Sets, Logic and Categories
Solutions to Exercises: Chapter 3

3.1 This exercise gives a decision procedure for Hofstadter's MU-system (a ry

le for

deciding whether or not a formula is a theorem of the system). Prove that a fgrmula

is a theorem of the system if and only if it has the properties
e its first letter isM, and all other letters areor U;

e the number of occurrences b not divisible by 3.

An easy induction shows that the theorems of the MU-system satisfy the first con-

dition, and we proved in Section 3.1 that they also satisfy the second condition.

So letg be a formula which satisfies these two conditions. xeindy be the
numbers of occurrences bandU in @. Let ¢ be the smallest power of two such that
2¢ > x+ 3y and X is congruent tx+ 3y mod 3. (By assumption+ 3y is not divisible

by 3; and powers of 2 are alternately congruent to 1 and 2 mod 3.)
Now start withMI. Applying Rule 2k times givesM followed by X Is. If x+ 3y
is odd, apply Rule 1 to add . Now apply Rule 3 repeatedly to replace the

last

2% — (x+3y) Is by (2K — (x+3y))/3 Us, and Rule 4 to delete thebks (and the extra
one ifx+ 3y is odd). This leave® followed byx+ 3y Is, from which Rule 3 applied

y times in the appropriate places yielgs

3.2 (a) Define a binary propositional connectiyavith the following truth table:

?lU|(0ly)
TIT F
TIF| T
FIT| T
FIF| T

Prove that any propositional formula is logically equivalent to one using only
connective.

(b) Define another binary connective with this property.

two have this property.

this

(c) Show that, of the sixteen possible binary connectives which could be defined, only

(a) It is enough to express negation and implication in terms of the connéctive

Clearly (—p) is equivalent tdp | p), while (p— q) is equivalent tdp | (—q)).
(b) Definel by the truth table

QY| (eTY)
T|T F
TIF F
FIT F
FIF| T




The proof is similar.

(c) Any binary connectives which suffices to express all truth functions must sat-
isfy (ToT) = F: if not, then any function involvings has the property that, if all its
arguments ar@&, then the value ig. Similarly, it must satisf{F oF) = T. This leaves
just four possibilities.

If (ToF)=Tand(FoT)=F,then(poq) is the same as-q), and a truth function
expressed using depends only on its last argument. Similar reasoning deals with the
case wherfToF)=Fand(FoT)=T.

The two remaining possibilities ajeand?.

3.3 (a) Show that(—y) — (Y — 0)) is a theorem.

(b) Show that, if bothp and (—) can be deduced froU {(—¢)}, theng can be
deduced fronk.

(c) Prove the following theorems:
() (@) = ) = (@) = (~W)) = 9));
(i) (=(-9) — @);
(i) (o= W) = ((-W) = (-9)))
(iv) (@— W) = ((=9) = W) = Y)):
V) (W= ((=8) = (=(b—8)))).

You may have found this exercise very difficult. It includes all the theorems that
we needed in the proof of the Completeness Theorem; so, once it is proved, it is never
again necessary to devise a proof in propositional logic; simply compute a truth table.

The arguments given are skeletons of formal proofs.

(a) From the sef(—W)}, we can deduce

((=6) = (-W))

(using (Al)), and then
(V—8)

(using (A3)). The result now follows from the Deduction Theorem. This result tells
us that, if we can deduce boghand(—y), then we can deduce any formula (from the
same hypotheses).

(b) Suppose that botlp and (—) have been deduced fromJ {(—@)}. Leta be
any instance of an axiom. By (a), we can ded(ee) from the same hypotheses.
Hence, by the deduction theorem, fréwe can deducé(—¢) — (—a)), and hence
also(a — @) (by (A3)). Sincea is an axiom, we can deduge

(c) (i) From (—@), ((—=@) — W) and ((—@) — (—W)), we can deduce botly and

(—W). By (b), we can deduce from the second and third hypotheses. The result now
follows from two applications of the Deduction Theorem.



(i) From (—¢) and(—(—@)) we can immediately deduce a proposition and its nega-
tion. By (b), we can deduogfrom (—(—¢)). Now use the Deduction Theorem.

(iii) From (=(—@)), (¢— @) and(—), we obtain and its negation (using (ii)). So
from the second and third hypotheses we(get). Now use the Deduction Theorem.

(iv) Using (iii), from (¢— W) and((—@) — Y) we get((—W) — (—@)) and((-P) —
@), and henca (using (i)). Now use the Deduction Theorem.

(v) Fromy we get((¢ — 8) — 8), and hencé(—6) — (=(¢ — 8))). Finish as
usual.

3.4 Let@,...,@, be formulae. Consider the ‘pseudo-formula’

(@LV@ V-V ).

Itis possible to insert brackets to make this a well-formed formula in several different
ways; for example, ifi = 3,

(V@) V) or (eV (V@)

Show that, however the brackets are inserted, the truth value of the formula fpr any
valuation is the same. (This justifies our cavalier misuse of brackets in the prpof of
the Four-Colour Theorem.)

The proof is by induction on. Forn =1 andn = 2, there is nothing to prove, and
the casen = 3 is thedistributive law which is easily verified by means of a truth table
argument.

So suppose that > 3, and assume that the result holds for all smaller values. We
take two bracketings ofgr vV @V --- vV @), and look at the position of the next-to-
outermost brackets: say

(@V@RV- V@)V (ri1V @2V V),
(@V@RV--VEs)V (Osi1V @2V V).

If r =s, then by the induction hypothesis, the first bracketed expressions on the two
lines are equivalent, and so are the second bracketed expressions; so the whole formu-
lae are equivalent.

Suppose that # s; without loss of generality, suppose thiat s. By the induction
hypothesis, we can re-bracket inside the left and right brackets in each line. Doing so,
we can arrange that the next level of brackets are as follows in the two expressions:

(VEeV--- V@) V(@ V@2V VE) V(Gs1VPsi2V - Vn))),
(V@RV--- V)V (@1 V@2V V@)V (Gt VsV Vh)),

Now, by the induction hypothesis, each of the three bracketed terms in the first line is
equivalent to the corresponding term in the second. By the distributive law, the two
formulae are equivalent.

Remark:This argument shows that, in any system where the distributive law holds
(for example, a group or a ring), the value of anfold composition is independent of
the bracketing.



3.5 The following exercise outlines a proof that the Propositional Compactness The-
orem, for any set of propositional variables, implies that every set can be totally
ordered. Suppose that Propositional Compactness holds in genera{. Heet set
and take a family{ pxy : X,y € X,x # y} of propositional variables. Now l&t consist
of the following propositional formulae:

o ((PxyV Pyx) A (= (Pxy A Pyx))), for all distinctx,y € X;
e ((Pxy/\ Pyz) — Pxz), for all distinctx,y,z € X.

Show that any finite subset afis satisfiable. Show that a valuatiersatisfying>
gives rise to a total ordering of by the rule thak < yif and only if v(pxy) = T.

Consider a valuation satisfying>. Define a relation< on X by the rule thak <y
if and only if x # y andv(pyy) = T. This relation is clearly irreflexive, antisymmetric,
and transitive, and satisfies trichotomy; so it is a total order. Conversely, given any
total order onX, if we definev by the rule thav(pxy) = T if and only if x <y, thenv
satisfies.

Now take any finite subséiy of Z, and letXp be the set

{x € X pyyis contained in some formula fy}.

ThenX; is finite, and so can be totally ordered; thus there is a valuation which satisfies
>y. By the Compactness Theoremis satisfiable, and we are done.

3.6 A graphconsists of a seX of verticeswith an irreflexive and symmetric relation
R of adjacencyon X. A colouring of a graph with a se€ of colours is a functiorf

from X to C with the property that, ik andy are adjacent vertices, thdiix) = f(y).

A subgraphof the graph(X,R) is a graph(Y, S), whereY C X andS= RN Y?.

Use the Compactness Theorem to prove thdXiR) is a graph whose vertex s¥t
is well-ordered, and if every finite subgraph of the gr@hR) has a colouring with
a given finite se€ of colours, ther(X,R) has a colouring with this set of colours.

We follow the proof of the infinite four-colour theorem given in the text. Take a
set{pxc: X € X,c € C} of Boolean variables; this set is well-ordered siices well-
ordered and is finite (Exercise 2.1). Now consider the following &etf formulae:

e Foreachx € X, the (rather complicated) formula asserting that exactly one of the
variables{ py : ¢ € C} takes the valug.

o (—(pxc/APyc)), forall (x,y) € Randc e C.

Now Z is satisfiable if and only if the graph has a colouring with theGef colours.

So assume that every finite subgraph has a colouring with th@ gktolours. Then
every finite subseXy of X is satisfiable (since the subgraph consisting of all vertices
x € X such thatp, ¢ occurs inZg for somec € C is colourable). By the Compactness
Theorem is satisfiable, amd we are done.

| 3.7 Prove Theorem 3.11. |




This involves a lot of work with little reward. | will not give a solution here, but
will provide one on request.

3.8 LetP ={ps,...,pn} be a finite set of propositional variablas(P) the corre-
sponding set of valuations, so th&t(P)| = 2". LetV(P) = {vo,...,Von_1}.

(a) Consider the séfl of formulae which can be built using the connectiveand«
only. For any formulap € M, let Xo(¢) be the number of occurrences-efn ¢, and
i (@) be the number of occurrences gfin @fori=1,...,n. Prove that a formula
@< M is a tautology if and only ik (@) is even fori = 0,...,n. Prove also that tw
formulaeg, Y € M are logically equivalent if and only if

X(@) =x(p) (mod?2

O

fori=0,...,n.

(b) Prove that, ifo € M is not a tautology or a contradiction, thef) = T for
exactly half of the possible valuationsz V(P). Deduce that, ifp, y € M and is
not equivalent tapor (—¢), thenv(¢) = v(y) for half the possible valuations= V (P).

(c) Suppose that a transmitter A wants to serdl bits of information(ey, .. .,e,) to
a receiver B, over a noisy channel which will introduce some errors in the message.
A chooses a formulg € M with x(9) =g (mod 2, and sends the sequence 61 2
valuesv; (@) for v € V(P). Show that, provided that fewer than one-quarter of| the
symbols are transmitted incorrectly, B can recover the information sent by A.

Represent the truth valudsandF by 0 and 1 respectively, and Igtbe the value
0 or 1 corresponding te(p;). (These values are taken in the binary figl{(2).) If we
let f (@) be the value corresponding ¥¢p), then we find that

(o) =f@+1  f(@e=w)=f(@+f(W).

Hence by induction
f(@) =ao+ary1+--- +anyn,

wherea; = x;(@). Now (a) follows, sincepis a tautology if and only iff (¢) = 0.

(b) If @is not a tautology buky(@) is even, therf (¢) defines a linear map from
(Z/(2))"t0Z/(2). Its kernel is a subspace of codimension one, and so contains half of
the vectors. Adding 1 (that is, negating) has the effect of interchanging the values 0 and
1 taken by a formula, and again half the valuations will map it to zero. Now, given
andy, the valuations for whichv(@) = v() are just those for which((¢— p)) =T,
which are half of all the valuations unlegss equivalent tap or ().

(c) Suppose thaterrors occur. Then the received sequence differs from the correct
one insplaces. Also, since any two transmitted sequences differ in at [&alspces,
the received sequence differs from any other sequence in at ledst 2 places. So,
if s< 2"2, we can recognise the transmitted sequence as the unique one nearest to the
received sequence.



3.9 The formal system for propositional logic given in this chapter has infinjtely

many axioms. Consider the following formal system, which has three axioms and
two rules of inference. I andy are formulae ang is a propositional variable, let
@[W/ p] denote the formula obtained frogby substitutingp for every occurrence of

p.
Theaxiomsare:

(A1) (pr— (P2 — P1))
(A2) ((pr — (P2 — p3)) — ((PL = P2) = (P1— P3)))
(A3) (((—p1) = (=p2)) — (P2 — P1))
Therules of inferencare:
(MP) Modus PonensFrom@and (@ — W), infer .
(S) Substitution From, infer @[y/ p.

Prove that the Soundness and Completeness Theorem holds for this formal system.

Proof of soundness: Each of the axioms is a tautology: these axioms are particular
cases of the axioms we used in the text. We also observed that Modus Ponens preserved
truth. If @is a tautology, it is true regardless of the truth valu@cdnd hencew/p| is
true regardless of the truth value whighakes under a given valuation. So Substitution
also preserves tautologies.

Proof of completeness: From the three given axioms and the substitution rule, we
immediately deduce the (infinitely many) axioms given in the text; so the proof of
completeness given there applies.

3.10 Prove the Soundness and Completeness Theorem for the folloatngal de-
duction systemthere are no axioms, and three rules of inference:

e Modus Ponensfrom @and (@ — ), infer y;
e Contradiction from ((—@) — W) and((—@) — (—W)), infer @;

e Deduction Theoremif Y has been inferred frolU { @}, then infer(@ — ) from
2.

The proof of soundness (that the three rules preserve truth) is a simple truth table
argument. For example, consider the Contradiction Rule. We have to show that, if a
valuationv satisfiesv(((—@) — ) = v(((—@) — (—W))) =T, thenv(p) = T. If the
conclusion were false, then eithgi) or v((—W)) would beF; andv((—@)) =T, so
the hypothesis is contradicted.

To prove completeness, it is enough to prove axioms (A1)—(A3). Here is the
proof of (A3); the other two are similar but easier. From the hypothégesp) —
(=), v, (—@)} we can infery. By the Deduction Theorem (which is a basic rule
here, not a metatheorem!), from the $ét—¢@) — (—W)), W}, we infer ((—-@) — W);
and also, of coursé(—@) — (—y)). Now, by the Contradiction Rule, from the same



hypotheses, we can infgr Two applications of the Deduction Theorem complete the
proof.

3.11 Is there a sound and complete formal system for propositional logic with no
rules of inference?

There is a formal system in which all tautologies are theorems: we simply take all
tautologies as axioms. (Since tautologies are recognisable by the mechanical truth table
method, this does indeed satisfy our definition of a formal system.) However, there is
no such formal system in which all logical consequences afe provable fronz, for
all setsx of formulae: without rules of inference we can prove nothing except axioms
and members af.

3.12 Logic is often regarded as the foundation on which mathematics is built} Are
we justified, then, in using induction on the length of the formpia the proof of
the Deduction Theorem?

This is not a question with a definite answer. My own view, as | hope the book
makes clear, is that logic is a branch of mathematics, and the use of proof by induction
in logic is no less valid than in, say, group theory or functional analysis. But you may
wish to read the views of the various ‘schools’ of philosophy of mathematics and find
out what their views would be. (The question was asked of me by a philosophy student
in a lecture on propositional logic.)



