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Abstract

With every linear code is associated a permutation group whose cycle
index is the weight enumerator of the code (up to normalisation).

There is a class of permutation groups (IBE group3 which includes
the groups obtained from codes as above. With every IBIS group is associ-
ated a matroid; in the case of a code group, the matroid differs only trivially
from that which arises from the code. In this case, the Tutte polynomial of
the code specialises to the weight enumerator (by Greene’s Theorem), and
hence also to the cycle index. However, in another subclass of IBIS groups,
the base-transitive groupsthe Tutte polynomial can be derived from the
cycle index but notice versa

| speculate that there might be an invariant which generalises both Tutte
polynomial and cycle index.

1 Cycle index

This note contains some remarks on the relations between the cycle index of a per-
mutation group, the weight enumerator of a linear code, and the Tutte polynomial
of a matroid. For more information on permutation groups, codes, and matroids,
see [5, 9, 13] respectively.

Let G be a permutation group on a €t where|Q| = n. For each element
g € G, letci(g) be the number afcycles occurring in the cycle decomposition of



g. Now thecycle indexof G is the polynomialZ(G) in indeterminatesy, ..., s,
given by
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This can be regarded as a multivariate probability generating function for the cycle
structure of a random element &f (chosen from the uniform distribution). In
particular,

Ps(X) =Z(G)(s1 « X,5 « 1 fori > 1)

is the probability generating function for the number of fixed points of a random
element ofG, so that substituting = 0 gives the proportion of derangement$in
(Here and subsequentl¥(G)(s < u;) denotes the result of substitutingfor s
inZ(G).)

Many counting problems related @are solved by specialisations of the cy-
cle index: most notably, the enumeration@forbits on functions fronQ) to a
weighted set is given by the Redfield#a Cycle Index Theorem. Other exam-
ples:

o Z(G)(sy «—x+1,5 «— 1fori > 1)isthe exponential generating function for
the number of5-orbits onk-tuples of distinct points (note that this function
is Pg(x+ 1), compare Bostoet al. [1]);

e Z(G)(s «— X +1) is the ordinary generating function for the number of
orbits of G on k-element subsets @};

o k[(0/0%)Z(G)|(s « 1) is the kth component of thdarker vectorof G,
the number of orbits o6 on the set ok-cycles occurring in its elements
(Gewurz [6]).

2 A group from a linear code

Let C be an[n,k] code over GFq) (a k-dimensional subspace of Gf"). The
weight enumeratoof C is the polynomial

V\b (X 7 Y) — ; anWt(V)YWt(V) ’
ve

where theweightwt(v) of v is the number of non-zero coordinatesvof



We construct a permutation gro@from C as follows: the permutation do-
main Q is the disjoint union of copies of GFq), and a codeword acts by trans-
lating theith copy by itsith coordinate. More formallyQd = GF(q) x {1,...,n},
and the codeword = (vy,...,Vn) acts as the permutation

(X,i) — (X—I—Vi,i).

Now G is isomorphic to the additive group €f (so |G| = |C|), and all the
cycles ofG have length 1 op, wherep is the characteristic of Gg), soZ(G)
involvess; andsp only. Furthermore, we have:

1

Cl
For a zero coordinate mgives rise tag fixed points, and a non-zero coordinate
to q/p cycles of lengtp.

We(X,Y) = Z(G; s« XY9, 5, — YP/9),

3 Symmetrised weight enumerator

There has been a lot of interest recently (arising from [8]) in codes Zvéthe
integers mod 4); that is, additive subgrouppf In place of the weight enumera-
tor, one usually considers tlsgmmetrised weight enumerata#(Z,Y, Z) defined
b
Y (XY, Z) = ZCXHO(V)YnZ(V)ans(V)’
ve
whereng(v), nz(v) andng3(v) are respectively the numbers of coordinatew of
which are 0, 2, or (1 or 3) mod 4.
We can construct a group fromZa-code just as in the linear case, replacing
GF(qg) by Z4. Arguing as above we see that

1
@sc(x,v, Z)=2(G;s1 — XY4 5 — Y12 54— 7).

More generally, lefA, ..., A, be groups of the same order. We can regard a
group code over the alphabels, ..., A, as a subgrou of Ay x --- x A,. Then

the cycle index ofG, suitably normalised, is a kind of symmetrised weight enu-

merator of the form -
X9,
PRN

whereom(g) is the number of coordinates gfwhich have ordem (in the appro-
priate group).



4 Tutte polynomial

With a linear[n,k] codeC we may associate in a canonical way a matidig
on the sef{1,...,n} whose independent sets are the $dts which the columns
(ci :i €1) of agenerator matrix fo€ are linearly independent. Any matrdidi on
the ground sefE has aTutte polynomigla two-variable polynomial of the form

T(M;x,y) = ZE(X— 1)P(E)=P(A) (y _ 1)IAI-P(A)
AC

wherep is the rank function oM.
Greene [7] showed the following theorem:

Theorem 4.1 Let M be the matroid associated with a linear code C. Then the
weight enumerator of C is a specialisation of the Tutte polynomial of M:

We(X,Y) =Y KX = Y)kT (Mc; w, é)

We might ask whether it is possible to associate an analogue of the Tutte poly-
nomial with any permutation group, and if so, what is its relation to the cycle
index. Recent results of Rutherford [12] show that in general this will be very
difficult.

Rutherford associated a three-variable analogue of the Tutte polynomial with
anyZ4-codeC. This polynomial behaves in the expected way with respect to the
analogues of restriction and contraction, and it specialises to the weight enumera-
tors of each of the “elementary divisors” Gf(the two binary code€ mod 2 and
(Cn2z%)/2). However, it does not specialise to the symmetrised weight enumer-
ator ofC; indeed, Rutherford showed that, under reasonable assumptions, there is
no analogue of the Tutte polynomial which does so specialise.

In the next section we describe a class of permutation groups which give rise
to matroids (and hence Tutte polynomials) in a natural way.

5 IBIS groups

Let G be a permutation group dd. A basefor G is a sequence of points 61
whose stabiliser is the identity. It isledundantif no point in the sequence is
fixed by the stabiliser of its predecessors.

Cameron and Fon-Der-Flaass [2] showed:
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Theorem 5.1 The following three conditions on a permutation group are equiva-
lent:

¢ all irredundant bases have the same number of points;
e re-ordering any irredundant base gives an irredundant base;

e the irredundant bases are the bases of a matroid.

A permutation group satisfying these conditions is calle¢tBd8 group(short
for Irredundant Bases of Invariant Size).

For example, any Frobenius group is an IBIS group of rank 2, associated with
the uniform matroid; the general linear and symplectic groups, acting on their
natural vector spaces, are IBIS groups, associated with the vector matroid (defined
by all vectors in the space); the Mathieu grddpy in its natural action is an IBIS
group of rank 7.

The permutation group constructed from[ark] linear code over Gff) is an
IBIS group of degre@q and rankk; a base is a set of sizecontaining one point
from each copy of Gf) corresponding to a set &flinearly independent columns
of a generator matrix. The associated matroid is obtained from the matroid of
the code simply by replacing each element by a sej parallel elements.lIt is
straightforward to obtain the Tutte polynomial of the group matroid from that of
the code matroid andce versausing the following elementary result:

Proposition 5.2 If Mq is obtained from M by replacing each element by q parallel
elements, then

Any semiregular permutation group of degreis an IBIS group. The corre-
sponding matroid consists simply oparallel elements. The cycle index conveys
much more information, for example, the number of orbit$&sadnd the number
of elements of each order i@. (This case is a “generalised repetition code” of
lengthn overG.)

In the rest of the paper, | will use “base” to mean “irredundant base”.



6 Perfect matroid designs

A perfect matroid desigror PMD, is a matroid having the property that the car-
dinality of a flat depends only on its rank. Not very many PMDs are known:
among the geometric matroids, only uniform matroids, truncations of projective
and affine spaces, Steiner systems, and Hall triple systems. See Deza [4] for a
survey.

The following theorem is due to Mphako [11]: | outline the proof.

Theorem 6.1 Let M be a PMD of rank r whose i-flats have cardinalityfor i <r.
The Tutte polynomial of M is determined by the numbegrs.n n;.

Proof It is enough to determine the numbafm,i) of subsets of the domain
which have cardinalityn and ranki for all mandi: for

k n

T(M;x,y) = ; S ami)(x—1)<(y-1™".

Lets(i, j) be the number afflats containing a givefj-flat for j <i. Then

i—1 n—np
)
h=] Ni —Np

s(i,0) (g) - j;a(m,j)s(i,j).

The first equation determines the numbs(isj). The second is a a triangular
system of equations fa(m, j) with diagonal coefficients(i,i) = 1. We see that
thea(m, j) are indeed determined.

S<i7 J) =

The next result is not immmediately related to the topic of this paper, but we
will see an application in the next section. We say that the action of a dgeoup
on a matroidM is flat if the fixed points of any element @& form a flat of the
matroid. Any group has a flat action on the free matroid; any linear group has a
flat action on the vector matroid of its vector space; and any IBIS group has a flat
action on its associated matroid.

Theorem 6.2 Let M be a PMD of rank k on n elements, in which an i-flat has
cardinality n for i = 0...,k (with nc = n). Then there are numbergr,i), for
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0<m<nand0<i <k, depending only ong...,ng, such that the following is
true: If a group G has a flat action on M and hasoxbits on independent i-tuples
and yy, orbits on m-tuples of distinct elements, then

Ym = .ib(m,i)xi

form=0,...,n.

Remarks: 1. In the case of the free matroid, the matfiXm,i)) is the identity.

For the vector matroid, it is the composition of the matrix of Gaussian coefficients

with the matrix of Stirling numbers of the second kind (Cameron and Taylor [3]).
2. The exponential generating function for the numlygrs. .,y is Pe(x+ 1)

(Bostonet al.[1]); so the numbersy, . .., X, determinePs(X).

Proof By the Orbit-Counting Lemma, it suffices to show that such a linear re-
lation holds between the number of linearly independeunples fixed by an ar-
bitrary elemeng € G and the total number afrtuples of distinct elements fixed
by g. Since the fixed points db form a flat, it suffices to establish such a relation
between the numbers of tuples in any flatvbf
So letF be anr-flat. Then
i—1
X = I_L(nr —nj) =X (),
J:
m—-1

Ym = [L(nr—s):Ym(nr),

whereX; andY; are polynomials of degreie It follows immediately that the the-
orem holds form < k, with (b(m,i)) the transition matrix between the two se-
guences of polynomials.

For m > k, let Fn(x) be the unique monic polynomial of degreehaving
rootsng,...,nkx and no term ik for k+1 <1 <m-1. UsingFy, we can ex-
pressn™ (and hencé&/m(n;)) as a linear combination of, f, .. ., n{‘ (and hence of
Xo(Ni), ..., X(n)). This concludes the proof.

7 Base-transitive groups

If Gis a permutation group which permutes its (irredundant) bases transitively,
then G is clearly an IBIS group, and the associated matroid is a PMD. Such
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groups have been given the somewhat unfortunate name of “geometric groups”; |
will simply call thembase-transitive groupsThe base-transitive groups of rank
greater than 1 were determined by Maund [10], using the Classification of Fi-
nite Simple Groups; those of sufficiently large rank by Zil’'ber [14] by geometric
methods not requiring the Classification. Base-transitive groups of rank 1 are just
regular permutation groups (possibly with some global fixed points).

Theorem 7.1 For a base-transitive group G, the p.g.fg®) and the Tutte poly-
nomial of the associated matroid determine each other, and each is determined by
knowledge of the numbers of fixed points of elements of G.

Proof A permutation grougs is base-transitive if and only if the stabiliser of any
sequence of points acts transitively on the points that it doesn’t fix (if any). Thus
the fixed points of every element form a flat. Also, by Jordan’s theorem (asserting
that a transitive permutation group of degree greater than 1 contains a fixed-point-
free element), every flat is the fixed point set of some element. So the numbers
of fixed points of the elements @& determine the cardinalities of flats, and hence
the Tutte polynomial of the matroid, by Theorem 6.1.

Theorem 6.2 shows that the numbags. . ., ng of fixed points of elements in
a base-transitive group determine the functiix), since the numbers, ..., xx
are all equal to 1.

To obtainPg(x) directly from the Tutte polynomial, we show the following:

n k ;
=5 (350

wheren = ny is the number of points, andi) is the number of independent
tuples in the matroid; as in Theorem 6alm,i) is the number ofn-sets of rank.

To prove this, we note that eadfkset can be ordered m! different ways. If
the rank of than-set isi, the resulting sequence has stabiliser of oﬂ?zil(n—
nj), and so lies in an orbit of siqqij;%(n— nj) =r(i). Thus, the number of orbits
on such tuples ia(m,i)m! /r(i). We obtain the total number of orbits amtuples
by summing over, and so we find that the exponential generating function is the
right-hand side of the displayed equation. But this e.gPgisk+ 1), by the result
of Bostonet al.[1].

As noted, even for a regular permutation group, knowledge of the fixed point
numbers does not determine the cycle index. A regular permutation group is base-
transitive; we have seen that the cycle index contains more information than the
Tutte polynomial in this case.



8 An example

Unfortunately, the cycle index does not in general tell us whether a permutation
group is base-transitive. The simplest counterexample consists of the two permu-
tation groups of degree 6,

G = <(1’ 2)(3v 4)7 (1’ 3)(274)>7 Ge = <(1v 2)(374)7 (1v 2)(57 6))

The first is base-transitive; the second is an IBIS group of rank 2 (indeed, it is
the group arising from the binary even-weight code of length 3), but not base-
transitive. A simple modification of this example shows that the cycle index does
not determine whether the IBIS property holds.

Suppose we are given the cycle index of one of these groups, n&it@)y=
7(5+3s2s2), or simply the p.g.f. for fixed points, nameBs(x) = %(x® + 3x?).

o If we are told that the group is base-transitive, then we know that its ma-
troid is a PMD withng = 2, n; = 6, and so we can compute that its Tutte
polynomial isy?(y® + y? 4+ y+X).

o If we are told that the group arises from a linear c@jehen we can de-
duce that\(X,Y) = X3+ 3XY?. In general the Tutte polynomial is not
computable from the weight enumerator, but in this case the code must be
the even-weight code and so the Tutte polynomial of the code matroid is
x° +x+Yy. Now Proposition 5.2 shows that the Tutte polynomial of the
group matroid ig/* + 2y3 + 3y? +y + 3xy+ X% + X

e This matroid on 6 elements arises from two different base-transitive groups
of order 24. Using any of several methods we've seen, it follows that, for
any such grous, we havePs(x) = 2—14(x6+ 9x? 4-14). However, the sta-
biliser of a point is cyclic of order 4 in one case and is a Klein group in the
other, so the two groups have different cycle index.

So in some IBIS groups, the Tutte polynomial of the matroid determines the
cycle index, while in others, it is the other way about. Perhaps there is a more
general gadget including both polynomials.

As a final speculation, the (irredundant) bases in an arbitrary permutation
group form a combinatorial structure more general than a matroid; perhaps there
is an analogue of Tutte polynomial or some generalisation for such structures,
which would be related to the cycle index in the group case.
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