than m.

Hence every non-negative integer is a chromatic root. (For example,
the complete graph Km+1 cannot be coloured with m colours.)

On the other hand, no negative integer is a chromatic root.
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Real chromatic roots
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I There are no negative chromatic roots,

none in the interval
(0, 1), and none in the interval (1, 32

27 ].
I Chromatic roots are dense in the interval [ 32

27 , ∞).

The non-trivial parts of this theorem are due to Bill Jackson and
Carsten Thomassen.
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Complex chromatic roots

For some time it was thought that chromatic roots must have
non-negative real part. This is true for graphs with fewer than
ten vertices.

But Alan Sokal showed:

Theorem
Complex chromatic roots are dense in the complex plane.
This is connected with the Yang–Lee theory of phase
transitions.
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Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.

The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices. Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication. (Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.
The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices. Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication. (Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.
The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices.

Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication. (Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.
The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices. Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication. (Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.
The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices. Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication. (Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.
The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices. Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication.

(Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, I

We first observe that any chromatic root is an algebraic integer.
The main question is, which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices
to G, joined to one another and to all existing vertices. Then

PG+Kn(q) = q(q− 1) · · · (q− n + 1)PG(q− n).

We conclude that if α is a chromatic root, then so is α + n, for any
natural number n.

However, the set of chromatic roots is far from being a
semiring; it is not closed under either addition or
multiplication. (Consider α + α and αα, where α is non-real and
close to the origin.)



Algebraic properties, II

We were led to make two conjectures, as follows.

Conjecture (The α + n conjecture)

Let α be an algebraic integer. Then there exists a natural number n
such that α + n is a chromatic root.

Conjecture (The nα conjecture)

Let α be a chromatic root. Then nα is a chromatic root for any natural
number n.

If the α + n conjecture is true, we can ask, for given α, what is the
smallest n for which α + n is a chromatic root?
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An example

The golden ratio α = (
√

5− 1)/2 is not a chromatic root, as it
lies in (0, 1).

Also, α + 1 and α + 2 are not chromatic roots since their
algebraic conjugates are negative or in (0, 1). However, there
are graphs (e.g. the truncated icosahedron) which have
chromatic roots very close to α + 2, the so-called “golden root”.

We do not know whether α + 3 is a chromatic root or not.

However, α + 4 is a chromatic root (the smallest such graph has
eight vertices), and hence so is α + n for any natural number
n ≥ 4.
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Quadratic roots

Theorem
Let α be an integer in a quadratic number field. Then there is a
natural number n such that α + n is a quadratic root.

If α is irrational, then the set {α + n : n ∈ Z} is the set of all
quadratic integers with given discriminant. So it is enough to
show that, for any non-square d congruent to 0 or 1 mod 4,
there is a quadratic integer with discriminant d which is a
chromatic root.

I will sketch the ideas behind the proof of this and partial
results for higher-degree algebraic integers.
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Rings of cliques

A ring of cliques is the graph R(a1, . . . , an) whose vertex set is
the union of n + 1 complete subgraphs of sizes 1, a1, . . . , an,
where the vertices of each clique are joined to those of the
cliques immediately preceding or following it mod n + 1.

Theorem (Read)

The chromatic polynomial of R(a1, . . . , an) is a product of linear
factors and the polynomial

1
q

(
n

∏
i=1

(q− ai)−
n

∏
i=1

(−ai)

)
.

We call this the interesting factor.
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Examples

I If ai = 1 for all i (so that the graph is an (n + 1)-cycle), the
interesting factor is
((q− 1)n − (−1)n)/q = (xn − (−1)n)/(x + 1), where
x = q− 1. Its roots are 2nth roots of unity which are not nth
roots (for n odd), or nth roots (for n even). In particular, if n
is prime, this factor is irreducible and its Galois group is
cyclic of order n− 1.

I If n = 3, the interesting factor of R(1, 1, 5) is q2 − 7q + 11,
with roots (7±

√
5)/2. This is the eight-vertex graph

promised earlier.
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Quadratic integers

For n = 3, the interesting factor of R(a, b, c) is
x2 − (a + b + c)x + (ab + bc + ca). The discriminant of this
quadratic is (a + b + c)2 − 4(ab + bc + ca).

It takes but a little ingenuity to show that this discriminant
takes all possible values congruent to 0 or 1 mod 4.

For n = 4, we have a four-parameter family of cubics for the
interesting factors. Are these enough to prove the α + n
conjecture for cubic integers? (We have a long list of cubics
obtained from this construction but don’t seem to have hit
everything!)
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A higher-dimensional family

Let G be a graph whose vertex set is the union of two cliques, of
sizes n and m. For i = 1, . . . , m, let Fi be the set of neighbours in
the first clique of the ith vertex of the second. We may assume
without loss of generality that the union of all the sets Fi is the
whole n-clique, and that their intersection is empty.

The chromatic polynomial can be computed by
inclusion-exclusion in terms of the sizes of the Fi and their
intersections.

If m = 2, |F1| = a and |F2| = b, we have a ring of cliques
R(1, a, b).

For m = 3, we get a six-parameter family of cubics as the
“interesting factors”. We have not been able to find suitable
specialisations to prove the α + n conjecture using this family.
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A remark on the nα conjecture

The only small piece of evidence is the following. If α is a root
of the interesting factor of R(a1, . . . , am), then for any natural
number n, nα is a root of the interesting factor of
R(na1, . . . , nam).

However, this does not generalise to arbitrary chromatic roots.

Problem
Is there a graph-theoretic construction G 7→ F(G, n) such that, if α is
a chromatic root of G, then nα is a chromatic root of F(G, n)?
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Galois groups

A weaker form of our conjecture (modulo the Inverse Galois
Problem(!)) would assert:

Conjecture

Every finite permutation group of degree n is the Galois group of an
extension of Q generated by a chromatic root.

This conjecture is amenable to computation. We computed the
Galois groups of many of the interesting factors of rings of
cliques R(a1, . . . , an). Note that we can assume without loss that
gcd(a1, . . . , an) = 1.

Note also that, if n is prime, then the interesting factor is nth
cyclotomic polynomial in x = q− 1, so that the cyclic groups of
prime order all occur as Galois groups.

The next table shows what happens for small values.
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Small rings of cliques

For given n, we test all non-decreasing n-tuples (a1, . . . , an) of
positive integers with gcd 1 and an ≤ l. G is the Galois group, in
case the polynomial is irreducible. Sn and An are the symmetric
and alternating groups of degree n, Cn the cyclic group of order
n, V4 the Klein group of order 4, Dn the dihedral group of order
2n, and o denotes the wreath product of permutation groups.

I n = 4, l = 20: 774 reducible, 3 with G = A3, 7215 with
G = S3.

I n = 5, l = 20: 586 reducible, 6 with C4, 5 with V4, 360 with
D4, 6 with A4, and 39250 times S4. So every transitive
permutation group of degree up to 4 occurs as a Galois
group.

I n = 6, l = 30: 23228 reducible, one dihedral group of
order 10, two Frobenius groups of order 20, three A5,
1555851 times S5. In this case, we are missing C5.
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More small rings

n l red Sn−1 Other
7 15 734 113401 C6, S2 o S3(6),

S3 o S2(52), PGL(2, 5)(5)
8 10 1132 22630
9 8 152 11054 S4 o S2(3)

10 8 1061 18089
11 6 29 4248 C10
12 6 592 5492
13 6 33 8415 C12
14 6 884 10609
15 6 307 15045
16 6 1366 18813

There are 16 transitive groups of degree 6. We have only found
five of them as Galois groups.
Not overwhelming support for our conjecture!
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Other families of graphs

We have done similar analysis on other families of graphs,
including

I complete bipartite graphs;
I “theta-graphs” (one of these consists of p paths of length s

with the endpoints identified) – these were the graphs
used by Sokal to show that chromatic roots are dense in
the complex plane;

I small graphs.
The results are similar but there is no time to present them here.
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Further speculation

The Galois group of a “random” polynomial is typically the
symmetric group of its degree.

The chromatic polynomial of a random graph cannot be
irreducible, since it will have many linear factors q−m, for m
up to the chromatic number. Bollobás showed that the
chromatic number is almost surely close to n/(2 log2 n).

Wild speculation

The chromatic polynomial of a random graph is almost surely a
product of linear factors and one irreducible factor whose Galois
group is the symmetric group of its degree.
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