
Sets, Logic and Categories
Solutions to Exercises: Chapter 3

3.1 This exercise gives a decision procedure for Hofstadter’s MU-system (a rule for
deciding whether or not a formula is a theorem of the system). Prove that a formula
is a theorem of the system if and only if it has the properties

• its first letter isM, and all other letters areI or U;

• the number of occurrences ofI is not divisible by 3.

An easy induction shows that the theorems of the MU-system satisfy the first con-
dition, and we proved in Section 3.1 that they also satisfy the second condition.

So let φ be a formula which satisfies these two conditions. Letx and y be the
numbers of occurrences ofI andU in φ. Let 2k be the smallest power of two such that
2k > x+3y and 2k is congruent tox+3y mod 3. (By assumption,x+3y is not divisible
by 3; and powers of 2 are alternately congruent to 1 and 2 mod 3.)

Now start withMI. Applying Rule 2k times givesM followed by 2k Is. If x+ 3y
is odd, apply Rule 1 to add aU. Now apply Rule 3 repeatedly to replace the last
2k− (x+ 3y) Is by (2k− (x+ 3y))/3 Us, and Rule 4 to delete theseUs (and the extra
one if x+ 3y is odd). This leavesM followed byx+ 3y Is, from which Rule 3 applied
y times in the appropriate places yieldsφ.

3.2 (a) Define a binary propositional connective↓ with the following truth table:

φ ψ (φ ↓ ψ)
T T F
T F T
F T T
F F T

.

Prove that any propositional formula is logically equivalent to one using only this
connective.

(b) Define another binary connective with this property.

(c) Show that, of the sixteen possible binary connectives which could be defined, only
two have this property.

(a) It is enough to express negation and implication in terms of the connective↓.
Clearly(¬p) is equivalent to(p ↓ p), while (p→ q) is equivalent to(p ↓ (¬q)).

(b) Define↑ by the truth table

φ ψ (φ ↑ ψ)
T T F
T F F
F T F
F F T

.
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The proof is similar.

(c) Any binary connectiveσ which suffices to express all truth functions must sat-
isfy (TσT) = F: if not, then any function involvingσ has the property that, if all its
arguments areT, then the value isT. Similarly, it must satisfy(FσF) = T. This leaves
just four possibilities.

If (TσF) = T and(FσT) = F, then(pσq) is the same as(¬q), and a truth function
expressed usingσ depends only on its last argument. Similar reasoning deals with the
case when(TσF) = F and(FσT) = T.

The two remaining possibilities are↓ and↑.

3.3 (a) Show that((¬ψ)→ (ψ→ θ)) is a theorem.

(b) Show that, if bothψ and(¬ψ) can be deduced fromΣ∪{(¬φ)}, thenφ can be
deduced fromΣ.

(c) Prove the following theorems:

(i) (((¬φ)→ ψ)→ (((¬φ)→ (¬ψ))→ φ));

(ii) ((¬(¬φ))→ φ);

(iii) ((φ→ ψ)→ ((¬ψ)→ (¬φ)))

(iv) ((φ→ ψ)→ (((¬φ)→ ψ)→ ψ)):

(v) (ψ→ ((¬θ)→ (¬(ψ→ θ)))).

You may have found this exercise very difficult. It includes all the theorems that
we needed in the proof of the Completeness Theorem; so, once it is proved, it is never
again necessary to devise a proof in propositional logic; simply compute a truth table.

The arguments given are skeletons of formal proofs.

(a) From the set{(¬ψ)}, we can deduce

((¬θ)→ (¬ψ))

(using (A1)), and then
(ψ→ θ)

(using (A3)). The result now follows from the Deduction Theorem. This result tells
us that, if we can deduce bothψ and(¬ψ), then we can deduce any formula (from the
same hypotheses).

(b) Suppose that bothψ and(¬ψ) have been deduced fromΣ∪{(¬φ)}. Let α be
any instance of an axiom. By (a), we can deduce(¬α) from the same hypotheses.
Hence, by the deduction theorem, fromΣ we can deduce((¬φ)→ (¬α)), and hence
also(α→ φ) (by (A3)). Sinceα is an axiom, we can deduceφ.

(c) (i) From (¬φ), ((¬φ)→ ψ) and ((¬φ)→ (¬ψ)), we can deduce bothψ and
(¬ψ). By (b), we can deduceφ from the second and third hypotheses. The result now
follows from two applications of the Deduction Theorem.
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(ii) From (¬φ) and(¬(¬φ)) we can immediately deduce a proposition and its nega-
tion. By (b), we can deduceφ from (¬(¬φ)). Now use the Deduction Theorem.

(iii) From (¬(¬φ)), (φ→ψ) and(¬ψ), we obtainψ and its negation (using (ii)). So
from the second and third hypotheses we get(¬φ). Now use the Deduction Theorem.

(iv) Using (iii), from (φ→ψ) and((¬φ)→ψ) we get((¬ψ)→ (¬φ)) and((¬ψ)→
φ), and henceψ (using (i)). Now use the Deduction Theorem.

(v) From ψ we get((ψ→ θ)→ θ), and hence((¬θ)→ (¬(ψ→ θ))). Finish as
usual.

3.4 Let φ1, . . . ,φn be formulae. Consider the ‘pseudo-formula’

(φ1∨φ2∨·· ·∨φn).

It is possible to insert brackets to make this a well-formed formula in several different
ways; for example, ifn = 3,

((φ1∨φ2)∨φ3) or (φ1∨ (φ2∨φ3)).

Show that, however the brackets are inserted, the truth value of the formula for any
valuation is the same. (This justifies our cavalier misuse of brackets in the proof of
the Four-Colour Theorem.)

The proof is by induction onn. Forn = 1 andn = 2, there is nothing to prove, and
the casen = 3 is thedistributive law, which is easily verified by means of a truth table
argument.

So suppose thatn> 3, and assume that the result holds for all smaller values. We
take two bracketings of(φ1∨ φ2∨ ·· · ∨ φn), and look at the position of the next-to-
outermost brackets: say

((φ1∨φ2∨·· ·∨φr)∨ (φr+1∨φr+2∨·· ·∨φn)),
((φ1∨φ2∨·· ·∨φs)∨ (φs+1∨φs+2∨·· ·∨φn)).

If r = s, then by the induction hypothesis, the first bracketed expressions on the two
lines are equivalent, and so are the second bracketed expressions; so the whole formu-
lae are equivalent.

Suppose thatr 6= s; without loss of generality, suppose thatr < s. By the induction
hypothesis, we can re-bracket inside the left and right brackets in each line. Doing so,
we can arrange that the next level of brackets are as follows in the two expressions:

((φ1∨φ2∨·· ·∨φr)∨ ((φr+1∨φr+2∨·· ·∨φs)∨ (φs+1∨φs+2∨·· ·∨φn))),
(((φ1∨φ2∨·· ·∨φr)∨ (φr+1∨φr+2∨·· ·∨φs))∨ (φs+1∨φs+2∨·· ·∨φn)),

Now, by the induction hypothesis, each of the three bracketed terms in the first line is
equivalent to the corresponding term in the second. By the distributive law, the two
formulae are equivalent.

Remark:This argument shows that, in any system where the distributive law holds
(for example, a group or a ring), the value of anyn-fold composition is independent of
the bracketing.
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3.5 The following exercise outlines a proof that the Propositional Compactness The-
orem, for any set of propositional variables, implies that every set can be totally
ordered. Suppose that Propositional Compactness holds in general. LetX be a set,
and take a family{pxy : x,y∈ X,x 6= y} of propositional variables. Now letΣ consist
of the following propositional formulae:

• ((pxy∨ pyx)∧ (¬(pxy∧ pyx))), for all distinctx,y∈ X;

• ((pxy∧ pyz)→ pxz), for all distinctx,y,z∈ X.

Show that any finite subset ofΣ is satisfiable. Show that a valuationv satisfyingΣ
gives rise to a total ordering ofX by the rule thatx< y if and only if v(pxy) = T.

Consider a valuationv satisfyingΣ. Define a relation< onX by the rule thatx< y
if and only if x 6= y andv(pxy) = T. This relation is clearly irreflexive, antisymmetric,
and transitive, and satisfies trichotomy; so it is a total order. Conversely, given any
total order onX, if we definev by the rule thatv(pxy) = T if and only if x< y, thenv
satisfiesΣ.

Now take any finite subsetΣ0 of Σ, and letX0 be the set

{x∈ X : pxy is contained in some formula inΣ0}.

ThenX0 is finite, and so can be totally ordered; thus there is a valuation which satisfies
Σ0. By the Compactness Theorem,Σ is satisfiable, and we are done.

3.6 A graphconsists of a setX of verticeswith an irreflexive and symmetric relation
R of adjacencyon X. A colouringof a graph with a setC of colours is a functionf
from X to C with the property that, ifx andy are adjacent vertices, thenf (x) 6= f (y).
A subgraphof the graph(X,R) is a graph(Y,S), whereY ⊆ X andS= R∩Y2.
Use the Compactness Theorem to prove that, if(X,R) is a graph whose vertex setX
is well-ordered, and if every finite subgraph of the graph(X,R) has a colouring with
a given finite setC of colours, then(X,R) has a colouring with this set of colours.

We follow the proof of the infinite four-colour theorem given in the text. Take a
set{px,c : x∈ X,c∈C} of Boolean variables; this set is well-ordered sinceX is well-
ordered andC is finite (Exercise 2.1). Now consider the following setΣ of formulae:

• For eachx∈X, the (rather complicated) formula asserting that exactly one of the
variables{px,c : c∈C} takes the valueT.

• (¬(px,c∧ py,c)), for all (x,y) ∈ Randc∈C.

Now Σ is satisfiable if and only if the graph has a colouring with the setC of colours.
So assume that every finite subgraph has a colouring with the setC of colours. Then
every finite subsetΣ0 of Σ is satisfiable (since the subgraph consisting of all vertices
x∈ X such thatpx,c occurs inΣ0 for somec∈C is colourable). By the Compactness
Theorem,Σ is satisfiable, amd we are done.

3.7 Prove Theorem 3.11.
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This involves a lot of work with little reward. I will not give a solution here, but
will provide one on request.

3.8 Let P = {p1, . . . , pn} be a finite set of propositional variables,V(P) the corre-
sponding set of valuations, so that|V(P)|= 2n. LetV(P) = {v0, . . . ,v2n−1}.
(a) Consider the setM of formulae which can be built using the connectives¬ and↔
only. For any formulaφ ∈M, let x0(φ) be the number of occurrences of¬ in φ, and
xi(φ) be the number of occurrences ofpi in φ for i = 1, . . . ,n. Prove that a formula
φ ∈M is a tautology if and only ifxi(φ) is even fori = 0, . . . ,n. Prove also that two
formulaeφ,ψ ∈M are logically equivalent if and only if

xi(φ)≡ xi(ψ) (mod 2)

for i = 0, . . . ,n.

(b) Prove that, ifφ ∈ M is not a tautology or a contradiction, thenv(φ) = T for
exactly half of the possible valuationsv∈ V(P). Deduce that, ifφ,ψ ∈ M andψ is
not equivalent toφ or (¬φ), thenv(φ) = v(ψ) for half the possible valuationsv∈V(P).
(c) Suppose that a transmitter A wants to sendn+1 bits of information(e0, . . . ,en) to
a receiver B, over a noisy channel which will introduce some errors in the message.
A chooses a formulaφ ∈M with xi(φ) ≡ ei (mod 2), and sends the sequence of 2n

valuesvi(φ) for vi ∈ V(P). Show that, provided that fewer than one-quarter of the
symbols are transmitted incorrectly, B can recover the information sent by A.

Represent the truth valuesT andF by 0 and 1 respectively, and letyi be the value
0 or 1 corresponding tov(pi). (These values are taken in the binary fieldZ/(2).) If we
let f (φ) be the value corresponding tov(φ), then we find that

f ((¬φ)) = f (φ)+1, f ((φ↔ ψ)) = f (φ)+ f (ψ).

Hence by induction
f (φ) = a0 +a1y1 + · · ·+anyn,

whereai = xi(φ). Now (a) follows, sinceφ is a tautology if and only iff (φ) = 0.

(b) If φ is not a tautology butx0(φ) is even, thenf (φ) defines a linear map from
(Z/(2))n toZ/(2). Its kernel is a subspace of codimension one, and so contains half of
the vectors. Adding 1 (that is, negating) has the effect of interchanging the values 0 and
1 taken by a formula, and again half the valuations will map it to zero. Now, givenφ
andψ, the valuationsv for whichv(φ) = v(ψ) are just those for whichv((φ↔ψ)) = T,
which are half of all the valuations unlessψ is equivalent toφ or (¬φ).

(c) Suppose thatserrors occur. Then the received sequence differs from the correct
one insplaces. Also, since any two transmitted sequences differ in at least 2n−1 places,
the received sequence differs from any other sequence in at least 2n−1− s places. So,
if s< 2n−2, we can recognise the transmitted sequence as the unique one nearest to the
received sequence.
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3.9 The formal system for propositional logic given in this chapter has infinitely
many axioms. Consider the following formal system, which has three axioms and
two rules of inference. Ifφ andψ are formulae andp is a propositional variable, let
φ[ψ/p] denote the formula obtained fromφ by substitutingψ for every occurrence of
p.
Theaxiomsare:

(A1) (p1→ (p2→ p1))

(A2) ((p1→ (p2→ p3))→ ((p1→ p2)→ (p1→ p3)))

(A3) (((¬p1)→ (¬p2))→ (p2→ p1))

Therules of inferenceare:

(MP) Modus Ponens: Fromφ and(φ→ ψ), infer ψ.

(S) Substitution: Fromφ, infer φ[ψ/p].

Prove that the Soundness and Completeness Theorem holds for this formal system.

Proof of soundness: Each of the axioms is a tautology: these axioms are particular
cases of the axioms we used in the text. We also observed that Modus Ponens preserved
truth. If φ is a tautology, it is true regardless of the truth value ofp, and henceφ[ψ/p] is
true regardless of the truth value whichψ takes under a given valuation. So Substitution
also preserves tautologies.

Proof of completeness: From the three given axioms and the substitution rule, we
immediately deduce the (infinitely many) axioms given in the text; so the proof of
completeness given there applies.

3.10 Prove the Soundness and Completeness Theorem for the followingnatural de-
duction system: there are no axioms, and three rules of inference:

• Modus Ponens: from φ and(φ→ ψ), infer ψ;

• Contradiction: from ((¬φ)→ ψ) and((¬φ)→ (¬ψ)), infer φ;

• Deduction Theorem: if ψ has been inferred fromΣ∪{φ}, then infer(φ→ψ) from
Σ.

The proof of soundness (that the three rules preserve truth) is a simple truth table
argument. For example, consider the Contradiction Rule. We have to show that, if a
valuationv satisfiesv(((¬φ)→ ψ)) = v(((¬φ)→ (¬ψ))) = T, thenv(φ) = T. If the
conclusion were false, then eitherv(ψ) or v((¬ψ)) would beF; andv((¬φ)) = T, so
the hypothesis is contradicted.

To prove completeness, it is enough to prove axioms (A1)–(A3). Here is the
proof of (A3); the other two are similar but easier. From the hypotheses{((¬φ)→
(¬ψ)),ψ,(¬φ)} we can inferψ. By the Deduction Theorem (which is a basic rule
here, not a metatheorem!), from the set{((¬φ)→ (¬ψ)),ψ}, we infer ((¬φ)→ ψ);
and also, of course,((¬φ)→ (¬ψ)). Now, by the Contradiction Rule, from the same
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hypotheses, we can inferφ. Two applications of the Deduction Theorem complete the
proof.

3.11 Is there a sound and complete formal system for propositional logic with no
rules of inference?

There is a formal system in which all tautologies are theorems: we simply take all
tautologies as axioms. (Since tautologies are recognisable by the mechanical truth table
method, this does indeed satisfy our definition of a formal system.) However, there is
no such formal system in which all logical consequences ofΣ are provable fromΣ, for
all setsΣ of formulae: without rules of inference we can prove nothing except axioms
and members ofΣ.

3.12 Logic is often regarded as the foundation on which mathematics is built. Are
we justified, then, in using induction on the length of the formulaφ in the proof of
the Deduction Theorem?

This is not a question with a definite answer. My own view, as I hope the book
makes clear, is that logic is a branch of mathematics, and the use of proof by induction
in logic is no less valid than in, say, group theory or functional analysis. But you may
wish to read the views of the various ‘schools’ of philosophy of mathematics and find
out what their views would be. (The question was asked of me by a philosophy student
in a lecture on propositional logic.)
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