

On designs for fields and designs for computers

Hervé Monod, INRA, Unité MIA de Jouy-en-Josas

- Introduction: a short story
- Designs for field experiments
- Designs for computer simulations
- Not a conclusion

Notations

INRA : Institut National de la Recherche Agronomique

MIA : Mathématique et Informatique Appliquées

Jouy-en-Josas : small city 20 km south-west of Paris

Notations

INRA : Institut National de la Recherche Agronomique

MIA : Mathématique et Informatique Appliquées

Jouy-en-Josas : small city 20 km south-west of Paris

RAB : my "fairy godmother" in statistics

Introduction : ^a short history

Period 1 : Designs for field (and lab) experiments

- 1987 : first encounter with RAB at Rothamsted Experimental Station
- 1991 : my PhD and recruitment at INRA
- 1991 1997 : regular mutual visits, 8 joint papers
- $1997 2003$: applications to variety trials

Other members of the "French connection": André Kobilinsky, Jean-Marc Azaïs, Pierre Druilhet, Olivier David Period 2 : Designs for computer experiments (sensitivity analysis) 2001− : collaborations on crop and gene flow modelling ²⁰⁰³− increasing reliance on "complex models" at INRA 2004 : SAMO (Sensitivity Analysis of Model Output), Santa Fe \implies need for more statistical tools to better assess model behaviour

Designs for fields

or . . . manipulating ^a bit of Rosemary's toolbox

- combinatorics and algebra
- factorial structures
- permutation groups
- real-life motivation

Definitions

Definition 1 Mutually Orthogonal Latin squares of order ⁿ (⁼ 5):

Definition 2 Fractional factorial design of **resolution** 3 or **Orthogonal Array** of **strength** 2

Definition 3 a **field**

Example 1 : Factorial structure for non-factorial designs

Pseudofactors useful to design and analyse

- square lattices
- lattice squares
- rectangular lattices
- some partially balanced incomplete block designs

• . . .

Monod and Bailey, 1992

Extension: affine-resolvable designs

Problem: resolvable design for 12 treatments in blocks of size 6 ?

Solution: by using ^a fractional factorial design for 2-level factors

Placket and Burman, 1948

Model: $Y = X\tau + Z\beta + \varepsilon$

Information matrix: $M = X'pr^{\perp}(Z)X$

Properties: Schur-optimality (w.r.t. the eigenvalues of M)

Bailey, Monod and Morgan, 1995

Example 2 : Factorial structure and neighbour-balance

Problem: intercropping experiment

Each plot : 1 tree species (factor 1) associated with 1 crop species (factor 2) Possible interferences from trees on neighbour plots

Can associations be neighbour-balanced with respect to tree varieties?

One solution (among others): mutually orthogonal Latin squares

 $number = tree species (4)$ $colour = crop$ species (2)

 \implies Tree-balanced designs

$$
Model: Y = Z\beta + X\tau + L\lambda + R\rho + \varepsilon
$$

Properties:

- orthogonality and optimality
- valid randomization

Monod and Bailey, 1992; Monod and Bailey, 1993

Example 3 : semi-Latin squares

Complete blocks by rows and by columns for 8 treatments?

Mut. Orthog. Latin squares \Longrightarrow optimal doubly resolvable designs

Bailey, 1988, 1992;

Bailey and Monod, 2001 (semi-Latin rectangles)

Applications to real field experiments

Control of inter-plot competition

• workshop on competition in variety trials

 \implies no neighbour-balanced designs but ...

adoption of systematic guard rows around harvested rows (maize, cereals, oilseed rape)

Control of between-plot heterogeneity

- increasing use of incomplete block designs in variety trials
- \implies adoption of semi-Latin squares (maize, cereals, oilseed rape)

ITCF semi-Latin square with 32 varieties of winter barley

Designs for sensitivity analysis

Saltelli, Chang and Scott 2000;

Santner, Williams and Notz 2003;

Fang, Li and Sudjianto 2006

Example: modelling gene flow over ^a landscape

Main objectives of sensitivity analysis

- identify the most influent input factors
- quantify the contribution of each input factor to output variability
- better understand/check model behaviour

Example: Calculation of sensitivity indices

Main−effect and total Sums of Squares

Example: Analysis and representation of output variability

Main steps of sensitivity analysis

Comparison with classical designs

Similarities

- temptation for one-factor-at-a-time
- analysis of variance approach
- sparsity principle
	- **–** high-order interactions −→ smaller (negligible) effects
	- **–** few factors have ^a non-negligible effect

Differences

- large diversity of factor and possible run numbers
- no need for replication and blocking (if model is deterministic)
- sparsity principle
	- **–** emphasis on dense exploration of the intervals of variation

Variance-based approaches

Sobol decomposition of the model function $\hat{Y} = f(x)$:

Input domain : $\Omega^n = \{ x \mid 0 \le x_i \le 1 ; i = 1...n \}$

$$
f(x_1,..,x_s) = f_0 + \sum_{i=1}^n f_i(x_i) + \sum_{0 \le i,j \le n} f_{i,j}(x_i, x_j) + ... + f_{1,..,n}(x_1,..,x_n),
$$

with

$$
f_0 = \int_{\Omega^n} f(x) dx
$$

\n
$$
f_1(x_1) = \int_{\Omega^{n-1}} f(x_1, x_2, \dots, x_n) dx_2 \dots dx_n - f_0
$$

\netc.

Orthogonality \Rightarrow Variance decomposition of \hat{Y}

$$
D = \int_{\Omega^n} f^2(x) dx - f_0^2.
$$

$$
D_1 = \int_0^1 f_1^2(x_1) dx_1
$$

$$
\mathsf{etc.}
$$

Sensitivity indices on Y :

$$
S_{i_1,\ldots,i_k} = \frac{D_{i_1,\ldots,i_k}}{D} =
$$

$$
TS_i = 1 - \frac{D_{\sim i}}{D}.
$$

Design issues

or . . . trying to manipulate ^a toolbox without Rosemary!

- "factorial design $+$ anova" useful but also
- Latin hypercube (McKay et al 1979)
- good lattices (different meaning)
- "quasi-replications" (Morris designs, "winding stairs")
- random sampling and scrambling
- \bullet + quasi-Monte Carlo methods, uniform designs, optimality, discrepancy, . . .

Latin hypercube

 $\textsf{\textbf{Latin}}$ hypercube of order $s=25$ for n factors : one sample in each sub-interval of size $1/s$

Advantages :

• good exploration of each input factor

Drawback :

• no control on the marginals of order >1

More structured Latin hypercubes

Motivations: better control of marginals of order > 1

Example 1: OA-based Latin hypercubes of order 5 (Tang, 1993)

Properties:

one sample in each sub-interval of size $1/s$ one sample in each $1/s \times 1/s$ square, for any two factors Example 2: (0, m, ^s)-net (Niederreiter, 1992); scrambled version (Owen, 1995)

Properties:

one sample in each sub-interval of size $(1/s)^m$

one sample in each $1/s \times ... \times 1/s$ hypercube, for any m factors

one sample in each hyperrectangle of volume $(1/s)^m$, for any $k \le m$ factors

Applications to complex models

Just starting

- working groups at INRA (Mexico)
- much motivation from modellers
- Groupement De Recherche with wide area of applications (MascotNum)