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Abstract

Solving a Sudoku puzzle involves putting the symbols 1, . . . , 9 into
the cells of a 9 × 9 grid partitioned into 3 × 3 subsquares, in such
a way that each symbol occurs just once in each row, column, or
subsquare. Such a solution is a special case of a gerechte design, in
which an n×n grid is partitioned into n regions with n squares in each,
and each of the symbols 1, . . . , n occurs once in each row, column, or
region. Gerechte designs originated in statistical design of agricultural
experiments, where they ensure that treatments are fairly exposed to
localised variations in the field containing the experimental plots.

In this paper we consider several related topics. In the first sec-
tion, we define gerechte designs and some generalizations, and explain
a computational technique for finding and classifying them. The sec-
ond section looks at the statistical background, explaining how such
designs are used for designing agricultural experiments, and what ad-
ditional properties statisticians would like them to have.

In the third section, we focus on a special class of Sudoku solutions
which we call “symmetric”. They turn out to be related to some
important topics in finite geometry over the 3-element field, and to
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error-correcting codes. We explain all of these connections, and use
them to classify the symmetric Sudoku solutions (there are just two,
up to the appropriate notion of equivalence). We also construct some
further Sudoku solutions with desirable statistical properties. In the
final section, we briefly consider some generalizations.

1 Gerechte designs

1.1 Introduction

A Latin square of order n is an n× n array containing the symbols 1, . . . , n
in such a way that each symbol occurs once in each row and once in each
column of the array. We say that two Latin squares L1 and L2 of order n are
orthogonal to each other if, given any two symbols i and j, there is a unique
pair (k, l) such that the (k, l) entries of L1 and L2 are i and j respectively.

In 1956, W. U. Behrens [4] introduced a specialisation of Latin squares
which he called “gerechte”. The n × n grid is partitioned into n regions
S1, . . . , Sn, each containing n cells of the grid; we are required to place the
symbols 1, . . . , n into the cells of the grid in such a way that each symbol
occurs once in each row, once in each column, and once in each region.

The row and column constraints say that the solution is a Latin square,
and the last constraint restricts the possible Latin squares.

By this point, many readers will recognize that solutions to Sudoku puz-
zles are examples of gerechte designs, where n = 9 and the regions are the
3×3 subsquares. (The Sudoku puzzle was invented, with the name “number
place”, by Harold Garns in 1979.)

Here is another familiar example of a gerechte design. Let L be any Latin
square of order n, and let the region Si be the set of cells containing the
symbol i in the square L. A gerechte design for this partition is precisely
a Latin square orthogonal to L. (This shows that there is not always a
gerechte design for a given partition. A simpler negative example is obtained
by taking one region to consist of the first n− 1 cells of the first row and the
nth cell of the second row.)

We might ask: given a grid, and a partition into regions, what is the
complexity of deciding whether a gerechte design exists?

For another example, consider the partitioned grid shown in Figure 1:
this example was considered by Behrens in 1956. (Ignore the triples to the
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right of the grid for a moment.) Six solutions are shown. Up to rotations of
the grid and permutations of the symbols 1, . . . , 5, these are all the solutions,
as we will explain shortly. (The complete set of fifteen solutions is given
in [3].)

{r1, c1, s1} {r1, c2, s1} {r1, c3, s1} {r1, c4, s2} {r1, c5, s2}
{r2, c1, s1} {r2, c2, s1} {r2, c3, s5} {r2, c4, s2} {r2, c5, s2}
{r3, c1, s4} {r3, c2, s5} {r3, c3, s5} {r3, c4, s5} {r3, c5, s2}
{r4, c1, s4} {r4, c2, s4} {r4, c3, s5} {r4, c4, s3} {r4, c5, s3}
{r5, c1, s4} {r5, c2, s4} {r5, c3, s3} {r5, c4, s3} {r5, c5, s3}

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5

3 5 2 1 4
2 1 4 5 3
4 3 5 2 1
5 4 1 3 2
1 2 3 4 5

3 1 5 2 4
2 5 4 1 3
4 3 2 5 1
5 4 1 3 2
1 2 3 4 5

2 1 5 3 4
3 5 4 2 1
4 3 1 5 2
5 4 2 1 3
1 2 3 4 5

3 1 5 2 4
2 5 4 1 3
4 3 1 5 2
5 4 2 1 3
1 2 3 4 5

2 4 1 5 3
3 1 5 2 4
5 3 4 1 2
4 5 2 3 1
1 2 3 4 5

Figure 1: A partitioned 5 × 5 grid (top left), its representation as a block
design (top right), and all inequivalent gerechte designs (bottom)

1.2 Resolvable block designs

A block design is a structure consisting of a set of points and a set of blocks,
with an incidence relation between points and blocks. Often we identify a
block with the set of points incident to it, so that a block design is represented
by a family of sets; however, the same set may occur more than once.

A block design is said to be resolvable if the set of blocks can be par-
titioned into subsets C1, . . . , Cr (called replicates) such that each point is
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incident with just one block in any replicate Ci. The partition of the block
set is called a resolution of the design.

The search for gerechte designs for a given partitioned grid can be trans-
formed into a search for resolutions of a block design, as we now show.

The basic data for a gerechte design is an n × n grid partitioned into n
regions S1, . . . , Sn, each containing n cells. We can represent this structure
by a block design as follows:

• the points are 3n objects r1, . . . , rn, c1, . . . , cn, s1, . . . , sn;

• for each of the n2 cells of the grid, there is a block {ri, cj, sk}, if the
cell lies in the ith row, the jth column, and the kth region.

Proposition 1.1 Gerechte designs on a given partitioned grid correspond,
up to permuting the symbols 1, . . . , n, in one-to-one fashion with resolutions
of the above block design.

Proof Given a gerechte design, let Ci be the set of cells containing the
symbol i. By definition, the blocks corresponding to these cells contain each
row, column, or region object exactly once, and so form a partition of the
point set. Any cell contains a unique symbol i, so every block occurs in just
one class Ci. Thus we have a resolution. The converse is proved in the same
way.

The GAP [10] share package DESIGN [20] can find all resolutions of a
block design, up to isomorphisms of the block design. In our case, isomor-
phisms of the block design come from symmetries of the partitioned grid, so
we can use this package to compute all gerechte designs up to permutation
of symbols and symmetries of the partitioned grid.

For example, the partition of the 5 × 5 grid discussed in the preceding
section is represented as a block design with 15 points and 25 blocks of size 3,
also shown in Figure 1. The automorphism group of the design is the cyclic
group of order 4 consisting of the rotations of the grid through multiples
of π/2. The DESIGN program quickly finds that, up to automorphisms,
there are just six resolutions of this design, corresponding to six inequivalent
gerechte designs; these are shown in the figure.

The same method shows that, for a 6 × 6 square divided into 3 × 2
rectangles, there are 49 solutions up to symmetries of the corresponding
block design and permutations of the symbols. (The number of symmetries
of the block design in this case is 3456; the group consists of all row and
column permutations preserving the appropriate partitions.)
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1.3 Orthogonal and multiple gerechte designs

We saw earlier the definition of orthogonality of Latin squares. A set of
mutually orthogonal Latin squares is a set of Latin squares in which every
pair is orthogonal. It is known that the size of a set of mutually orthogonal
Latin squares of order n is at most n− 1.

Similar definitions and results apply to gerechte designs. We say that two
gerechte designs with the same partitioned grid are orthogonal to each other
if they are orthogonal as Latin squares, and a set of mutually orthogonal
gerechte designs is a set of such designs in which each pair is orthogonal.

Proposition 1.2 Given a partition of the n×n grid into regions S1, . . . , Sn

each of size n, the size of a set of mutually orthogonal gerechte designs for
this partition is at most n−d, where d is the maximum size of the intersection
of a region Si and a line (row or column) Lj 6= Si.

Proof Take a cell c ∈ Lj \ Si. By permuting the symbols in each square,
we may assume that all the squares have entry 1 in the cell c. Now, in each
square, the symbol 1 occurs exactly once in the region Si and not in the
line Lj; and all these occurrences must be in different cells, since for each
pair of squares, the pair (1, 1) of entries already occurs in cell c. So there are
at most |Si \ Lj| squares in the set.

This bound is not always attained. Consider the 5 × 5 gerechte designs
given earlier. The maximum intersection size of a line and a region is clearly 3,
so the bound for the number of mutually orthogonal designs is 2. But by
inspection, each design has the property that the entries in cells (2, 3) and
(3, 5) are equal. (The reader is invited to discover the simple argument to
show that this must be so, independent of the classification of the designs.)
Hence no pair of orthogonal designs is possible. Similarly, for the 6×6 square
divided into 3 × 2 rectangles, there cannot exist two orthogonal gerechte
designs, since it is well known that there cannot exist two orthogonal Latin
squares of order 6.

Proposition 1.2 gives an upper bound of 6 for the number of mutually
orthogonal Sudoku solutions. In Section 3.2, we will see that this bound is
attained.

The concept of a gerechte design can be generalized. Suppose that we are
given a set of r partitions of the cells of an n× n grid into n regions each of
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size n. A multiple gerechte design for this partition is a Latin square which
is simultaneously a gerechte design for all of the partitions.

For example, given a set of (mutually orthogonal) Latin squares, the
symbols in each square define a partition of the n× n array into regions. A
Latin square is a multiple gerechte design for all of these partitions if and
only if it is orthogonal to all the given Latin squares.

The problem of finding a multiple gerechte design can be cast into the
form of finding a resolution of a block design, in the same way as for a single
gerechte design. The block design has (r + 2)n points, and each cell of the
grid is represented by a block containing the objects indexing its row, its
column, and the region of each partition which contain it. Again, we can use
the DESIGN program to classify such designs up to symmetries of the grid.

For example, Federer [9], in a section which he attributed to G. M. Cox,
called a m1m2 × m1m2 Latin square magic if it is a gerechte design for the
regions forming the obvious partition into m1 × m2 rectangles, and super
magic if it is simultaneously a gerechte design for the partition into m2×m1

rectangles, where m1 6= m2. He considered the problem of finding multiple
gerechte designs (which he called “super magic Latin squares”) for the 6× 6
square partitioned into 3× 2 rectangles and 2× 3 rectangles. The DESIGN
package finds that there are 26 such designs up to symmetries.

We can also define a set of mutually orthogonal multiple gerechte designs
in the obvious way, and prove a similar bound for the size of such a set.

We will see examples of these things in Section 3.2.

2 Statistical considerations

2.1 Agricultural experiments in Latin squares

The statistician R. A. Fisher suggested the use of Latin squares in agricultural
experiments. If a n “treatments” (crop varieties, fertilizer, etc.) are to be
compared on plots forming an n × n grid in a field, then arranging the
treatments as the symbols of a Latin square ensures that any systematic
change in fertility, drainage, etc. across the field affects all treatments equally.
Figure 2 shows two experiments laid out as Latin squares.

If a Latin square experiment is to be conducted on land that has recently
been used for another Latin square experiment, it is sensible to regard the
previous treatments as relevant and so to use a Latin square orthogonal to
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Figure 2: Two experiments using Latin squares. Left: a 5 × 5 forestry
experiment in Beddgelert in Wales, to compare varieties of tree; designed by
Fisher, laid out in 1929, and photographed in about 1945. Right: a current
6 × 6 experiment to compare methods of controlling aphids; conducted by
Lesley Smart at Rothamsted Research, photographed in 2004.

the previous one. As explained above, this is technically a sort of gerechte
design, but no agricultural statistician would call it that.

The purpose of a gerechte design in agricultural experimentation is to
ensure that all treatments are fairly exposed to any different conditions in
the field. In fact, “gerecht(e)” is the German for “fair” in the sense of “just”.
Rows and columns are good for capturing differences such as distance from
a wood but not for marking out stony patches or other features that tend to
clump in compact areas. Thus, in the statistical and agronomic literature,
the regions of a gerechte design are always taken to be “spatially compact”
areas.

2.2 Randomization

Before a design is used for an experiment, it is randomized. This means that
a permutation of the cells is chosen at random from among all those that
preserve the three partitions: into rows, into columns, and into regions. It is
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by no means common for the cells to be actually square plots on the ground;
when they are, it is also possible to transpose rows and columns, if the regions
are unchanged by this action. This random permutation is applied to the
chosen gerechte design before it is laid out in the field.

One important statistical principle is lack of bias. This means that every
plot in the field should be equally likely to be matched, by the randomization,
to each abstract cell in the gerechte design, so that any individual plot with
strange characteristics is equally likely to affect any of the treatments. To
achieve this lack of bias, the set of permutations used for randomizing must
form a transitive group, in the sense that there is such a permutation carrying
any nominated cell to any other. The allowable permutations of the 5 × 5
grid in Figure 1 do not have this property, but those for magic Latin squares
do. There are others, but no complete classification as far as we know.

For the remainder of this section we assume that n = m1m2 and the
regions are m1 ×m2 rectangles. Then the rows, columns and regions define
some other areas: a large row is the smallest area that is simultaneously a
union of regions and a union of rows; a minirow is the non-empty intersection
of a row and region; large columns and minicolumns are defined similarly.

A pair of distinct cells in such a grid is in one of eight relationships,
illustrated in Figure 3 for the 6 × 6 grid with 3 × 2 regions. For i = 1,
. . . , 8, the cell labelled ∗ is in relationship i with the cell labelled i. Thus
a pair of distinct cells is in relationship 1 if they are in the same minirow;
relationship 2 if they are in the same minicolumn; relationship 3 if they are
in the same region but in different rows and columns; relationship 4 if they
are in the same row but in different regions; relationship 5 if they are in the
same column but in different regions; relationship 6 if they are in the same
large row but in different rows and regions; relationship 7 if they are in the
same large column but in different columns and regions; relationship 8 if they
are in different large rows and large columns.

The group of permutations used for randomization has the property that
a pair of distinct cells can be mapped to another pair by one of the permuta-
tions if and only if they are in the same relationship. If, in addition, we can
transpose the rows and columns (not possible in Figure 3) then relationships
1 and 2 are merged, as are 4 and 5, and 6 and 7.

The simple-minded analysis of data from an experiment in a gerechte
design assumes that the response (such as yield of grain, or the logarithm of
the number of aphids) on each cell is the sum of four unknown parameters,
one each for the row, column and region containing the cell, and one for
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2 6
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5 8

7

Figure 3: Eight relationships between pairs of distinct cells in the 6× 6 grid

the treatment (symbol) applied to it. In addition, there is random variation
from cell to cell. This is explained in [2]. The statistician is interested in
the treatment parameters, not only in their values but also in whether their
differences are greater than can be explained by cell-to-cell variation.

However, one school of statistical thought holds that if the innate dif-
ferences between rows, between columns and between regions are relevant,
then so potentially are those between minirows, minicolumns, large rows and
large columns. Yates took this view in his 1939 paper [24], whose discussion
of a 4 × 4 Latin square “with balanced corners” may be the first published
reference to gerechte designs. Thus the eight relationships all have to be
considered when the gerechte design is chosen.

2.3 Orthogonality and the design key

Two further important statistical properties often conflict with each other.
One is ease of analysis, which means not ease of performing arithmetic but
ease of explaining the results to a non-statistician. So-called orthogonal de-
signs, like the one in Figure 4, have this property.

A gerechte design with rectangular regions is orthogonal if the arrange-
ment of symbols in each region can be obtained from the arrangement in
any other region just by permuting minirows and minicolumns. In Figure 4,
each minicolumn contains either treatments 1, 2 and 3 or treatments 4, 5
and 6. When the statisticain investigates whether there is any real difference
between the average effects of these two sets of treatments, (s)he compares
their difference (estimated from the data) with the underlying variability
between minicolumns within regions and columns (also estimated from the
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5 2 6 3 4 1
6 3 4 1 5 2
4 1 5 2 6 3

2 5 3 6 1 4
3 6 1 4 2 5
1 4 2 5 3 6

Figure 4: An orthogonal design for the 6× 6 grid with 3× 2 regions

data). Similarly, differences between the average effects of the three sets of
two treatments {1, 4}, {2, 5} and {3, 6} are compared with the variability of
minirows within regions and rows. Treatment differences orthogonal to all of
those, such as the difference between the average of {1, 5} and the average
of {2, 4}, are compared with the residual variability between the cells after
allowing for the variability of all the partitions.

An orthogonal design for an m1m2 ×m1m2 square with m1 ×m2 regions
may be constructed using the design key method [21, 22], as recommended
in [3]. The large rows are labelled by A1, which takes values 1, . . . , m2.
Within each large row, the rows are labelled by A2, which takes values 1,
. . . , m1. Similarly, the large columns are labelled by B1, taking values 1,
. . . , m1, and the columns within each large column by B2, taking values 1,
. . . , m2. Then put N1 = A1 + B2 modulo m2 and N2 = A2 + B1 modulo m1.
The ordered pairs of values of N1 and N2 give the m1m2 symbols. In Figure 4,
the rows are numbered from top to bottom, the columns from left to right,
and the correspondence between the ordered pairs and the symbols is as
follows.

N2

N1 1 2 3
1 1 2 3
2 4 5 6

(When explaining this construction to non-mathematicians we usually take
the integers modulo m to be 1, . . . , m rather than 0, . . . , m− 1.)

Variations on this construction are possible, especially when m1 and m2

are both powers of the same prime p. For example, if m1 = 4 and m2 = 2
then we can work modulo 2, using A1 to label the large rows, A2 and A3 to
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label the rows within large rows, B1 and B2 to label the large columns, and
B3 to label the columns within large columns. Numbers can be allocated by
putting N1 = A1 +B3, N2 = A2 +B1 and N3 = A3 +B2. All that is required
is that no non-zero linear combination (modulo 2) of N1, N2 and N3 contains
only A1, B1 and B2, or a subset thereof.

2.4 Efficiency and concurrence

The other important statistical property is efficiency, which means that the
estimators of the differences between treatments should have small variance.
At one extreme, we might decide that the innate differences between mini-
columns are so great that the design in Figure 4 provides no information at
all about the difference between the average of treatments 1, 2, 3 and the
average of treatments 4, 5, 6; and similarly for minirows. In this case, it
can be shown (see [1, Chapter 7]) that the relevant variances can be deduced
from the matrix

M = m1m2I −
1

m2

ΛR −
1

m1

ΛC + J.

Here I is the n × n identity matrix and J is the n × n all-1 matrix. The
concurrence of symbols i and j in minirows is the number of minirows con-
taining both i and j (which is n when i = j): the matrix ΛR contains these
concurrences. The matrix ΛC is defined similarly, using concurrences in mini-
columns. It is known that if the off-diagonal entries in the matrix M are all
equal then the average variance is as small as possible for the given values
of m1 and m2, so the usual heuristic is to choose a design in which the off-
diagonal entries differ as little as possible. If m1 = m2, this means that the
sums of the concurrences are as equal as possible. We explore this property
for Sudoku solutions in Section 3.4.

A compromise between these two statistical properties is general balance
[13, 16, 17], which requires that the concurrence matrices ΛR and ΛC com-
mute with each other. A special case of general balance is adjusted orthogo-
nality [8, 14], for which ΛRΛC = n2J . It can be shown that a gerechte design
with rectangular regions is orthogonal in the sense of Section 2.3 if it has
adjusted orthogonality and Λ2

R = nm2ΛR and Λ2
C = nm1ΛC . This property

is also explored further in Section 3.4.
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3 Some special Sudoku solutions

Our main aim in this section is to consider some very special Sudoku solutions
which we call symmetric. We state our main results first. The proofs will
take us on a tour through parts of finite geometry and coding theory; we
have included brief introductions to these topics, for readers unfamiliar with
them who want to follow us through the proofs of the theorems. Later in
the section, we show how to construct other Sudoku solutions having some
of the statistical properties introduced in the last section.

We have seen that a Sudoku solution is a gerechte design for the 9 × 9
array partitioned into nine 3 × 3 subsquares. To define symmetric Sudoku
solutions, we need a few more types of region.

As defined in the last section, a minirow consists of three cells forming
a row of a subsquare, and a minicolumn consists of three cells forming a
column of a subsquare. We define a broken row to be the union of three
minirows occurring in the same position in three subsquares in a column,
and a broken column to be the union of three minicolumns occurring in the
same position in three subsquares in a row. A location is a set of nine cells
occurring in a fixed position in all of the subsquares (for example, the centre
cells of each subsquare).

Now a symmetric Sudoku solution is an arrangement of the symbols
1, . . . , 9 in a 9 × 9 grid in such a way that each symbol occurs once in each
row, column, subsquare, broken row, broken column, and location. In other
words, it is a multiple gerechte design for the partitions into subsquares,
broken rows, broken columns, and locations. Figure 5 shows a symmetric
Sudoku solution. The square shown has the further property that each of
the 3× 3 subsquares is “semi-magic”, that is, its row and column sums (but
not necessarily its diagonal sums) are 15 (John Bray [6]).

As in the preceding section, two Sudoku solutions are equivalent if one can
be obtained from the other by a combination of row and column permutations
(and possibly transposition) which preserve all the relevant partitions, and
re-numbering of the symbols.

The main result of this section asserts that, up to equivalence, there are
precisely two symmetric Sudoku solutions. This theorem can be proved by
a computation of the type described in the first section. However, we give a
more conceptual proof, exploiting the links with the other topics of the title.

We also consider mutually orthogonal sets; we show that the maximum
number of mutually orthogonal Sudoku solutions is 6, and the maximum
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8 1 6 2 4 9 5 7 3
3 5 7 6 8 1 9 2 4
4 9 2 7 3 5 1 6 8

7 3 5 1 6 8 4 9 2
2 4 9 5 7 3 8 1 6
6 8 1 9 2 4 3 5 7

9 2 4 3 5 7 6 8 1
1 6 8 4 9 2 7 3 5
5 7 3 8 1 6 2 4 9

Figure 5: A semi-magic symmetric Sudoku solution

number of mutually orthogonal symmetric Sudoku solutions is 4. Moreover,
there is a set of six mutually orthogonal Sudoku solutions of which four are
symmetric.

3.1 Preliminaries

In this subsection we describe briefly the notions of affine and projective
geometry and coding theory. Readers familiar with this material may skip
this subsection.

Affine geometry An affine space is just a vector space with the distin-
guished role of the origin removed. Its subspaces are the cosets of the vector
subspaces, that is, sets of the form U + v, where U is a vector subspace and
v a fixed vector, the coset representative. This coset is also called the trans-
late of U by v. Two affine subspaces which are cosets of the same vector
subspace are said to be parallel, and the set of all cosets of a given vector
subspace forms a parallel class. A transversal for a parallel class of affine
subspaces is a set of coset representatives for the vector subspace.

We use the terms “point”, “line” and “plane” for affine subspaces of
dimension 0, 1, 2 respectively. We denote the n-dimensional affine space over
a field F by AG(n, F ); if |F | = q, we write AG(n, q).

We will use the fact that a subset of AG(n, F ) is an affine subspace if
(and only if) it contains the unique affine line through each pair of its points.
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In affine space over the field F = GF(3), a line has just three points, and the
third point on the line through p1 and p2 is the “midpoint” (p1 + p2)/2 =
−(p1 + p2).

Projective geometry Much of the argument in the proof of the main
theorem of this section will be an examination of collections of subspaces
of a vector space. This can also be cast into geometric language, that of
projective geometry.

The n-dimensional projective space over a field F is the geometry whose
points, lines, planes, etc. are the 1-, 2-, 3-dimensional (and so on) subspaces
of an (n + 1)-dimensional space V (which we can take to be F n+1). A point
P lies on a line L if P ⊂ L (as subspaces of F n+1).

For example, a point of the projective space PG(n, F ) is a 1-dimensional
subspace of the vector space F n+1, and so it corresponds to a parallel class
of lines in the affine space AG(n + 1, F ). The points of the projective space
can therefore be thought of as “points at infinity” of the affine space.

We will mostly be concerned with 3-dimensional projective geometry; we
refer to [7, 12]. We will use the following notions:

• Two lines are said to be skew if they are not coplanar. Skew lines are
necessarily disjoint. Conversely, since two lines in a projective plane
intersect, disjoint lines are skew. So the terms “disjoint” and “skew”
for lines in projective space are synonyms. We will normally refer
to disjoint lines. Note that disjoint lines in PG(n, F ) arise from 2-
dimensional subspaces in F n+1 meeting only in the origin.

• A hyperbolic quadric is a set of points satisfying an equation like x1x2+
x3x4 = 0. Any such quadric contains two “rulings”, each of which is
a set of pairwise disjoint lines covering all the points of the quadric
(Figure 6). Such a set of lines is called a regulus, and the other set is
the opposite regulus. Any three pairwise disjoint lines of the projective
space lie in a unique regulus. The lines of the opposite regulus are all
the lines meeting the given three lines (their common transversals).

• A spread is a family of pairwise disjoint lines covering all the points
of the projective space. A spread is regular if it contains the regulus
through any three of its lines. (Any three lines of a spread are pairwise
disjoint, and so lie in a unique regulus.) It can be shown that, if the
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field F is not quadratically closed, then there exists a regular spread.
In particular, this holds when F = GF(3).
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Figure 6: A hyperbolic quadric and its two rulings

The fact that lines in a projective plane intersect is a consequence of the
dimension formula of linear algebra. The points and lines of the plane are
1- and 2-dimensional subspaces of a 3-dimensional vector space; and if two
2-dimensional subspaces U1 and U2 are unequal, then

dim(U1 ∩ U2) = dim(U1) + dim(U2)− dim(U1 + U2) ≥ 2 + 2− 3 = 1.

The second and third parts are most easily proved using coordinates. We will
see an example of a regulus and its opposite in coordinates later. In cases
where regular spreads exist, any three pairwise disjoint lines are contained
in a regular spread.

In the final section of the paper we briefly consider higher dimensions,
and use the fact that PG(2m − 1, F ) has a spread of (m − 1)-dimensional
subspaces.

Coding theory A code of length n over a fixed alphabet A is just a set
of n-tuples of elements of A; its members are called codewords. The Ham-
ming distance between two n-tuples is the number of positions in which they
differ. The minimum distance of a code is the smallest Hamming distance
between distinct codewords. For example, if the minimum distance of a code
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is 3, and the code is used in a communication channel where one symbol in
each codeword might be transmitted incorrectly, then the received word is
closer to the transmitted word than to any other codeword (by the triangle
inequality), and so the error can be corrected; we say that such a code is
1-error-correcting.

A 1-error-correcting code of length 4 over an alphabet of size 3 contains
at most 9 codewords. For, given any codeword, there are 1 + 4 · 2 = 9 words
which can be obtained from it by making at most one error; these sets of nine
words must be pairwise disjoint, and there are 34 = 81 words altogether, so
there are at most 9 such sets. If the bound is attained, the code is called
perfect, and has the property that any word is distant at most 1 from a unique
codeword.

It is known that there is, up to a suitable notion of equivalence, a unique
perfect code of length 4 over an alphabet of size 3, the so-called Hamming
code. We do not assume this uniqueness; we will determine all perfect codes
in the course of our proof (see Proposition 3.3).

If the alphabet is a finite field F , the code C is linear if it is a subspace
of the vector space F n. The Hamming code is a linear code. Note that
translation by a fixed vector preserves Hamming distance; so, for example, if
a linear code is perfect 1-error-correcting, then so is each of its cosets.

A linear code C of dimension k can be specified by a generator matrix, a
k × n matrix whose row space is C. The code with generator matrix[

0 1 1 1
1 0 1 2

]
is a Hamming code. Of course, permutations of the rows and columns of this
matrix, and multipication of any column by −1, give generator matrices for
other Hamming codes.

See Hill [11] for further details.

3.2 Sudoku and geometry over GF(3)

Following the idea of the design key described in Section 2.3, we coordinatize
the cells of a Sudoku grid using GF(3), the field of integers mod 3. Each cell
c has four coordinates (x1, x2, x3, x4), where

• x1 is the number of the large row containing c;

• x2 is the number of the minirow of this subsquare which contains c;

16



• x3 is the number of the large column containing c;

• x4 is the number of the minicolumn of this subsquare which contains c.

(In each case we start the numbering at zero, so that each coordinate takes
the values 0, 1, 2. We number rows from top to bottom and columns from
left to right.)

Now the cells are identified with the points of the four-dimensional vector
space over GF(3). The origin of the vector space is the top left cell. However,
there is nothing special about this cell, so we should think of the coordinates
as forming an affine space AG(4, 3).

Various interesting regions of the Sudoku grid are cosets of 2-dimensional
subspaces, as shown in the following table.

Equation Description of cosets Line in PG(3, 3)
x1 = x2 = 0 Rows L1

x3 = x4 = 0 Columns L2

x1 = x3 = 0 Subsquares L3

x1 = x4 = 0 Broken columns L5

x2 = x3 = 0 Broken rows L6

x2 = x4 = 0 Locations L4

In addition, the main diagonal is the subspace defined by the equations x1 =
x3 and x2 = x4, and the antidiagonal is x1 + x3 = x2 + x4 = 2, a coset of the
subspace x1 = −x3, x2 = −x4. (The other cosets of these two subspaces are
not so obvious in the grid.)

Now, in a Sudoku solution, each symbol occurs in nine positions forming
a transversal for the cosets of the subspaces defining rows, columns, and
subsquares as above (this condition translates into “one position in each
row, column, or subsquare”). We call a Sudoku solution linear if, for each
symbol, its nine positions form an affine subspace in the affine space. All the
Sudoku solutions in this subsection and the next are linear. Those in this
subsection have the stronger property that the nine affine subspaces are all
cosets of the same vector subspace, each coset defining the position of one
symbol in the grid. We will say that a linear Sudoku solution is of type A if
this is the case, and of type B otherwise.

Theorem 3.1 (a) There is a set of six mutually orthogonal Sudoku solu-
tions. These squares are also gerechte designs for the partition into
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locations, and have the property that each symbol occurs once on the
main diagonal and once on the antidiagonal. Each of the Sudoku solu-
tions is linear of type A.

(b) There is a set of four mutually orthogonal multiple gerechte designs
for the partitions into subsquares, locations, broken rows and broken
columns; they also have the property that each symbol occurs once on
the main diagonal and once on the antidiagonal. Each of the Sudoku
solutions is linear of type A.

Remark We saw already that the number 6 in part (a) is optimal. The
number 4 in (b) is also optimal. For, given such a set, we can as before
suppose that they all have the symbol 1 in the cell in the top left corner.
Now the 1s in the subsquare in the middle of the top row cannot be in its
top minirow or its left-hand minicolumn, so just four positions are available;
and the squares must have their ones in different positions.

Proof (a) Our six Sudoku solutions will all be linear of type A; that is,
they will be given by six parallel classes of planes in the affine space. The
orthogonality of two solutions means that each plane of the first meets each
plane of the second in a single point. This holds precisely when the two
vector subspaces meet just in the origin (so that their direct sum is the
whole space). In other words, the vector subspaces correspond to disjoint
lines in the projective space PG(3, 3).

In our situation, the affine planes x1 = x2 = 0 and x3 = x4 = 0 whose
cosets define rows and columns correspond to two disjoint lines L1 and L2 of
PG(3, 3); and the affine plane x1 = x3 = 0 whose cosets define the subsquares
to a line L3 which is intersects both L1 and L2 (in the points 〈(0, 0, 0, 1)〉 and
〈(0, 1, 0, 0)〉 respectively). So we have to find six pairwise disjoint lines which
are disjoint from the given three lines.

Now there is a regulus R containing L1 and L2, whose opposite regulus
contains L3. Moreover, R is contained in a regular spread. Then the six lines
of the spread not in R are disjoint from L3, and have the required property.
(See Figure 7.)

Calculation shows that the remaining lines of R are x1−x3 = x2−x4 = 0
and x1 + x3 = x2 + x4 = 0, and the other three lines of the opposite regulus
are x1 − x2 = x3 − x4 = 0, x1 + x2 = x3 + x4 = 0, and x2 = x4 = 0, which
is the Locations line L4 (the line such that the cosets of the corresponding
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L1 L2

L3

Figure 7: A regulus, the opposite regulus, and a spread

vector subspace define the partition into locations). Since the remaining six
lines of the spread are disjoint from these, our claim about locations and
diagonals follows. It is clear from the construction that all the corresponding
Sudoku solutions are linear of type A.

A different set of six mutually orthogonal Sudoku solutions can be ob-
tained by choosing a regulus R∗ disjoint from R and contained in the spread,
and replacing it by the opposite regulus. This also gives linear solutions of
type A.

(b) For the second part, it is more convenient to work in the affine space
AG(4, 3). We want four 2-dimensional subspaces meeting each of the sub-
spaces xi = xj = 0 (for i 6= j) in just the zero vector. Such a subspace has
the property that each of its non-zero vectors has at most one zero coordi-
nate. In coding theory terms, this is a linear code with minimum distance
at least 3, and hence perfect. So we use the Hamming code.

Explicitly, the nine words of the Hamming code coordinatize the nine
cells of the grid in which the first symbol is placed. Each coset similarly
coordinatizes the positions of a further symbol.

The resulting square is the one shown in Figure 5.
In order to find four pairwise disjoint subspaces, we can apply column

permutations and sign changes to this code. The following four matrices
span the required codes:[

0 1 1 1
1 0 1 2

]
,

[
0 1 2 2
1 0 2 1

]
,

[
0 1 2 1
1 0 1 1

]
,

[
0 1 1 2
1 0 2 2

]
Another set of four mutually orthogonal symmetric Sudoku solutions is ob-
tained by changing the sign of the coordinates in the final column.

We can use the solution to (b) to find an explicit construction for (a).
Recall that we seek six lines of the projective space disjoint from the lines
L1, L2 and L3. All of these must be disjoint from L4 also.
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Four of these are also disjoint from the lines L5 and L6 defined by x1 =
x4 = 0 and x2 = x3 = 0; these are the four Hamming codes H1, . . . , H4

that we constructed. Now, there is a unique regulus R′ containing L1 and
L2 and having L5 and L6 in the opposite regulus; the other two lines of R′

can be added to the four lines arising from the Hamming codes to produce
the required set of six lines. They have equations x1 + x4 = x2 + x3 = 0 and
x1 − x4 = x2 − x3 = 0. See Figure 8. The resulting six mutually orthogonal
Sudoku solutions are shown in Figure 9; the last four are symmetric.

It can be shown that the four lines H1, . . . , H4 disjoint from the two reguli
themselves form a regulus; they and the lines of the opposite regulus are the
eight Hamming codes.

HHH
HH

���
��

L1 L2

L3
L4

L5

L6
H1 H2 H3 H4

R︷ ︸︸ ︷

︸ ︷︷ ︸
R′

Figure 8: Two reguli in the construction of mutually orthogonal gerechte
designs

3.3 Symmetric Sudoku solutions

In this section we classify, up to equivalence, the symmetric Sudoku solutions.
We show that there are just two of them; both are linear, and one is of type
A (defined by the nine cosets of a fixed subspace), while the other is of type
B (involving cosets of different subspaces).

Throughout this section, V denotes the vector space GF(3)4. Consider
the set of positions where a given symbol occurs in a symmetric Sudoku
solution, regarded as a subset of V . These positions form a code of length 4
containing nine codewords. Given any two coordinates i and j, and any two
field elements a and b, there is a unique codeword p satisfying pi = a and
pj = b. (This is the translation of the conditions for a symmetric Sudoku
solution.) The minimum distance of this code is thus at least 3, since distinct
codewords cannot agree in two positions. So we have:
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287
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516
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435

836
751
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943

895

632

976
413

784
521

531
849
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957

423
768

269
184

347
295

158
376

Figure 9: Six mutually orthogonal Sudoku solutions

Proposition 3.2 A symmetric Sudoku solution is equivalent to a partition
of V into nine perfect codes.

It is clear from this Proposition that the partition into cosets of a Ham-
ming code gives a symmetric Sudoku solution. In the remainder of this
section we prove that there is just one further partition, up to equivalence.

Proposition 3.3 Any perfect 1-error correcting code in GF(3)4 is an affine
subspace.

Proof Let H be such a perfect code. Then H consists of 9 vectors, any two
agreeing in at most one coordinate.

Any two vectors of H have distance at least 3; so∑
p,q∈H

d(p, q) ≥ 9 · 8 · 3 = 216,

where d denotes Hamming distance. On the other hand, if we choose any
coordinate position (say the first), and suppose that the number of vectors of

21



H having entries 0, 1, 2 there are respectively x0, x1, x2, then the contribution
of this coordinate to the above sum is

x0(9− x0) + x1(9− x1) + x2(9− x2) = 81− (x2
0 + x2

1 + x2
3) ≤ 81− 72 = 72,

and so the entire sum is at most 4 · 72 = 216. So equality must hold, from
which we conclude that any pair of vectors have distance 3 (that is, agree in
one position).

Now select any two coordinate positions, say positions i and j, and any
two elements of GF(3), say a and b. There is at most one vector p ∈ H with
pi = a and pj = b, since any two such vectors would have distance at most 2.
Since there are nine elements of H and nine pairs (a, b), we see that there is
exactly one vector p with these properties.

Now take p1, p2 ∈ H. Suppose, without loss, that they agree in the
first coordinate; say p1 = (a, b1, c1, d1) and p2 = (a, b2, c2, d2). There is
a unique element p3 of H having first coordinate a and second coordinate
−(b1+b2); since it must disagree with each of p1 and p2 in the third and fourth
coordinates, it must be p3 = (a,−(b1+b2),−(c1+c2),−(d1+d2) = −(p1+p2).
This is the third point on the affine line through p1 and p2. So H is indeed
an affine subspace, as required.

Now translation by a fixed vector preserves Hamming distance, so a trans-
late of a perfect code is a perfect code. So any perfect code is a coset of a
vector subspace which is itself a linear code. We call such a subspace allow-
able. Our next task is to find the admissible subspaces.

Lemma 3.4 The vectors p1 = (a1, a2, a3, a4), and p2 = (b1, b2, b3, b4) are two
linearly independent vectors in an allowable subspace X of V if and only if
the four ratios ai/bi, for i = 1, 2, 3, 4 are distinct, where ±1/0 = ∞ is one
ratio that must appear, and the indeterminate form 0/0 does not appear.

Proof The vectors p1, p2 and any two of the standard basis vectors, with
just one non-zero coordinate 1, must be linearly independent. So the deter-
minant of the corresponding matrix, which is aibj − ajbi, is not zero. Then
the result follows.

Given Lemma 3.4, we see that when a basis for an allowable subspace is
put into row-reduced echelon form, it takes one the following eight possibili-
ties. 


1011
or

1022

 and


0112
or

0121


 or




1012
or

1021

 and


0111
or

0122


 (1)
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These are the only allowable subspaces. So any perfect code in GF(3)4 is a
coset of one of those eight vector subspaces.

Our conclusion for symmetric Sudoku solutions so far can be summarised
as follows:

• Any symmetric Sudoku solution is linear;

• In a symmetric Sudoku solution, the positions of each symbol form a
coset of one of the eight subspaces given above.

Next we come to the question of how such subsets can partition V . One
simple way is just to take all cosets of one of the above 2-dimensional vector
subspaces, as in Section 3.2; this gives the solutions we described above as
Type A. Another choice is the following. Extend an allowable subspace X to
an appropriate 3-dimensional vector subspace Y of V . The three cosets of Y
partition V , and we can look for another allowable subspace X ′ of Y which
can be used to partition one or two of these cosets. For this to work, it is
necessary that the linear span of X and X ′ be 3-dimensional. For each choice
of an allowable X, it is easy to check that there are four other allowable X ′

such that the span of X and X ′ is 3-dimensional, but there is no set of three
allowable subspaces such that the span of each pair is 3-dimensional.

Conversely, take any symmetric Sudoku solution, and consider the corre-
sponding partition of V into cosets of allowable 2-dimensional subspaces. If
any pair of such subspaces are distinct and span the whole of V , then any
of their cosets will intersect, contradicting the Sudoku property. Thus their
span must be a 3-dimensional vector subspace Y and hence they are two
subspaces X and X ′ as in the previous paragraph. Thus X and X ′ are the
only two allowable subspaces parallel to any set in the partition for a Sudoku
solution. Furthermore, in each of the three cosets of Y , cosets of only one of
X or X ′ can appear. Thus the Sudoku solutions described in the previous
paragraph are the only ones possible.

Using this analysis we can see that for each choice of one of the 8 allowable
planes, since there are exactly 4 choices for another such that their span is
3-dimensional, there are 8 · 4/2 = 16 possible choices of such pairs. For
each pair, we want to use each plane to partition at least one of the three 3-
dimensional affine spaces determined by the pair of planes: there are 6 ways
of doing this. Thus there are 6 · 16 = 96 possible Sudoku solutions of this
sort. In addition, there are 8 possible Sudoku solutions comprising the cosets
of a single plane. This gives 96+8 = 104 total number of symmetric Sudoku
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solutions, falling into just two classes up to equivalence under symmetries of
the grid.

This analysis can also be used to define and count orthogonal symmetric
Sudoku solutions. First we note that, if two symmetric Sudoku solutions are
orthogonal, then both must be of type A. For, as we saw earlier, orthogonality
means that each coset in the first solution meets each coset in the second in
a single affine point (so the corresponding lines in the projective space are
disjoint). A type B Sudoku solution involves cosets of two 2-dimensional
spaces with non-zero intersection, corresponding to two intersecting lines in
PG(3, 3). But the only lines available are the eight lines of a regulus and its
opposite, and no such line is disjoint from two intersecting lines in the set.

Now two type A symmetric Sudoku solutions are orthogonal if and only
if the corresponding lines belong to the same regulus. So there are 8 · 3 = 24
such ordered pairs.

In the spirit of the Sudoku puzzle, we give in Figure 10 a partial symmetric
Sudoku which can be uniquely completed (in such a way that each row,
column, subsquare, broken row, broken column or location contains each
symbol exactly once). The solution is of type B; that is, it is not equivalent
to the one shown in Figure 5.

7
7

6

4 3
1 5 8

2 7

1 4
4

1

Figure 10: A Sudoku-type puzzle

The fact that there are just two inequivalent symmetric Sudoku solutions,
proved in the above analysis, can be confirmed with the DESIGN program,
which also shows that, if we omit the condition on locations, there are 12
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different solutions; and, if we omit both locations and broken columns, there
are 31021 different solutions. The total number of Sudoku solutions up to
equivalence (that is, solutions with only the conditions on rows, columns,
and subsquares) is 5472730538; this number was computed by Ed Russell
and Frazer Jarvis [18].

3.4 The block design in minirows and minicolumns

The cells in the minirows and minicolumns form lines of the affine space
AG(4, 3). In any type A symmetric Sudoku solution comprising all cosets of
a fixed vector subspace S, such a line together with S spans a 3-dimensional
subspace which contains three cosets of S. So all the nine lines in this sub-
space contain the same three symbols. This means that the 27 minirows de-
fine just three triples from {1, . . . , 9}, each triple occuring in nine minirows.
The same condition holds for the minicolumns. Thus the design is orthogo-
nal. Moreover, the block design on {1, . . . , 9} formed by the minirows and
minicolumns is a 3 × 3 grid with each grid line occurring nine times as a
block. Each pair of symbols lies in either 0 or 9 blocks of the design. (These
properties are easily verified by inspection of Figure 5.)

In general, a block design is said to be balanced if every pair of symbols lies
in the same number of blocks. Since the average number of blocks containing
a pair of symbols from {1, . . . , 9} in this design is 2·27·3/

(
9
2

)
= 9/2, the design

cannot be balanced. But we could ask whether there is a Sudoku solution
which is better balanced than a type A symmetric solution; for example, one
in which each pair occurs in either 4 or 5 blocks. Such solutions exist; the
first example was constructed by Emil Vaughan [23].

Given such a design with pairwise concurrences 4 and 5, we obtain a
regular graph of valency 4 on the vertex set {1, . . . , 9} by joining two vertices
if they occur in five blocks of the design. The “nicest” such graph is the 3×3
grid, the line graph of K3,3. (This graph is strongly regular, and the resulting
design would be partially balanced with respect to the Hamming association
scheme consisting of the graph and its complement: see [1].) Vaughan’s
solution does not realize this graph, but we subsequently found one which
does. An example is given in Figure 11. (Two vertices in the same row or
column of the 3× 3 grid are adjacent.)

We could ask whether even more is true: is there a Sudoku solution in
which each pair of symbols occur together 2 or 3 times in a minirow, 2 or 3
times in a minicolumn, and 4 or 5 times altogether? (We saw in Section 2.4
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1 5 2 6 8 9 7 4 3
3 8 7 1 2 4 9 6 5
9 4 6 3 5 7 1 8 2

2 1 4 8 7 6 3 5 9
6 9 5 4 1 3 2 7 8
8 7 3 5 9 2 6 1 4

5 6 1 9 3 8 4 2 7
7 3 8 2 4 1 5 9 6
4 2 9 7 6 5 8 3 1

t
t
t

t
t
t

t
t
t1 2 4

9 6 5

7 8
3

Figure 11: A Sudoku solution in which the block design in minirows and
minicolumns has concurrences 4 and 5, and its corresponding graph

that balancing concurrences in minirows and minicolumns separately is a
desirable statistical property.) A computation using GAP showed that such
a solution cannot exist; one cannot place more than five symbols satisfying
these constraints without getting stuck. It is not clear what the “best”
compromise is.

We further found that there exist Sudoku solutions in which the design
in minirows and minicolumns is partially balanced with respect to the 3× 3
grid with concurrences (4, 5), (3, 6), (2, 7) or (0, 9), but not (1, 8) (for which
at most four symbols can be placed). The type A linear Sudoku solution in
Figure 5 realizes the case (0, 9).

We also considered another special type of Sudoku solution based on the
properties of the minirows and minicolumns: those for which the designs
formed by minirows and minicolumns have adjusted orthogonality, in the
sense that their concurrence matrices ΛR and ΛC satisfy ΛRΛC = 81J , where
J is the all-one matrix. (Here the (i, j) entry of ΛR counts the number of
minirows in which i and j both occur, and similarly for ΛC .) The special
Sudoku solution of Figure 5 has this property, but it is not unique. (In this
solution, all entries of each concurrence matrix are 0 or 9.) We found that
there are, up to symmetry, 194 Sudoku solutions for which the minirows and
minicolumns have adjusted orthogonality in this sense, of which 104 have the
property that both ΛR and ΛC have entries different from 0 and 9. One of
these solutions is shown in Figure 12.
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1 2 3 4 5 6 7 8 9
7 8 9 1 3 2 6 5 4
4 5 6 7 8 9 1 3 2

3 1 2 6 4 5 9 7 8
9 7 8 2 1 3 4 6 5
6 4 5 9 7 8 2 1 3

8 9 1 5 6 4 3 2 7
2 3 7 8 9 1 5 4 6
5 6 4 3 2 7 8 9 1

Figure 12: Minirows and minicolumns form designs with adjusted orthogo-
nality, but the overall design is not orthogonal

A word about the computations reported in this section. The strategy
is to place the symbols 1, . . . , 9 in the grid successively to satisfy the con-
straints. The positions of a single symbol in the grid subject to the Sudoku
constraints that it occurs once in each row, column and subsquare can be
described by a permutation π of the set {1, . . . , 9}, where the set of positions
is {(i, π(i)) : 1 ≤ i ≤ 9}. There are 66 of these “Sudoku permutations”.
We say that two Sudoku permutations are “compatible” if they place their
symbols in disjoint cells satisfying the appropriate conditions (for example,
for concurrences 4 and 5, that there are either 4 or 5 occurrences of the two
symbols in the same minirow or minicolumn). Then we form a graph as
follows: the vertex set is the set of all Sudoku permutations, and we join two
vertices if they are compatible. We now search randomly for a clique of size 9
in the compatibility graph: this is a set of nine mutually compatible Sudoku
permutations, defining a Sudoku solution with the required properties.

Adjusted orthogonality of the two designs is not captured by any obvious
compatibility condition on the Sudoku permutations, and we proceeded dif-
ferently. Since each of the two concurrence matrices has diagonal entries 9, we
see that adjusted orthogonality implies that two symbols cannot occur both
in the same minirow and in the same minicolumn. Using this as the com-
patibility condition, we built the compatibility graph, and found all cliques
of size 9, using the GAP package GRAPE [19]. Remarkably, it turned out
that all of them actually give designs with adjusted orthogonality; we know
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no simple reason for this fact, since our compatibility condition appears not
strong enough to guarantee this.

4 Other finite field constructions

The constructions in Section 3.2 can be generalized.

Proposition 4.1 Let q be a prime power, and a and b positive integers. Let
n = qa+b. Partition the n × n square into qa × qb rectangles. Then we can
find

qa+b − 1− (qa − 1)(qb − 1)

q − 1
.

mutually orthogonal gerechte designs for this partitioned grid.

Remark If a < b, our upper bound for the number of mutually orthogonal
gerechte designs for this grid is qb(qa − 1). If a = 1, this bound is equal to
the number in the theorem, so our bound is attained. If a > 1, however,
the bound is not met by the construction. For example, if p = 2, a = 2 and
b = 3, the bound is 24 but the construction achieves 10. If a and b are not
coprime, we can improve the construction by replacing q, a, b by qd, a/d, b/d,
where d = gcd(a, b).

Proof Represent the cells by points of the affine space AG(2(a+ b), q) with
coordinates x1, . . . , xa+b, y1, . . . , ya+b. The rows are cosets of the subspace
x1 = · · · = xa+b = 0, the columns are cosets of the subspace y1 = · · · =
ya+b = 0, and the rectangles are cosets of x1 = · · · = xa = y1 = · · · = yb = 0.

As before, we work in the projective space PG(2(a + b)− 1, q). The first
two subspaces are disjoint, and are part of a spread of qa+b − 1 subspaces of
the same dimension. The third subspace meets the first in (qb − 1)/(q − 1)
points and the second in (qa−1)/(q−1) points, and has (qa−1)(qb−1)/(q−1)
further points. In the worst case, this subspace meets (qa−1)(qb−1)/(q−1)
further spaces of the spread, each in one point. This leaves qa+b − 1− (qa −
1)(qb − 1)/(q − 1) spread spaces disjoint from it, as required.

Our construction of symmetric Sudoku solutions also generalizes:

28



Proposition 4.2 Let q be a prime power, and consider the q2 × q2 grid,
partitioned into q× q subsquares, broken rows, broken columns, and locations
as in the preceding section. Then there exist (q − 1)2 mutually orthogonal
multiple gerechte design for these partitions; this is best possible.

Proof We follow the same method as before, working over GF(q). The
lines of PG(3, q) defining rows, columns, subsquares, broken rows, broken
columns, and locations lie in the union of two reguli with two common lines,
which form part of a regular spread. The remaining (q − 1)2 lines of the
spread give the required designs. The upper bound is proved as before.
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