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Abstract

With every linear code is associated a permutation group whose cycle
index is the weight enumerator of the code (up to normalisation).

There is a class of permutation groups (theIBIS groups) which includes
the groups obtained from codes as above. With every IBIS group is associ-
ated a matroid; in the case of a code group, the matroid differs only trivially
from that which arises from the code. In this case, the Tutte polynomial of
the code specialises to the weight enumerator (by Greene’s Theorem), and
hence also to the cycle index. However, in another subclass of IBIS groups,
the base-transitive groups, the Tutte polynomial can be derived from the
cycle index but notvice versa.

I speculate that there might be an invariant which generalises both Tutte
polynomial and cycle index.

1 Cycle index

This note contains some remarks on the relations between the cycle index of a per-
mutation group, the weight enumerator of a linear code, and the Tutte polynomial
of a matroid. For more information on permutation groups, codes, and matroids,
see [5, 9, 13] respectively.

Let G be a permutation group on a setΩ, where|Ω| = n. For each element
g∈G, let ci(g) be the number ofi-cycles occurring in the cycle decomposition of
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g. Now thecycle indexof G is the polynomialZ(G) in indeterminatess1, . . . ,sn

given by

Z(G) =
1
|G| ∑g∈G

sc1(g)
1 · · ·scn(g)

n .

This can be regarded as a multivariate probability generating function for the cycle
structure of a random element ofG (chosen from the uniform distribution). In
particular,

PG(x) = Z(G)(s1← x,si ← 1 for i > 1)

is the probability generating function for the number of fixed points of a random
element ofG, so that substitutingx= 0 gives the proportion of derangements inG.
(Here and subsequently,Z(G)(si ← ui) denotes the result of substitutingui for si

in Z(G).)
Many counting problems related toG are solved by specialisations of the cy-

cle index: most notably, the enumeration ofG-orbits on functions fromΩ to a
weighted set is given by the Redfield–Pólya Cycle Index Theorem. Other exam-
ples:

• Z(G)(s1← x+1,si← 1 for i > 1) is the exponential generating function for
the number ofG-orbits onk-tuples of distinct points (note that this function
is PG(x+1), compare Bostonet al. [1]);

• Z(G)(si ← xi + 1) is the ordinary generating function for the number of
orbits ofG onk-element subsets ofΩ;

• k[(∂/∂sk)Z(G)](si ← 1) is the kth component of theParker vectorof G,
the number of orbits ofG on the set ofk-cycles occurring in its elements
(Gewurz [6]).

2 A group from a linear code

Let C be an[n,k] code over GF(q) (a k-dimensional subspace of GF(q)n). The
weight enumeratorof C is the polynomial

WC(X,Y) = ∑
v∈C

Xn−wt(v)Ywt(v),

where theweightwt(v) of v is the number of non-zero coordinates ofv.

2



We construct a permutation groupG from C as follows: the permutation do-
mainΩ is the disjoint union ofn copies of GF(q), and a codeword acts by trans-
lating theith copy by itsith coordinate. More formally,Ω = GF(q)×{1, . . . ,n},
and the codewordv = (v1, . . . ,vn) acts as the permutation

(x, i) 7→ (x+vi , i).

Now G is isomorphic to the additive group ofC (so |G| = |C|), and all the
cycles ofG have length 1 orp, wherep is the characteristic of GF(q), soZ(G)
involvess1 andsp only. Furthermore, we have:

1
|C|

WC(X,Y) = Z(G;s1← X1/q,sp←Yp/q),

For a zero coordinate inv gives rise toq fixed points, and a non-zero coordinate
to q/p cycles of lengthp.

3 Symmetrised weight enumerator

There has been a lot of interest recently (arising from [8]) in codes overZ4 (the
integers mod 4); that is, additive subgroups ofZn

4. In place of the weight enumera-
tor, one usually considers thesymmetrised weight enumerator SC(X,Y,Z) defined
by

SC(X,Y,Z) = ∑
v∈C

Xn0(v)Yn2(v)Zn13(v),

wheren0(v), n2(v) andn13(v) are respectively the numbers of coordinates ofv
which are 0, 2, or (1 or 3) mod 4.

We can construct a group from aZ4-code just as in the linear case, replacing
GF(q) by Z4. Arguing as above we see that

1
|C|

SC(X,Y,Z) = Z(G;s1← X1/4,s2←Y1/2,s4← Z).

More generally, letA1, . . . ,An be groups of the same order. We can regard a
group code over the alphabetsA1, . . . ,An as a subgroupG of A1×·· ·×An. Then
the cycle index ofG, suitably normalised, is a kind of symmetrised weight enu-
merator of the form

∑
g∈G

∏
m

Xom(g)
m ,

whereom(g) is the number of coordinates ofg which have orderm (in the appro-
priate group).
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4 Tutte polynomial

With a linear[n,k] codeC we may associate in a canonical way a matroidMC

on the set{1, . . . ,n} whose independent sets are the setsI for which the columns
(ci : i ∈ I) of a generator matrix forC are linearly independent. Any matroidM on
the ground setE has aTutte polynomial, a two-variable polynomial of the form

T(M;x,y) = ∑
A⊆E

(x−1)ρ(E)−ρ(A)(y−1)|A|−ρ(A),

whereρ is the rank function ofM.
Greene [7] showed the following theorem:

Theorem 4.1 Let M be the matroid associated with a linear code C. Then the
weight enumerator of C is a specialisation of the Tutte polynomial of M:

WC(X,Y) = Yn−k(X−Y)kT

(
MC;

X +(q−1)Y
X−Y

,
X
Y

)
.

We might ask whether it is possible to associate an analogue of the Tutte poly-
nomial with any permutation group, and if so, what is its relation to the cycle
index. Recent results of Rutherford [12] show that in general this will be very
difficult.

Rutherford associated a three-variable analogue of the Tutte polynomial with
anyZ4-codeC. This polynomial behaves in the expected way with respect to the
analogues of restriction and contraction, and it specialises to the weight enumera-
tors of each of the “elementary divisors” ofC (the two binary codesC mod 2 and
(C∩2Z4)/2). However, it does not specialise to the symmetrised weight enumer-
ator ofC; indeed, Rutherford showed that, under reasonable assumptions, there is
no analogue of the Tutte polynomial which does so specialise.

In the next section we describe a class of permutation groups which give rise
to matroids (and hence Tutte polynomials) in a natural way.

5 IBIS groups

Let G be a permutation group onΩ. A basefor G is a sequence of points ofΩ
whose stabiliser is the identity. It isirredundant if no point in the sequence is
fixed by the stabiliser of its predecessors.

Cameron and Fon-Der-Flaass [2] showed:
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Theorem 5.1 The following three conditions on a permutation group are equiva-
lent:

• all irredundant bases have the same number of points;

• re-ordering any irredundant base gives an irredundant base;

• the irredundant bases are the bases of a matroid.

A permutation group satisfying these conditions is called anIBIS group(short
for Irredundant Bases of Invariant Size).

For example, any Frobenius group is an IBIS group of rank 2, associated with
the uniform matroid; the general linear and symplectic groups, acting on their
natural vector spaces, are IBIS groups, associated with the vector matroid (defined
by all vectors in the space); the Mathieu groupM24 in its natural action is an IBIS
group of rank 7.

The permutation group constructed from an[n,k] linear code over GF(q) is an
IBIS group of degreenq and rankk; a base is a set of sizek containing one point
from each copy of GF(q) corresponding to a set ofk linearly independent columns
of a generator matrix. The associated matroid is obtained from the matroid of
the code simply by replacing each element by a set ofq parallel elements.It is
straightforward to obtain the Tutte polynomial of the group matroid from that of
the code matroid andvice versa, using the following elementary result:

Proposition 5.2 If Mq is obtained from M by replacing each element by q parallel
elements, then

T(Mq;x,y) =
(

yq−1
y−1

)ρ(E)

T

(
M;

xy−x−y+yq

yq−1
,yq
)
.

Any semiregular permutation group of degreen is an IBIS group. The corre-
sponding matroid consists simply ofn parallel elements. The cycle index conveys
much more information, for example, the number of orbits ofG and the number
of elements of each order inG. (This case is a “generalised repetition code” of
lengthn overG.)

In the rest of the paper, I will use “base” to mean “irredundant base”.
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6 Perfect matroid designs

A perfect matroid design, or PMD, is a matroid having the property that the car-
dinality of a flat depends only on its rank. Not very many PMDs are known:
among the geometric matroids, only uniform matroids, truncations of projective
and affine spaces, Steiner systems, and Hall triple systems. See Deza [4] for a
survey.

The following theorem is due to Mphako [11]: I outline the proof.

Theorem 6.1 Let M be a PMD of rank r whose i-flats have cardinality ni for i ≤ r.
The Tutte polynomial of M is determined by the numbers n0, . . . ,nr .

Proof It is enough to determine the numbera(m, i) of subsets of the domain
which have cardinalitym and ranki for all m andi: for

T(M;x,y) =
k

∑
i=0

n

∑
m=i

a(m, i)(x−1)k−i(y−1)m−i .

Let s(i, j) be the number ofi-flats containing a givenj-flat for j ≤ i. Then

s(i, j) =
i−1

∏
h= j

n−nh

ni−nh
,

s(i,0)
(

ni

m

)
=

i

∑
j=0

a(m, j)s(i, j).

The first equation determines the numberss(i, j). The second is a a triangular
system of equations fora(m, j) with diagonal coefficientss(i, i) = 1. We see that
thea(m, j) are indeed determined.

The next result is not immmediately related to the topic of this paper, but we
will see an application in the next section. We say that the action of a groupG
on a matroidM is flat if the fixed points of any element ofG form a flat of the
matroid. Any group has a flat action on the free matroid; any linear group has a
flat action on the vector matroid of its vector space; and any IBIS group has a flat
action on its associated matroid.

Theorem 6.2 Let M be a PMD of rank k on n elements, in which an i-flat has
cardinality ni for i = 0. . . ,k (with nk = n). Then there are numbers b(m, i), for
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0≤m≤ n and0≤ i ≤ k, depending only on n0, . . . ,nk, such that the following is
true: If a group G has a flat action on M and has xi orbits on independent i-tuples
and ym orbits on m-tuples of distinct elements, then

ym =
k

∑
i=0

b(m, i)xi

for m= 0, . . . ,n.

Remarks: 1. In the case of the free matroid, the matrix(b(m, i)) is the identity.
For the vector matroid, it is the composition of the matrix of Gaussian coefficients
with the matrix of Stirling numbers of the second kind (Cameron and Taylor [3]).

2. The exponential generating function for the numbersy0, . . . ,yn is PG(x+1)
(Bostonet al. [1]); so the numbersx0, . . . ,xk determinePG(x).

Proof By the Orbit-Counting Lemma, it suffices to show that such a linear re-
lation holds between the number of linearly independenti-tuples fixed by an ar-
bitrary elementg∈G and the total number ofm-tuples of distinct elements fixed
by g. Since the fixed points ofG form a flat, it suffices to establish such a relation
between the numbers of tuples in any flat ofM.

So letF be anr-flat. Then

xi =
i−1

∏
j=0

(nr −n j) = Xi(nr),

ym =
m−1

∏
s=0

(nr −s) = Ym(nr),

whereXi andYi are polynomials of degreei. It follows immediately that the the-
orem holds form≤ k, with (b(m, i)) the transition matrix between the two se-
quences of polynomials.

For m> k, let Fm(x) be the unique monic polynomial of degreem having
rootsn0, . . . ,nk and no term inxl for k+ 1≤ l ≤ m− 1. UsingFm, we can ex-
pressnm

i (and henceYm(ni)) as a linear combination of 1,ni , . . . ,nk
i (and hence of

X0(ni), . . . ,Xk(ni)). This concludes the proof.

7 Base-transitive groups

If G is a permutation group which permutes its (irredundant) bases transitively,
then G is clearly an IBIS group, and the associated matroid is a PMD. Such
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groups have been given the somewhat unfortunate name of “geometric groups”; I
will simply call thembase-transitive groups. The base-transitive groups of rank
greater than 1 were determined by Maund [10], using the Classification of Fi-
nite Simple Groups; those of sufficiently large rank by Zil’ber [14] by geometric
methods not requiring the Classification. Base-transitive groups of rank 1 are just
regular permutation groups (possibly with some global fixed points).

Theorem 7.1 For a base-transitive group G, the p.g.f. PG(x) and the Tutte poly-
nomial of the associated matroid determine each other, and each is determined by
knowledge of the numbers of fixed points of elements of G.

Proof A permutation groupG is base-transitive if and only if the stabiliser of any
sequence of points acts transitively on the points that it doesn’t fix (if any). Thus
the fixed points of every element form a flat. Also, by Jordan’s theorem (asserting
that a transitive permutation group of degree greater than 1 contains a fixed-point-
free element), every flat is the fixed point set of some element. So the numbers
of fixed points of the elements ofG determine the cardinalities of flats, and hence
the Tutte polynomial of the matroid, by Theorem 6.1.

Theorem 6.2 shows that the numbersn0, . . . ,nk of fixed points of elements in
a base-transitive group determine the functionPG(x), since the numbersx0, . . . ,xk

are all equal to 1.
To obtainPG(x) directly from the Tutte polynomial, we show the following:

PG(x+1) =
n

∑
m=0

(
k

∑
i=0

a(m, i)
r(i)

)
xm,

wheren = nk is the number of points, andr(i) is the number of independenti-
tuples in the matroid; as in Theorem 6.1,a(m, i) is the number ofm-sets of ranki.

To prove this, we note that eachm-set can be ordered inm! different ways. If
the rank of them-set isi, the resulting sequence has stabiliser of order∏k−1

j=i (n−
n j), and so lies in an orbit of size∏i−1

j=0(n−n j) = r(i). Thus, the number of orbits
on such tuples isa(m, i)m!/r(i). We obtain the total number of orbits onm-tuples
by summing overi, and so we find that the exponential generating function is the
right-hand side of the displayed equation. But this e.g.f. isPG(x+1), by the result
of Bostonet al. [1].

As noted, even for a regular permutation group, knowledge of the fixed point
numbers does not determine the cycle index. A regular permutation group is base-
transitive; we have seen that the cycle index contains more information than the
Tutte polynomial in this case.
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8 An example

Unfortunately, the cycle index does not in general tell us whether a permutation
group is base-transitive. The simplest counterexample consists of the two permu-
tation groups of degree 6,

G1 = 〈(1,2)(3,4),(1,3)(2,4)〉, G2 = 〈(1,2)(3,4),(1,2)(5,6)〉.

The first is base-transitive; the second is an IBIS group of rank 2 (indeed, it is
the group arising from the binary even-weight code of length 3), but not base-
transitive. A simple modification of this example shows that the cycle index does
not determine whether the IBIS property holds.

Suppose we are given the cycle index of one of these groups, namelyZ(G) =
1
4(s6

1 +3s2
1s2

2), or simply the p.g.f. for fixed points, namelyPG(x) = 1
4(x6 +3x2).

• If we are told that the group is base-transitive, then we know that its ma-
troid is a PMD withn0 = 2, n1 = 6, and so we can compute that its Tutte
polynomial isy2(y3 +y2 +y+x).

• If we are told that the group arises from a linear codeC, then we can de-
duce thatWC(X,Y) = X3 + 3XY2. In general the Tutte polynomial is not
computable from the weight enumerator, but in this case the code must be
the even-weight code and so the Tutte polynomial of the code matroid is
x2 + x+ y. Now Proposition 5.2 shows that the Tutte polynomial of the
group matroid isy4 +2y3 +3y2 +y+3xy+x2 +x.

• This matroid on 6 elements arises from two different base-transitive groups
of order 24. Using any of several methods we’ve seen, it follows that, for
any such groupG, we havePG(x) = 1

24(x6 + 9x2 + 14). However, the sta-
biliser of a point is cyclic of order 4 in one case and is a Klein group in the
other, so the two groups have different cycle index.

So in some IBIS groups, the Tutte polynomial of the matroid determines the
cycle index, while in others, it is the other way about. Perhaps there is a more
general gadget including both polynomials.

As a final speculation, the (irredundant) bases in an arbitrary permutation
group form a combinatorial structure more general than a matroid; perhaps there
is an analogue of Tutte polynomial or some generalisation for such structures,
which would be related to the cycle index in the group case.
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