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RAB AND ME

• One joint publication

• “One hundred years of the design of experiments on and off

the pages of Biometrika”. Bka 88, 53–97

• Perhaps this talk should be

• “Randomization, Replication, Response Surfaces and Rose-

mary”

• We found that the subject of the “Design of Experiments”

pretty much fell into two disjoint halves, corresponding to our

own interests

• Here are some examples:



AGRICULTURAL FIELD TRIAL

• Objective

Compare 113 varieties of wheat

• Experimental Variables

4 replicates of each variety divided between blocks

(fields, farms)

• Response Variables

Yield ↑
Rust resistance ↑
Straw ?

Resistance to flattening ↑



PHOTOGRAPHIC INDUSTRY

• Objective

Optimise sensitisation conditions for an emulsion (i.e. speed)

• Experimental Variables

Sensitisor I, Sensitisor II

Dye

Reaction Time

• Response Variables

Sensitivity ↑
Contrast ↑
Fog ↓
Graininess ↓



CLINICAL TRIALS

• Objective

Compare several treatments (drugs, therapies)

• Experimental Variables

Treatment allocation - A, B, C, ...

Concomitant variables/ prognostic factors

History of

Measurements on



 patient

• Response Variables

Physical or chemical measurements

“Quality of life”



CONSUMER DURABLE: FRIDGE, CAR,

CAMERA,..

• Objective

Make a “better” product

• Experimental Variables

Conditions of use have also to be included

Need “robustness” to abuse



TWO KINDS OF EXPERIMENT

‘Agricultural’ experiment:

• Physically distinct units;

• Complicated error structure associated with units, plots and blocks;

• Discrete treatments with no or little structure.

Industrial experiments are often also of this type.

‘Industrial’ experiment:

• Unit, for example, just another portion of chemical reagents, with no
specific properties;

• Simple error structure;

• Complicated treatment structure - maybe the setting of several con-
tinuous variables.



FISHERIAN PRINCIPLES

‘Agricultural’ experiment (Fisher was at Rothamsted)

• Replication

• Randomization

• Local control

• Ideas of

– Treatment Structure

– Block Structure

‘Industrial’ experiment

• Gossett (1917) and later. Days as blocks in laboratory testing

• Box (1974 in BHH and earlier). “Block what you can and randomize
what you cannot”



DESIGNING AN EXPERIMENT

At least three phases:

• (a) choice of treatments;

• (b) choice of experimental units; and

• (c) deciding which treatment to apply to which experimental unit.

The relative importance of the three phases depends on the application.
Agriculture and medicine: insufficient experimental units which are all

alike, so some sort of blocking must be considered: divide experimental
units into groups likely to be homogeneous.

In an industrial experiment a block might be a batch of raw material.
As soon as there is structure, phase (c) becomes important. In this

context the ‘design’ is the function allocating treatments to units.



DESIGNING AN EXPERIMENT 2

(c). Allocation of treatments to units.

Agricultural Experiment. 113 treatments × 4 replicates.

• With large blocks replicate 113 treatments at each of four sites. These
may be very different - clay, sand, wet, marshy,....

• Analyse with additive block effects

• Blocks are usually too small for complete replication

• Design so that, if possible, each treatment occurs in the same number
of blocks - balance

• Allocate treatments at random, subject to design. If design has treat-
ments A, B, C, ... and you have treatments 1, 2, 3, ... Randomize
mapping from numbers to alphabet.

• Again analyse with additive block effects.



DESIGNING AN EXPERIMENT 3

(c). Allocation of treatments to units.

Industrial Experiment. Treatments are sensitisor, dye, reaction time

• Units are just another batch of chemical

• But there may be technical analytical variables: development condi-
tions, time between manufacture and photographic testing, batches of
material, shift of operators, ...

• Brien and Bailey (2006) “Multiple Randomizations”

• Should be allowed for in design as extra factors

• Randomize order of experiments if possible to avoid confounding with
‘lurking’ variables



COMMON STRUCTURE

Concomitant Random
variables error ε

↓
z ↘ Model Response

y = f(x, z, β) + ε y

x ↗

Explanatory/
Control/
Design





variables

• Experimental Design Choose x



ANALYSIS

• Second-order assumptions:

yi = f(xi, β) + εi

with
E(εi) = 0 var(εi) = σ2

lead to least squares

• Additional normality of εi gives distribution of estimates and test sta-
tistics

• Randomization Analysis

– BHH have yields of 11 tomato plants (?) six on treatment A,
five on B. Calculate ȳA − ȳB for the data. Also for all 11!/5!6!
permutations and compare observed value with this reference dis-
tribution

– Not much used for linear models, but may be for clinical trials.



SMITH 1918

A remarkable paper, 35 years ahead of its time.

K. Smith. “On the standard deviations of adjusted and interpolated
values of an observed polynomial function and its constants and the guid-
ance they give towards a proper choice of the distribution of observations”.
Bka 12, 1–85.

• Polynomials up to order six in one variable

• Design region X : −1 ≤ x ≤ 1

• Additive errors of constant variance, so least squares giving predictions
ŷ(x)

• “G-optimum” designs minimizing maximum, for x ∈ X , of var{ŷ(x)}
• Also considered non-constant variance

• Showed the designs were optimum



SMITH, PEARSON AND FISHER

• Kirstine Smith (b. 1878) was a Danish pupil of Hald who worked with
K. Pearson

• Her 1916 paper “On the “best” values of the constants in frequency
distributions” upset Fisher - he thought parameter estimates shouldn’t
depend on grouping: ML rather than minimum chi-squared

• Pearson twice refused Fisher’s paper “I must keep the little space I
have in Biometrika free from controversy”

• Fisher never again (?) published in Biometrika

• In 1924 Smith became a school teacher in Denmark - “because she felt
a need to work more closely with people”



OPTIMUM EXPERIMENTAL DESIGN 1

• Unified Theory providing

• Numerical Methods for design construction and comparison

• Modern theory developed by Kiefer



JACK KIEFER

• Kiefer (1959). “Optimum experimental designs (with discussion)”
JRSSB

• Proposer of the vote of thanks (Tocher) “I think Dr Kiefer has shown
conclusively just how useful mathematics is in the theory of design...”

• No comment from Box!

• Kiefer in reply “I must admit being somewhat disappointed to see
that such a large proportion of the comments have been engendered
by a careless reading of my paper...”

• David Cox arranged a conference in 1974 at Imperial College at which
Kiefer was the main speaker

• Papers published in Biometrika 1975



OPTIMUM EXPERIMENTAL DESIGN 2

Requires:

• A model

Many models are linear

y = βTf(x) + ε

f(x) is a p× 1 vector of powers and products of x

The errors ε are independent, with variance σ2

In matrix form
E(y) = Fβ

Some models are nonlinear in the parameters

y = 1− e−θx + ε



OPTIMUM EXPERIMENTAL DESIGN 3

Also requires:

• A design region X
With two factors x1 and x2 the square

−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1

• The scaling is for convenience: for temperature could be:

−1; 20oC ; 1; 40oC



Figure 1: A square design region
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OPTIMUM EXPERIMENTAL DESIGN 4

An experimental design is a set of n points in X
• Design Measure

ξ =





x1 x2 . . . xm

w1 w2 . . . wm





• The design has

– Support points x1 . . . xm

– design weights w1 . . . wm

• Exact design
wi = ri/n,

ri # replicates at xi

• Continuous/ Approximate Design ξ is a measure over the design
points. Removes dependence of design on n.



Figure 2: A random design. Any good?
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INFERENCE ABOUT BETA

• The Least Squares Estimator of β from the design ξ is

β̂ = (F TWF )−1F TWY,

where
W = diag wi

• The 100(1 − α)% Confidence Region for β is the set of values for
which

(β − β̂)TF TWF (β − β̂) ≤ ps2Fp,ν,1−α

• Confidence regions are ellipsoids

• Volume of confidence ellipsoids

∝ |F TWF |−1/2



THE INFORMATION MATRIX

• The Information Matrix F TWF is often written

F TWF = M(ξ)

The information matrix depends on the design

• D-optimum designs

max |F TWF | = det M(ξ∗)

They minimise the volumes of the confidence region

• Other alphabetical criteria maximize other functions of M(ξ)

• Often maximise ξ numerically to find ξ∗



THE PREDICTED RESPONSE

• Prediction at x is
ŷ(x) = β̂Tf(x)

• The variance of prediction is

var{ŷ(x)} = nσ2fT (x)M−1(ξ)f(x)

• The standardised variance is

d(x, ξ) = fT (x)M−1(ξ)f(x)



GENERAL EQUIVALENCE THEOREM 1

– Links

var(β̂) var{ŷ(x)}

parameters predictions

– Provides Algorithm

Kiefer and Wolfowitz (1959)
(with a check on convergence)



GENERAL EQUIVALENCE THEOREM 2

• Definition
ξ∗ maximises det M(ξ)

• Minimax Equivalence ξ∗ minimises

max x ∈ X d(x, ξ)

•
max x ∈ X d(x, ξ∗) = p

So we can check any purported optimum design

• Maximum is at points of support of ξ∗



SECOND-ORDER POLYNOMIAL

• Model
E(y) = β0 + β1x + β2x

2

• Design Region
X x ∈ [−1, 1]

• Compare Two Designs

Remember - designs are standardized for n



Figure 3: Two designs. Which is better?
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Figure 4: Variances for the two designs
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COMPARISON OF DESIGNS

• Three-Point Design

Clearly D-optimum

max x ∈ X d(x, ξ) = 3

and occurs at design points

• As found by Smith

• Six-Point Design

Not D-optimum

– d(x, ξ) > 3 at x = −1, 1

– < 3 at other 4 points



OPTIMUM EXPERIMENTAL DESIGN 5

Dependence on n

• Can always (?) maximize det M(ξ)

• Exact design - i.e. for particular n may not satisfy General Equiva-
lence Theorem

• What about n = 4 for quadratic model?

– D-optimum design has three points of support, −1, 0 and 1 with
one replicated.

– G-optimum design is symmetric with four points of support



SOME APPLICATIONS



RESPONSE SURFACE DESIGNS 1

• Two Factors

• Model

E(y) = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2

• Design Region
X x ∈ [−1, 1]× [−1, 1]

• There are 6 parameters

• The 32 factorial is often used



Figure 5: The 32 factorial
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RESPONSE SURFACE DESIGNS 2

• 32 factorial has D-efficiency of 97.4%

• D-efficiency

Deff = {det M(ξ)/ det M(ξ∗)}1/p ,

equivalent to number of trials

• 13-point design with replicated corner points:



Figure 6: An almost optimum 13-trial design, with a D-efficiency of virtually 100%
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RESPONSE SURFACE DESIGNS 4

• Constrained regions One real problem is that the design region may
be irregular.

– Photographic experiment

– x1: sensitisor

– x2: speed

– high and low values of both variables may not be possible



Figure 7: Irregular design region with 20 candidate points
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IRREGULAR DESIGN REGION 1

• Model Full second-order

• Support points There are 20 possible sets of conditions for an ex-
periment

• Let n = 20

• Which points are best? Use all 20?



Figure 8: Irregular design region with 20-point design
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IRREGULAR DESIGN REGION 2

• p = 6

• n = 20

• Only 8 support points

• Concentration Designs are typically concentrated on a few sets of
conditions

• Very difficult (impossible ?) to find good design without algorithm



BLOCKING

• Sometimes cannot perform all runs at once, or under same conditions

– Different days, machines, raw material, ...

– Industry as well as agriculture

• Second-order model n=13

– Divide into two blocks

– n1 = 5, n2 = 8, for example



Figure 9: The 13-trial design in blocks of 5 and 8
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RELATED PROBLEMS

• Qualitative and Quantitative Factors

– Quantitative factors, eg. 13-trial second-order design

– Could repeat at each level of qualitative factor

– Number of trials rapidly becomes excessive

– Find optimum design splitting trials over qualitative levels

• Mixture designs

– Constraints
∑

xj = 1, 0 ≤ xj ≤ 1, give unintuitive models

– Simplest design region X is a simplex

– Design region may be irregular



TREATMENT DESIGNS

• Optimum design theory has been illustrated for response surface de-
signs

• Also applies to treatment designs

• Not just D-optimality, but A-, E-, G-, V-, functions of the eigenvalues
of M(ξ).

• Interest is in exact designs - Latin Squares, for example.

• “Universal Optimality”. Can’t do better than this whatever function
of the parameters is of interest. Tends to be restrictive.



PHASE III CLINICAL TRIAL

• Patients arrive sequentially

• Each is immediately given one of t treatments

• Patient i also has a vector of prognostic factors xi

• Main purpose is to find the best treatment

• Subsidiary purpose is to estimate the treatment effect

• Responses on patients before the ith may be available



REQUIREMENTS

Just consider the simplest case of the allocation of two treatments in
the absence of prognostic factors

• The “design” allocates patient i to treatment A or B

• We want to allocate sequentially

• Balance over time - want nA near nB whenever we stop

• Blindedness

• Randomization: “objectivity”, avoidance of conscious or unconscious
biases (Lanarkshire)

• The effect of randomization is slightly to unbalance the trial and in-
crease the variance of the estimated treatment difference



DESIGNS

• Efron’s biased coin. The probabilities of allocating treatment A de-
pend on nA:

nA < nB p

nA = nB 0.5
nA > nB 1− p,

for 0.5 < p ≤ 1

• An alternative is to use a permuted randomized block design of length
8 or 12

• Perhaps only some permutations of block designs should be consid-
ered. (Nelson and Bailey (2003) - Hadamard randomization)

• How to compare designs?



DESIGNS WITH COVARIATES

• Allocation probability depends both on previous allocations and on
covariate vector xn+1.

• Sequential construction of optimum design depends on variances
d(j, xn+1, ξn), j = 1, . . . , t

• ACA JRSSA (2002) suggests a randomized allocation with probability
∝ d(j, xn+1, ξn).

• The ordering of the treatments by d(.) makes generalized Efron schemes
possible.

• Also Bayes’ rules.

• What about permuted randomized blocks?



THIS TALK

• History

• Agricultural and industrial experimentation

• Randomization and randomization analysis

• Smith, Kiefer and optimum design

• Response surfaces and extensions

• No mention of GLM’s

• Nor of nonlinear models (Box and Lucas, 1959 Bka). Pharmaceutical
industry

• Clinical trials and the comparison of designs



BIRTHDAYS

Application of Olkin’s algorithm yields

60 → 16


