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Abstract. A tube (resp. an oval tube) in PG(3, q) is a pair T = {L,L}, where {L} ∪ L
is a collection of mutually disjoint lines of PG(3, q) such that for each plane π of PG(3, q)
containing L the intersection of π with the lines of L is a hyperoval (resp. an oval). The
line L is called the axis of T . We show that every tube for q even and every oval tube
for q odd can be naturally embedded into a regular spread and hence admits a group of
automorphisms which fixes every element of T and acts regularly on each of them. For q
odd we obtain a classification of oval tubes up to projective equivalence. Furthermore, we
characterize the reguli in PG(3, q), q odd, as oval tubes which admit more than one axis.

1. Introduction

A partial tube in PG(3, q) is a pair T = {L,L}, where {L} ∪ L is a collection of
mutually disjoint lines of PG(3, q) such that for each plane π of PG(3, q) containing L the
intersection of π with the lines of L is an arc. T is called a tube if each of these arcs is
complete. It follows that tubes exists only for q even and that L contains q + 2 lines if T
is a tube. If L contains q + 1 lines then T is called an oval tube. An obvious example of
an oval tube is obtained by taking for L the lines of a regulus and for L any exterior line
of the underlying hyperbolic quadric of L. An oval tube of this type is called a quadric
tube. If q is even, then L can be extended by the line L⊥ which is the image of L under
the polarity associated with L to form a tube. The line L is called the axis of the partial
tube T .

Tubes were introduced in [3] in connection with a construction problem for flat π.C2

geometries, cp. [9].

Examples of partial tubes can be obtained as follows. Let L be a line of a regular
spread in PG(3, q). Choose a plane π0 through L and let Ω ⊂ π0 \ L be an arc. If L
denotes the lines of the regular spread passing through the points of Ω, then T = {L,L}
is a partial tube. If Ω is a hyperoval or an oval then T is a tube or an oval tube. We are
going to prove that in fact all tubes for q even and all oval tubes for q odd are obtained
is this way. Since for odd q all ovals are conics, we obtain a complete classification up to
projective equivalence in the odd order case. It turnes out that there are precisely 3q−1

4 or
3q−3

4 equivalence classes if q ≡ 3 mod 4 or q ≡ 1 mod 4, respectively.

In order to describe these tubes algebraically it seems convenient to introduce coor-
dinates from GF (q2). Let V be the 4-dimensional GF (q)-vector space GF (q2)×GF (q2).
Put L = {0} × GF (q2) and L(a, b) = {(z, az + bz)|z ∈ GF (q2)} for a, b ∈ GF (q2). The
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sets L(a, b), a, b ∈ GF (q2), are precisely the 2-dimensional subspaces of V which are com-
plementary to L. The set B = {L} ∪ {L(m, 0)|m ∈ GF (q2)} is a regular spread. If we
take the elements of this spread as points and all reguli contained in it as circles, then
we get a model of the Miquelian inversive plane I(q) with pointset GF (q2) ∪ {∞}. If we
map L(m, 0) to m and L to ∞, then the reguli contained in B which do not contain L are
mapped to the circles. Here, a circle is a set of the form {aw + b|w ∈ GF (q2), ww = 1}
with a, b ∈ GF (q2), a 6= 0.

Let Ω be an arc in the affine plane GF (q2) and put L = {L(a, 0)|a ∈ Ω}. Then
T = {L,L} is a partial tube. T is a quadric tube if and only if Ω is a circle.

A partial tube is called central if it admits a group of automorphisms which fixes all
elements of L and acts regularly on each of them.

Proposition 1.1. A partial tube is central if and only if it is isomorphic to one of the
examples just described.

Proof. This is proved in [3], Theorem 3.2 for tubes, but the argument carries over to
partial tubes. �

2. Tubes of even order

For any three mutually skew lines L1, L2, L3 of PG(3, q) we denote the regulus spanned
by them by R(L1, L2, L3)

Lemma 2.1. Let T = {L,L} be a partial tube and let L = {L0, . . . , Lm}. Then An =
∪i 6=nR(L,Li, Ln) is a partial spread of PG(3, q) for n = 0, . . . ,m.

Proof. Let G be any line of PG(3, q) which intersects L and Ln and let π be the plane
spanned by L and G. Since G intersects Ln and the intersection of π with the lines of L
is an arc there is at most one i ∈ {0, . . . ,m} \ {n} with G ∩ Li 6= ∅. It follows that there
is at most one i ∈ {0, . . . ,m} \ {n} such that G is a transversal of R(L,Li, Ln) and hence
An is a partial spread. �

Proposition 2.2. Let T be a tube with q even. Then the partial spread An is a regular
spread for n = 0, . . . , q + 2 and these spreads all coincide.

Proof. By the preceding lemma An is a partial spread. Since An contains 2 + (q +
1)(q − 1) = q2 + 1 lines it is actually a spread.

Consider the following incidence structure M. Points of M are the lines of PG(3, q)
that intersect L and Ln and circles of M are the reguli of PG(3, q) that admit L and Ln
as transversals. Then it is well-known that M is isomorphic to the Miquelian Minkowski
plane over GF (q), cp. eg. [1: III 4. Satz 5.1].

The reguli opposite to the R(L,Li, Ln), i ∈ {0, . . . , q + 2} \ {n}, constitute a flock of
this Minkowski plane and An is the spread associated with this flock, cp. [4]. By a result
of Thas [10], the flock is linear since q is even and hence An is regular.
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Under the Plücker mapping the regular spreads correspond to intersections of the
Klein quadric with certain projective spaces of rank 3. It follows that two regular spreads
which have 4 common lines that are not contained in a regulus are the same. Since each
of the spreads An, n = 0, . . . , q + 2 contains the lines L,L0, . . . , Lq+2, they all coincide. �

This result immediately implies the following

Theorem 2.3. Every tube of even order is central.

3. Oval tubes of odd order

For oval tubes of odd order the situation is more complicated. In this case, every
partial spread An is associated with a partial flock of a hyperbolic quadric of deficiency
one. Partial flocks of this type have been investigated by Johnson [5], and there are
examples of such partial flocks which cannot be extended to a flock. In any case, the
partial spread An \ {L,Ln} can be extended to a spread by a collection of transversals to
L and Ln. The partial flock can be extended to a flock if and only if these transversals
form a regulus. There are known counterexamples for q = 4, 5, 9, cp. [5], [6], [2].

In [3] the following description for partial tubes has been given. Let V be the 4-
dimensional vector space GF (q)2 × GF (q)2 and put L = {0} × GF (q)2. Then every line
of PG(V ) which is disjoint from L is the graph of a unique linear mapping from GF (q)2

to GF (q)2, which we identify with its matrix. A collection A0, . . . , Am of 2 × 2 matrices
defines a partial tube with axis L if and only if the following two conditions are satisfied:

(i) Ai −Aj is nonsingular for i 6= j

(ii) for any vector v 6= 0 and any distinct i, j, k ∈ {0, . . . ,m} the points Aiv,Ajv,Akv are
affine independent.

Note that (ii) is equivalent to Ωv = {A0v, . . . , Amv} being an (m+1)-arc (in particular
an oval if m = q) for every v 6= 0.

Lemma 3.1. A collection A0, . . . , Am of 2× 2 matrices defines a partial tube with axis L
if and only if they satisfy (i) and

(ii’) For all (λ, µ) ∈ GF (q)2\{(0, 0)} and all distinct i, j, k ∈ {0, . . . ,m} the matrix λ(Aj−
Ai) + µ(Ak −Ai) is nonsingular.

Proof. Condition (ii) is equivalent to the following requirement. For all (λ, µ) ∈
GF (q)2 \ {(0, 0)}, for all v 6= 0 and for all distinct i, j, k there holds λ(Aj −Ai)v+µ(Ak −
Ai)v 6= 0. But this is also equivalent to (ii’). �

This lemma is in fact equivalent to Proposition 2.1 since it easy to see that {An +
λ(Ai − An)|λ ∈ GF (q), i 6= n} is a (partial) matrix spread set for the partial spread An.
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This follows from the fact that the reguli of PG(V ) which contain L correspond to the
affine lines of the space of 2× 2 matrices, cp. e.g. [8] or [7: Lemma 4.11].

Lemma 3.2. Let Ω = {v0, . . . , vq} ⊂ GF (q)2 be a conic. Then
∑q
i=0 vi is the midpoint of

Ω.

Proof. This is obviously true if the midpoint of Ω is the origin.
Let v be the midpoint of Ω, then Ω− v is a conic whose midpoint is the origin. Thus

we get

0 =
q∑
i=0

(vi − v) = (
q∑
i=0

vi)− (q + 1)v = (
q∑
i=0

vi)− v

and the result follows. �

Corollary 3.3. The midpoint of Ωv is given by mv = (
∑q
j=0Aj)v.

Lemma 3.4. For every i ∈ {0, . . . , q} there exists k = σ(i) ∈ {0, . . . , q} such that Ai +
Aσ(i) = 2(

∑q
j=0Aj).

Proof. Given i ∈ {0, . . . , q} and v ∈ GF (q)2 \ {0} there exists k ∈ {0, . . . , q} \ {i} such
that Aiv + Akv = 2(

∑q
j=0Aj)v, but k is dependent on v. Since there are q + 1 mutually

linear independent vectors in GF (q)2 but only q choices for k, there are linear independent
vectors v and w such that Aiv +Akv = 2(

∑q
j=0Aj)v and Aiw +Akw = 2(

∑q
j=0Aj)w. It

follows that Ai +Ak = 2(
∑q
j=0Aj). �

If we replace every Ai by Ai−(
∑q
j=0Aj) we may assume that our collection of matrices

is closed unter taking additive inverses and that all conics Ωv are centrally symmetric with
respect to the origin. Moreover, we may renumber the matrices Ai with indices from
{±1, . . . ,± q+1

2 } such that A−i = −Ai for all i ∈ {±1, . . . ,± q+1
2 }.

By identifying GF (q)2 and GF (q2) we may assume that for each i ∈ {±1, . . . ,± q+1
2 }

there are ai, bi ∈ GF (q2) such that Aiv = aiv+biv for all v ∈ GF (q2). We may also assume
that a1 = 1, b1 = 0 and b2 = 0, i.e. that A1 is the identity and that A2 is linear overGF (q2).
Note that the elements of L are now precisely the sets L(ai, bi), i ∈ {±1, . . . ,± q+1

2 }. Since
division by non-zero elements of GF (q2) is linear over GF (q), the sets

Ω′v = {Aiv
v
|i ∈ {±1, . . . ,±q + 1

2
}} = {ai + bi

v

v
|i ∈ {±1, . . . ,±q + 1

2
}}

are conics for all v ∈ GF (q2) \ {0}. By Hilbert’s theorem 90, the elements of the form
v
v , v ∈ GF (q2), are precisely the elements of norm 1. Hence the conics Ω′v, v ∈ GF (q2)\{0},
coincide with the conics

Ω∗w = {ai + biw|i ∈ {±1, . . . ,±q + 1
2
}}, w ∈ GF (q2), ww = 1.

4



Note that each of these conics passes through the four points ±1 and ±a2, while the
other points are moving on circles.

Theorem 3.5. Every oval tube of odd order is central.

Proof. We have to show that bi = 0 for i ∈ {±1, . . . ,± q+1
2 }. Since a conic is

uniquely determined by five points, it is actually sufficient to show that bi = 0 for one
i ∈ {±3, . . . ,± q+1

2 }.
If q = 3 there is nothing to prove.
If q = 5, then the union of the six lines connecting any two of the four points ±1,±a2

contains 21 points. The remaining set of 4 points cannot contain a proper circle and hence
±b3 = 0.

If q = 7, then the union of the six lines connecting any two of the four points ±1,±a2

contains 33 points. The remaining set of 16 points cannot contain four distinct circles since
their union contains at least 20 points.

From now on we assume q ≥ 9.
Choose i, j ∈ {±3, . . . ,± q+1

2 }, i 6= ±j, and w ∈ GF (q2) with ww = 1. Put x = ai+biw
and y = aj + bjw.

We are going to apply Pascal’s theorem to the hexagon {1,−1, y,−a2, a2, x}, which
lies on the conic Ω∗w.

The lines 1 ∨ −1 and a2 ∨ −a2 intersect in the origin.
The intersection point of the lines 1 ∨ x and −a2 ∨ y is determined by the equation

x+ t1(1− x) = y + t2(−a2 − y), t1, t2 ∈ GF (q).

This yields

t2 =
x− y + t1(1− x)
−a2 − y

= t2 =
x− y + t1(1− x)
−a2 − y

and hence

t1 =
(x− y)(a2 + y)− (x− y)(a2 + y)
(1− x)(a2 + y)− (1− x)(a2 + y)

.

Similarly, the intersection point of the lines a2 ∨ x and −1 ∨ y is determined by the
equation

x+ t3(a2 − x) = y + t4(−1− y), t3, t4 ∈ GF (q).

This yields

t3 =
y − x− t4(1 + y)

a2 − x
= t3 =

y − x− t4(1 + y)
a2 − x

and hence

t4 =
(y − x)(a2 − x)− (y − x)(a2 − x)
−(1 + y)(a2 + x) + (1 + y)(a2 − x)

.
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Pascal’s theorem now says that the line joining the two points x + t1(1 − x) and
y+ t4(−1−y) passes through the origin. This is equivalent to the requirement x+t1(1−x)

y−t4(1+y) ∈
GF (q), which is in turn equivalent to

(x+ t1(1− x))(y − t4(1 + y)) = (x+ t1(1− x))(y − t4(1 + y)). (∗)

From our computations of t1 and t4 we get

x+ t1(1− x) =
x((1− x)(a2 + y)− (1− x)(a2 + y)) + (1− x)((x− y)(a2 + y)− (x− y)(a2 + y))

(1− x)(a2 + y)− (1− x)(a2 + y)

=
(x− (x− y))(1− x)(a2 + y) + ((1− x)(x− y)− x(1− x))(a2 + y)

(1− x)(a2 + y)− (1− x)(a2 + y)

=
y(1− x)(a2 + y) + (x− x− (1− x)y)(a2 + y)

(1− x)(a2 + y)− (1− x)(a2 + y)

=
(x− x)(a2 + y) + y(1− x)a2 − (1− x)ya2

(1− x)(a2 + y)− (1− x)(a2 + y)

and

y − t4(1 + y) =
y(−(1 + y)(a2 − x) + (1 + y)(a2 − x))− (1 + y)((y − x)(a2 − x)− (y − x)(a2 − x))

−(1 + y)(a2 − x) + (1 + y)(a2 − x)

=
(−y + (y − x))(1 + y)(a2 − x) + (−(1 + y)(y − x) + y(1 + y))(a2 − x)

−(1 + y)(a2 − x) + (1 + y)(a2 − x)

=
−x(1 + y)(a2 − x) + (y − y + (1 + y)x)(a2 − x)

−(1 + y)(a2 − x) + (1 + y)(a2 − x)

=
(y − y)(a2 − x)− x(1 + y)a2 + (1 + y)xa2

−(1 + y)(a2 − x) + (1 + y)(a2 − x)

Note that the denominators of the expressions obtained for the points y − t4(1 + y) and
x+ t1(1− x) are both skew with respect to the conjugation mapping and hence cancel in
equation (∗). This equation now becomes

((x− x)(a2 + y) + (x− 1)(ya2 − ya2)) ((y − y)(a2 − x) + (y + 1)(xa2 − xa2))
= ((x− x)(a2 + y) + (x− 1)(ya2 − ya2)) ((y − y)(a2 − x) + (y + 1)(xa2 − xa2))

which leads to

(x− x)(y − y)(a2 + y)(a2 − x) + (x− 1)(y + 1)(ya2 − ya2)(xa2 − xa2)
+ (x− x)(y + 1)(a2 + y)(xa2 − xa2) + (x− 1)(y − y)(a2 − x)(ya2 − ya2)

=(x− x)(y − y)(a2 + y)(a2 − x) + (x− 1)(y + 1)(ya2 − ya2)(xa2 − xa2)
+ (x− x)(y + 1)(a2 + y)(xa2 − xa2) + (x− 1)(y − y)(a2 − x)(ya2 − ya2).
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Subtracting the right hand side from the left yields

0 = (x− x)(y − y)(ya2 − a2x− yx− ya2 + a2x+ yx)
+ (ya2 − ya2)(xa2 − xa2)(xy + x− y − xy − x+ y)
+ (x− x)(xa2 − xa2)(ya2 + a2 + y − ya2 − a2 − y)
+ (y − y)(ya2 − ya2)(xa2 − a2 + x− xa2 + a2 − x)

= (x− x)(y − y)(yx− yx) + (x− x)(y − y)(a2x− a2x) + (x− x)(y − y)(ya2 − ya2)
+ (ya2 − ya2)(xa2 − xa2)(xy − xy) + (ya2 − ya2)(xa2 − xa2)(x− x+ y − y)
+ (x− x)(xa2 − xa2)(y − y) + (x− x)(xa2 − xa2)(ya2 − ya2) + (x− x)(xa2 − xa2)(a2 − a2)
+ (y − y)(ya2 − ya2)(x− x) + (y − y)(ya2 − ya2)(xa2 − xa2) + (y − y)(ya2 − ya2)(a2 − a2)

= (x− x)(y − y)(yx− yx) + (ya2 − ya2)(xa2 − xa2)(xy − xy)
+ (a2 − a2)(x− x)(xa2 − xa2) + (a2 − a2)(y − y)(ya2 − ya2)

Since x = ai + biw and y = aj + bjw the last expression is a polynomial P (w,w) of degree
3 in w and w. Since ww = 1 the term P (w,w)w3 is a polynomial of degree 6 in w. This
polynomial has at least the q + 1 elements w ∈ GF (q2) with ww = 1 as zeroes, and so all
coefficients are zero since q ≥ 9. We have

x− x = −biw + ai − ai + biw,

y − y = −bjw + aj − aj + bjw,

yx− yx = (aj + bjw)(ai + biw)− (aj + bjw)(ai + biw)

= (ajbi − bjai)w + ajai + bjbi − ajai − bjbi + (bjai − ajbi)w,
xa2 − xa2 = (ai + biw)a2 − (ai + biw)a2

= bia2w + aia2 − aia2 − bia2w,

ya2 − ya2 = (aj + bjw)a2 − (aj + bjw)a2

= −bja2w + aja2 − aja2 + bja2w.

For the coefficient of w3 in P (w,w) we get

(−bi)(−bj)(ajbi − bjai) + (−bja2)(bia2)(ajbi − bjai) = bibj(ajbi − bjai)(1− a2
2).

If bi = 0 for at least one i ∈ {±3, . . . ,± q+1
2 } the theorem is proved. So we may assume

that bi 6= 0 for all i ∈ {±3, . . . ,± q+1
2 }. Since a2

2 6= 1 this yields

ajbi − bjai = 0 for all i, j ∈ {±3, . . . ,±q + 1
2
}, i 6= ±j

It follows that bi = cai for all i ∈ {±3, . . . ,± q+1
2 } for some constant c. For the conics Ω∗w

this implies

Ω∗w = {ai + caiw|i ∈ {±3, . . . ,±q + 1
2
}} ∪ {±1,±a2} for all w ∈ GF (q2), ww = 1.
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Consider now the GF (q)-linear mapping λw : GF (q2)→ GF (q2) which maps z ∈ GF (q2)
to z + cwz. The inverse of λw is given by λ−1

w (z) = 1
1−cc (z − cwz). For each w ∈

GF (q2), ww = 1 the set

λ−1
w (Ω∗w) = {ai|i ∈ {±3, . . . ,±q + 1

2
}} ∪ {±1− cw

1− cc
,±a2 − cwa2

1− cc
}

is a conic in the affine plane GF (q2). Since q ≥ 9 these conics are all the same and hence
1− cw and a2 − cwa2 are independent of w. It follows that c = 0 and hence bi = 0 for all
i ∈ {±3, . . . ,± q+1

2 }. �

Theorem 3.6. Let q be odd. Let b ∈ GF (q2) with bb 6= 1 and set L(b) = {L(w+bw, 0)|w ∈
GF (q2), ww = 1}. Then T (b) = {L,L(b)} is an oval tube of PG(V ). Every oval tube of
PG(3, q) is projectively equivalent to some T (b). The tubes T (b1) and T (b2) are projectively
equivalent if and only b2 = b1c

2, b2 = b−1
1 c2, b2 = b1c

2 or b2 = b
−1

1 c2 for some c ∈ GF (q2)
with cc = 1. If q ≡ 3 mod 4 there are precisely 3q−1

4 equivalence classes of oval tubes and
if q ≡ 1 mod 4 there are 3q−3

4 equivalence classes. T (b) is a quadric tube if and only if
b = 0.

Proof. By Theorem 3.5 we know that every oval tube is projectively equivalent to
an oval tube T = {L,L} which has axis L = {0} × GF (q2) and is contained in the
regular spread B = {L} ∪ {L(m, 0)|m ∈ GF (q2)}. We also know that the set Ω = {m ∈
GF (q2)|L(m, 0) ∈ L} is a conic in the affine plane GF (q2), and we may assume that this
conic is centered at the origin. It follows that there are a, b ∈ GF (q2) with aa 6= bb such
that Ω = Ω(a, b) = {az + bz|z ∈ GF (q2), zz = 1}. Let the corresponding tube be called
T (a, b). Note that a and b are not uniquely determined by Ω, but that Ω(a, b) = Ω(ac, bc) =
Ω(bc, ac), and hence also T (a, b) = T (ac, bc) = T (bc, ac), for all c ∈ GF (q2), cc = 1.

From now on we assume that T = T (a, b) is not the quadric tube, i.e that a 6=
0 6= b. Then B is the only regular spread which contains T . It follows that two such
tubes are projectively equivalent if and only if one is mapped onto the other by a GF (q)-
linear mapping of the vector space GF (q2)2 which fixes the spread B and the lines L
and L(0, 0). These linear mappings are of the form A(d1, d2) : (z, w) 7→ (d1z, d2w) or
B(d1, d2) : (z, w) 7→ (d1z, d2w), d1, d2 ∈ GF (q2), d1 6= 0 6= d2. A short calculation shows
that A(d1, d2) and B(d1, d2) map T (a, b) to T (da, db) and T (db, da), respectively, where
d = d2

d1
. It follows that T (a, b) is projectively equivalent to T (1, ba ) = T ( ba ).

Assume now that T (b1) and T (b2), b1 6= 0 6= b2, are projectively equivalent. Then
we get that (1, b2) is equal to one of (dc, db1c), (db1c, dc), (db1c, dc) or (dc, db1c) for some
c, d ∈ GF (q2), cc = 1, d 6= 0. These four cases lead to b2 = b1c

2, b2 = b−1
1 c2, b2 = b

−1

1 c2 or
b2 = b1c

2, respectively.
It remains to determine the number of isomorphism classes.
This is essentially the problem of counting the orbits of a group of order 2(q + 1)

acting on the set M = {b ∈ GF (q2)|0 6= bb 6= 1}, which contains (q + 1)(q − 2) elements.
The group consists of the following mappings

(i) b 7→ bc2, cc = 1,
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(ii) b 7→ b−1c2, cc = 1,

(iii) b 7→ b
−1
c2, cc = 1,

(iv) b 7→ bc2, cc = 1.

Since bb 6= 1 the mappings of type (ii) have no fixed points, and so the dihedral group
of order q + 1 which comprises the mappings of type (i) and (ii) acts freely on M . So the
stabilizer of any point contains at most two elements.

Assume that a mapping of type (iii) fixes b ∈M , then we get bb = c2. Since 1 6= bb ∈
GF (q) and cc = 1 this yields bb = −1 = c2. The equation c2 = −1 has a solution with
cc = 1 if and only if 4|q + 1. In this case there are precisely q + 1 elements of M which
have a mapping of type (iii) in their stabilizer.

Assume now that a mapping of type (iv) fixes a point b ∈M , then we get b

b
= c2 with

cc = 1. There are precisely (q+1)(q−1)
2 elements b ∈ GF (q2) \ {0} for which this equation

has a solution, but those with bb = 1 are among them. So there are (q+1)(q−3)
2 elements of

M which have a mapping of type (iv) in their stabilizer.
Now we can count as follows. If q ≡ 3 mod 4 there are q+ 1 + (q+1)(q−3)

2 = (q+1)(q−1)
2

elements with a stabilizer of order 2 and hence (q + 1)(q − 2) − (q+1)(q−1)
2 = (q+1)(q−3)

2
elements with trivial stabilizer. The number of orbits thus becomes

(q+1)(q−1)
2

(q + 1)
+

(q+1)(q−3)
2

2(q + 1)
=

3q − 5
4

.

Taking into account the quadric tube we have to add one to this number and so we have
3q−1

4 equivalence classes of oval tubes.
If q ≡ 1 mod 4 a similar computation shows that there are 3q−3

4 equivalence classes.
�

Remarks 3.7. a) If q ≡ 1 mod 4 it is possible to construct a system of representatives
for the projective equivalence classes of oval tubes as follows. Choose an element µ ∈
GF (q2) \GF (q) with µ2 ∈ GF (q). Then every oval tube is equivalent to some T (b) with
b ∈ GF (q)\{±1}∪µ ·GF (q). If b ∈ GF (q)\{0,±1} there are two representatives, namely
b and b−1, and if b ∈ µ ·GF (q) \ {0} there are four, namely b,−b = b, b−1 and −b−1 = b

−1
.

If q ≡ 3 mod 4 there seems to be no obvious choice for a system of representatives.

b) Our classification is in fact equivalent to the classification of the conics in the affine
plane under the group of similarities.

c) In principle, it is also possible to classify tubes up to equivalence under PΓL(4, q). The
field automorphisms just act in their standard way on M .

Lemma 3.8. Let Ω be a subset of the Miquelian inverse plane I(q), q odd, and assume
that there are two distinct points a, b of I(q) such that Ω is a conic in the affine planes
I(q)a and I(q)b. Then Ω is a circle of I(q).
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Proof. We may identify I(q)a with the affine plane GF (q)2 and we may assume that
b = (0, 0). The conics in the affine plane which do not pass through b are the sets {(x, y) ∈
GF (q)2|a11x

2 +2a12xy+a22y
2 +b1x+b2y+c = 0} for aij , bi, c ∈ GF (q), c 6= 0, a2

12−a11a22

a nonsquare in GF (q).
We may also fix a nonsquare % in GF (q) such that I(q) is the inversive plane associated

with the field extension GF (q)[x]/(x2−%) : GF (q). Then the circles are precisely the conics
with a12 = 0 and a22 = −%a11. The mapping σ : I(q) → I(q) which exchanges a and b
and maps (x, y) 6= (0, 0) to ( x

x2−%y2 ,
y

x2−%y2 ) is an involutorial automorphism of I(q).
It is sufficient to show that if Ω and σ(Ω) are both conics in GF (q)2 \ {(0, 0)}, then

Ω is a circle.
Assume that

Ω = {(x, y) ∈ GF (q)2|a11x
2 + 2a12xy + a22y

2 + b1x+ b2y + c = 0},

then we get

σ(Ω) = {(x, y) ∈ GF (q)2|a11x
2 +2a12xy+a22y

2 +(b1x+b2y)(x2−%y2)+c(x2−%y2)2 = 0}.

This set is a conic if and only if the polynomial

a11x
2 + 2a12xy + a22y

2 + (b1x+ b2y + c(x2 − %y2))(x2 − %y2)

is a product of two polynomials of degree 2. Since this polynomial contains no terms of
degree 0 and 1, one of the factors must be the polynomial a11x

2 + 2a12xy + a22y
2. It

follows that a11x
2 + 2a12xy + a22y

2 divides x2 − %y2 and hence a12 = 0 and a22 = −%a11,
i.e. Ω is a circle. �

Proposition 3.9. An oval tube of odd order which has more than one axis is isomorphic
to the quadric tube.

Proof. Let T = {L,L} be an oval tube and let L′ be a line of PG(3, q) such that
{L′,L} is also an oval tube.

If T is not the quadric tube then the regular spread containing L is uniquely deter-
mined. It follows that L′ is also contained in this spread. Since the lines of this regular
spread and the reguli contained in it form a model for the inversive plane I(q) the result
now follows from the preceding lemma. �

This proposition yields the following characterization of reguli in PG(3, q).

Corollary 3.10. Let L be a collection of q + 1 mutually skew lines in PG(3, q), q odd.
Assume that there are two distinct lines L1, L2 6∈ L such that each line which intersects L1

or L2 meets at most two distinct lines of L. Then L is a regulus.
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