
Sets, Logic and Categories
Solutions to Exercises: Chapter 4

4.1 Let G denote the set of group axioms given at the end of Section 4.1. Show that
G` σ, whereσ is the sentence

((∀x)(µ(x,x) = ε)→ (∀x)(∀y)(µ(x,y) = µ(y,x)).

Hint: It is probably easier to prove this in the ‘language of mathematics’ first and
translate the proof into the first-order language. The point is that mathematical proofs
can be written in this language, even though they are somewhat clumsy; and, in this
form, checking their correctness is a purely mechanical procedure.

The mathematical proof works as follows: suppose thatx2 = 1 for all x∈G (this is
shorthand forµ(x,x) = ε). Then, for allx andy, we havexyxy= 1. Multiplying on the
left by x and on the right byy, using the associative law and the facts thatxx= yy= 1,
we obtainyx= xy. Your job is to translate this proof into first-order language.

David Turtle, a student who took the course in 1998–9, constructed a solution to this
problem. His proof contained over seven hundred lines. I do not propose to reproduce
it here.

4.2 For each of the cases (a) fields, (b) totally ordered sets, (c) graphs, give a first-
order language and a set of sentences which axiomatizes the relevant class of struc-
tures.
Can this be done for (d) topological spaces, (e) well-ordered sets?

(a) There are several ways to proceed. Perhaps the simplest is to use two binary
function symbols (addition and multiplication) and two constant symbols (zero and
one). The axioms can be copied more-or-less straightforwardly from any algebra text.
For example, the additive and multiplicative inverse axioms are

• (∀x)(∃y)(x+y = 0),

• (∀x)(¬(x = 0))→ ((∃y)(x ·y = 1)).

We must also include the axiom(¬(0 = 1)), since a one-element structure satisfies all
the other axioms but is not a field.

Alternative approaches are not so straightforward.
It is possible to do without the constant symbols, since they can be ‘defined’ by

existential axioms:

• (∃e)(∀x)(e+x = x),

• (∃ f )(∀x)( f ·x = x).

But then it is more cumbersome to refer to these elements in the inverse axioms and
the axiom(¬(0 = 1)). For example, the last could be written

((∀x)((x+e= x)∧ (x · f = x))→ (¬(e= f )))
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(quantified overeand f if we want our axioms to be sentences)
It is also possible to include unary functions for additive and multiplicative inverses.

The statements of the axioms are easy to write. The only problem is the aesthetic
one: the multiplicative inverse of zero is completely arbitrary, so either we leave it
unspecified (and so have many non-isomorphic fields where there should only be one),
or we define it arbitrarily (say, byi(0) = 0) in a way that has nothing to do with the
algebra). This type of problem is addressed by ‘many-sorted logic’.

Note finally that the choice of axioms has some implications for ‘elementary’ field
theory. In the first approach, the uniqueness of zero and one is built into the axioms,
whereas in the second approach, we have to prove that they are unique and use this
uniqueness to justify introducing the notation 0 and 1. Arguably, the second appoach
teaches us more. Similar remarks apply to the uniqueness of additive and multiplicative
inverses.

(b) As explained in Chapter 1, this can be done in two ways, giving rise to strict and
non-strict orders respectively. The axioms are given informally there. For non-strict
orders, there is one binary relationR, and the axioms are

• (∀x)R(x,x);

• (∀x)(∀y)(((R(x,y)∧R(y,x))→ (x = y));

• (∀x)(∀y)(∀z)(((R(x,y)∧R(y,z))→ (R(x,z));

• (∀x)(∀y)((R(x,y)∨R(y,x)).

(c) For a simple graph, take a single binary relation (adjacency) satisfying the two
axioms of irreflexivity and symmeetry:

• (∀x)(¬R(x,x));

• (∀x)(∀y)((R(x,y)→ R(y,x)).

If we want more general graphs possibly containing loops (edges which join a
vertex to itself), simply delete the first axiom. Graphs with multiple edges are more
difficult. If we never consider graphs with more thanα edges between two vertices, we
take one binary relationRβ for each cardinal numberβ not exceedingα, and require that
each pair of vertices satisfies exactly one of these relations (and that all are symetric).
Note thatR0 is ‘non-adjacency’.

But to be completely general, a different approach is needed. The we must take
vertices and edges as elements of the structure (distinguishing them by a unary relation
V which picks out the vertices). Now in place of adjacency, we can take an ‘incidence’
relationI between vertices and edges, satisfying

• (I(x,y)→ (V(x)∧ (¬V(y)))),

• ((I(x,w)∧ I(y,w)∧ I(z,w))→ ((¬(x = y))∨ (¬(x = z))∨ (¬(y = z)))).

(I have omitted unniversal quantifiers for clarity.) The second axiom says that an edge
is incident with at most two vertices; we could if desired exclude loops by requiring
that an edge is incident with at least two vertices.)
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(d) A toplogical space requires the specification of a family of open sets, with no
restriction on their cardinalities. This cannot be done by the first-order apparatus.

However, before we conclude that the answer is ‘no’, we should consider that finite
topological spaces can be determined by first-order axioms. On a finite topological
space, letR be the binary relation such thatR(x,y) holds if every open set which con-
tainsx also containsy. Then

(a)R is reflexive and transitive;

(b) R determines the topology: a setU is open if and only ifx∈U andR(x,y) imply
y∈U ;

(c) every reflexive and transitive relation gives rise to a topology by the prescription
of (b).

So more is required to answer the question. This can be done by showing that the
number of topologies on a set of infinite cardinalityα is 22α

, whereas the number of
first-order structures over a fixed languageL is only 2α if α> |L|.

(e) The definition of well-ordered set seems to require quantification over subsets
(‘every non-empty subset contains a least element’). As in (d), more is required to
show that there is no clever way around the problem.

A proof can be based on the Compactnss Theorem, discussed in the next chapter. It
states that, ifΣ is a set of first-order sentences, thenΣ is satisfiable (in some first-order
structure) if and only if every finite subset ofΣ is satisfiable.

Now we argue by contradiction. LetΣ0 be a set of first-order axioms for well-
ordered sets. Extend the language by adding a countable setc0,c1,c2, . . . of new con-
stant symbols, and letΣ1 consist of the formulaeci < c j for each pairi, j of natural
numbers withj < i (note the reversal!), andΣ = Σ0∪Σ1.

We claim that every finite subset ofΣ is satisfiable. Take a countable well-ordered
set (say,ω). All the sentences inΣ0 are satisfied, by assumption. Given a finite subset
of Σ1, there are only finitely many of theci which are referred to in these sentences; if
cn is the one with largest index, then we may interpretci asn− i for i ≤ n, and all the
sentences are valid. The interpretation of the remaining constants is arbitrary.

By the Compactness Theorem,Σ is satisfiable. But a model forΣ would be a well-
ordered set contining an infinite descending sequence, a contradiction.

4.3 Can you suggest any reasons why algebra textbooks insist on the closure law as
one of the axioms for a group, instead of allowing it to be implicit in the statement
that the group operation is a binary function?

Two possible reasons:

(a) It has always been done this way. Authors copy one another so as not to confuse
students with different definitions.

(b) In elementary group theory, one of the most important concepts is that of a sub-
group, a subset which forms a group in its own right (with the same composition
law). If the closure law is not explicitly included, it is easy to forget that it has to
be checked!
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My own experience of teaching group theory suggests that (b) is the more powerful
argument.

There is more to be said. Before the modern definition of a group was invented (in
about 1850), a group was a setG of transformations of a setX (that is, bijective func-
tions fromX to X) satisfying closure under composition and inversion and containing
the identity transformation. Closure cannot be omitted in this definition!
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