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Abstract

Any set of points in a finite projective space @) defines a matroid
which is representable over @fj. The Tutte polynomial of the matroid
is a two-variable polynomial which includes a lot of numerical information
about the configuration of points. For example, it determines the weight enu-
merator of the code associated with the point set, and hence the cardinalities
of hyperplane sections of the set.

Another polynomial used in enumeration is the cycle index of a permu-
tation group, which includes information about the number of orbits of the
group on various configurations. This is the subject of a well-developed
theory.

The aim (not yet realised) of the research reported here is to combine
the Tutte polynomial of a matroid with the cycle index of any group acting
on the matroid to obtain a more general polynomial which tells us about
the number of orbits of the group on configurations counted by the Tutte
polynomial.

The paper includes an introductory exposition of all these topics.

1 Introduction

A set of points in a finite projective space can be regarded as a mdridth
no dependent set of size 2) together with a vector representatibh @fer a



finite field. Many geometric properties of the point set, such as the cardinalities
of subspace interesections, can be read off from the matroid, or from its Tutte
polynomial.

In addition, a (linear) code over a finite field gives rise to a matroid on the set
of coordinate positions of the code. According to a theorem of Greene, the weight
enumerator of the code is a specialisation of the Tutte polynomial of the matroid.

For example, from this point of view, Segre’s problems about arcs in projec-
tive spaces have been re-interpreted as problems about representations of uniform
matroids, or about linear MDS codes. But the principle applies much more widely.

A linear code also gives rise to a special type of permutation group, a so-
called IBIS group. The cycle index of this group is equivalent (under a simple
transformation) to the weight enumerator of the code. Every IBIS group acts on a
matroid, and in the case of the groups derived from linear codes, the cycle index
is a specialisation of the Tutte polynomial. However, there are other IBIS groups
for which the cycle index determines the Tutte polynomial of the matroid. These
facts suggest that a common generalisation exists.

In this paper, | consider the general situation of a grGupf automorphisms
of a matroidM. The aim is to find a polynomial which determines both the cycle
index of G and the Tutte polynomial ¥, and which extends the role of the cycle
index in orbit-couting to varius configurations enumerated by the Tutte polyno-
mial. A candidate for such a polynomial is proposed, but its properties have not
been determined yet.

2 Codes and weight enumerators

A linear code Cof lengthn over GHq) is simply a subspace of the vector space
GF(q)". Each element of C has weight wic), the number of non-zero coordi-
nates ofC. Theweight enumeratoof C is the polynomial

n
W. (X,Y) — anwt(c)vat(c) — AixnfiYi’
¢ ce; i;)

whereA, is the number of words df of weighti. Although it is really a polyno-
mial in a single variable, it is customary to write it as a homogeneous polynomial
in two variables, as done here.

As is well known, codes are used for error correction. Haenming distance
between two codewords is the number of places where they differ. If two words
v,w have Hamming distance at leagt-21, and at mose symbols are received
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incorrectly wherv is transmitted, then the received word will be closev tban
tow. Thus, if we use a code with minimum distance at leasez- 1, theneerrors
can be corrected. € is linear, then its minimum distance is equal to the minimal
weight of a non-zero codeword, and can be read off from the weight enumerator
of C.

We say thaC is an[n,k,d] code over Gkq) if it has lengthn, dimensionk,
and minimum distancd.

We call two linear codesquivalentif one can be obtained from the other by
a monomial transformation (a permutation of the coordinates followed by multi-
plication of the coordinates by possibly different non-zero scalars). In the case
g= 2, the only non-zero scalar is 1, and equivalence involved merely a coordinate
permutation. Note that equivalent codes have the same weight enumerator (but
not conversely, as the next example shows).

Example 1 Here are twdinary codegthat is, codes over the field GB).

000000 000000
110000 110000
001100 101000
000011 011000

+ complements + complements

Both codes have length 6 and dimension 3, and it is easy to see that they both
have weight enumerat®® + 3X*Y2 4 3X2Y4+YS. In fact they are not equivalent
(under permutation of coordinates), as we will see.

Thedual code C of a codeC is defined by
Ct={veGFQq)":v-c=0forallceC}.

If C has lengtm and dimensiork, thenC! has dimensiom — k. More surpris-
ingly, MacWilliams’ Theorenshows that the weight enumerator®f is deter-
mined by that ofC:

Theorem 2.1 Let C be a linear code. Then

W, (X,Y) = E1|Wc(x +(g—1)Y,X-Y).



In coding theory, there is a tension between the minimum distance and cardi-
nality of a code; they cannot both be too large. One result along these lines is the
Singleton boungstated here just for linear codes:

Theorem 2.2 If C is an[n,k,d| code, then kK n—d + 1.

A code attaining this bound is calledaximum distance separabte anMDS
code

3 Matroids and Tutte polynomials

Matroids were introduced by Whitney to model the notion of linear independence
in a vector space. A matroid consists of a g&r_# ), where_¢ is a non-empty

set of subsets (callemhdependent setof the ground seE satisfying the two
conditions

(M1) ¢ is closed downwards, thatis,JfC 1 € ¢, thenJc 7.

(M2) Theexchange axiomif 1,1, € _# and|l,| > |I;|, then there existsc I,,\ |;
suchthat, U{x} € 7.

It follows that any twobases(maximal independent sets) have the same cardi-
nality, called therank of the matroid. More generally, thank rank p(A) of a
subsetA of E is the size of a maximal independent subseAoMatroids can be
axiomatised in terms of the bases or their rank function (or indeed in various other
ways).

A family of vectors in a vector spadé forms a matroid, where independence
is linear independence. Such a matroid is called@or matroid If all sets of size
at most 2 in such a matroid are independent, then each 1-dimensional subspace
contains at most one vector i In this case, the matroid represents a subset of
the projective space baseddnWe call such a matroid jarojective matroid

Matroids arise in many other situations too. For example:

e E is a subset of an algebraically closed field, and independence is algebraic
independence over the prime subfield (this islgebraic matroid;

e E indexes a family of sets, and a subsetois independent if it indexes a
subfamily possessing a transversal (this isaasversal matroijt



e E is the edge set of an undirected graph, and a subset is independent if it
contains no cycle (this isgraphic matroid.

An important though easy example of a matroid is tinflorm matroid W
whose independent sets are all subsets of cardinality at kmafsthe ground set
of sizen.

Thedual M* of a matroidM is the matroid whose bases are the complements
of the bases of.

Associated with a matroit¥l on E, with rank functionp, is a two-variable
polynomial called the Tutte polynomial of the matroid, defined as follows:

T(M’X7y) — ;(X_ 1)p(E)_p(A) (y_ 1)|A|_p(A).

AC

(This is not Tutte’s original definition, but is essentially due to Whitney; it is not
at all trivial to prove the equivalence of the two definitions.) It is easy to see that
T(M*,x,y) =T(M;y,x).

In the case of a matroid representing a subset a projective space, the Tutte
polynomial encodes a lot of geometric information ab&usuch as cardinalities
of its intersections with subspaces of the projective space.

4 Matroids and codes

Let A be ak x n matrix over GKq) with linearly independent rows. There are two
natural objects we can obtain frofm

e The row space of\is a linear cod€ with lengthn and dimensiork.

e The columns ofA are vectors in GF)X, and so define a vector matrdidi
of rankk and cardinalityn.

Row operations o\ don’'t changeC, and merely change the basis of the vec-
tor space in whiciM is represented. Monomial transformations on the columns
replaceC by an equivalent code and merely re-label the pointMofThus ei-
ther of these combinatorial objects is a natural invariant for matrices under the
equivalence relation generated by these operations.

The codeC and the matroidM which correspond in this way have closely
related properties. Here are a couple of examples.

e The dual matroidM* correspondsto the dual co@e-.
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e M is projective if and only ifC+ has minimum weight at least 3.

e M is represented by anarc in PGk —1,q) (a set ofn points, nok+ 1
contained in a hyperplane) if and onlyGfis an MDS code of length and
dimensionk. Thus Segre’s fundamental problems [6] on arcs in projective
space are equivalent to problems about the existence of linear MDS codes,
or about vector representations of uniform matroids. | refer to [1] or to
Hirschfeld’s article in these Proceedings for further details.

Curtis Greene greene proved that the weight enumeratGrisfa specialisation
of the Tutte polynomial oM:

Theorem 4.1 If the code C and matroid M are associated as above, then

WL (X,Y) = (X = Y)N-kykT (M; w, é) .

Note that Greene’s Theorem, together with the above observation abbout du-
ality, can be used to give a purely combinatorial proof of MacWilliams’ Theorem.
(The original proof involved character sums.)

The Tutte polynomial is not a complete invariant of matroids; there exist non-
isomorphic matroids with the same Tutte polynomial. Nevertheless, it is more
discriminating than the weight enumerator. For example, the two codes in Exam-
ple 1 have different Tutte polynomials, and so are not equivalent. Indeed, we find
that the first has eight bases while the second has ten.

5 Permutation groups and cycle index

Thecycle indexof a permutation group is the multivariate probability generating
function for cycle lengths of a random element of the group. That is, the cycle
indexZ(G) is a polynomial in the indeterminatsg . .., s, (wherenis the degree)
given by

1
7(G) = — €1(9) ... ()
(G) G gg%sl sm9,

wherec; (g) is the number oi-cycles of the permutatiog.

As an indication of its use, | state the Cycle Index Theorem. Suppose that
we are given a sdt of figureswith non-negative integer weights, whegeis the
number of figures of weight Let A(X) = zaixi be the generating function for
these numbers.



Now let G be a permutation group da. We wish to count orbits o6 on the
set of functions fronE to F by weight, where the weight of a functianis the
sum of the weights of its values, and tBeaction is given by ¢9)(x) = ¢ (xg™1).
Let b, be the number of orbits on functions of weightand B(x) = ¥ b X' its
generating function. Th€ycle Index Theoremsserts that

B(X) = Z(G;5 < A(X)),

whereF (s < t;) denotes the result of substitutipdor s, in F, for all i.

For exampleZ(G;s 1+x') is the generating function for the numbers of
orbits of G on k-sets, for allk. (Take two figures, with weights 1 and 0; now
functions fromE to F are characteristic functions of subset€$ofand the weight
of a function is the cardinality of the set.)

Example 2 below shows that a permutation group is not determined up to
permutation ismorphism by its cycle index. (Indeed, it is not even determined up
to group isomorphism.)

One result we require later is ti#hift Theorem In this theorem,ZE/G
denotes a set of representatives of the orbits oh the power set dt, andG(A)
denotes the permutation group induced on the\d®t its setwise stabiliser 6.

Theorem 5.1 For any permutation group G on a set E, we have

Z(G(A) =Z(G;s «—s+1).
AcZE/G

This theorem is the basis for extending the cycle index to infinite permutation
groups. The definition of cycle index fails for infinite groups. But the expression
on the left-hand side of the equation in the theorem (where the summation is over
orbit representatives of finite sets) is well-defined if and only if the permutation
group isoligomorphic that is, has only finitely many orbits amsets for alln.

But that is another story!

6 Comparisons

In this section, we meet two special situations where a permutation group and
a matroid are associated with each other. In the first case, the Tutte polynomial
determines the cycle index but not the other way round; in the second case, the
reverse is true.



6.1 Groups from codes

LetC be a linear code of lengthand dimensiork over GKq). We represent the
additive group ofC as a permutation group on the &t {1,...,n} x GF(q) as
follows: the codeword = c; ... cn induces the permutation

(i,X) — (i,x+C¢).

There is a matroid defined onthe &ty blowing upthe matroid oq{1,...,n}
associated witle (replacing each poiritby g pairwise dependent points x) for
x € GF(qg)). We will see later a procedure for obtaining the matroid directly from
the permutation group.

It is easy to see that the weight enumerator of the code and the cycle index of
the group are related by

1

20) =g

W (s, s9/P),

170
wherep is the characteristic of GH).

Example 2 The binaryrepetition code{000,011 101110} of length 3 corre-
sponds to the permutation group of degree 6 consisting of the identity and the
three permutationg3,4)(5,6), (1,2)(5,6), and(1,2)(3,4). We have\W(X,Y) =

X3 +3XY2 andZ(G) = 1(<5 +35s3).

Note that there is another permutation group which has the same cycle index,
namely the group consisting of the identity and the three permutgtlofg 3, 4),
(1,3)(2,4), and(1,4)(2,3) (all fixing 5 and 6). This group does not arise from a
code.

6.2 Base-transitive groups

A basefor a permutation group is a sequence of points of the domain whose
pointwise stabiliser is the identity. A baseiiszedundantif no point is fixed by

the pointwise stabiliser of its predecessors. A permutation group is dzdiee
transitiveif it permutes its irredundant bases transitively.

Examples of base-transitive groups include the symmetric and alternating groups,
and the general linear and affine groups. For example, in the general linear group
GL(d,q), the bases are precisely the vector space bases (of) GF

The bases of a base-transitive group are the bases of a matroid. (This is not the
case for arbiitrary permutation groups; later we will examine the class of groups
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for which it holds.) This matroid is perfect matroid desigrthat is, the cardinality
of a flat of rankk (a maximal subset of rank) depends only ok. Mphako [5]
showed that the Tutte polynomial of a perfect matroid design is determined by the
cardinalities of the flats.

A base-transitive group of rank 1 is simply a regular permutation group (pos-
sibly with some global fixed points). Using the Classification of Finite Simple
Groups, Maund [4] determined all the finite base-transitive groups.

Example 3 There are two permutation groups which are base-transitive and whose
associated matroid I3, ; with each point blown up to a pair of points:

¢ the symmetric grouf,, acting on the set of unordered pairs fr¢in2, 3,4};
o the rotation group of the cube, acting on the set of faces of the cube.

Both are abstractly isomorphic ), but the actions are non-isomorphic and the
cycle indices are unequal. In the first group, an element of order 4 has a 2-cycle
and a 4-cycle; in the second, such an element has two fixed points and a 4-cycle.

7 IBIS groups

Recall the definition of an irredundant base for a permutation group. The follow-
ing was shown by Cameron and Fon-Der-Flaass [3]:

Theorem 7.1 For a permutation group G, the following are equivalent:
¢ all irredundant bases have the same size;
¢ the irredundant bases are preserved by re-ordering;

e the irredundant bases are the bases of a matroid.

A group satisfying these conditions is called I&S group(an acronym for
“Irredundaant Bases of Invariant Size”).

The IBIS groups form a special class of permutation groups connected with
matroids which includes both classes (groups derived from codes and base-transitive
groups) described earlier.

In the case of a permutation gro@from a codeC, the matroid associated
with G as IBIS group coincides with the one obtained by blowing up the matroid
of C. Thus, in this case, the cycle index is a specialisation of the Tutte polynomial.
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By contrast, in the base-transitive groups of Example 3, the Tutte polynomial is
determined by the cardinalities of the fixed-point sets, and so is determined by the
cycle index (but not conversely).

The two permutation groups with the same cycle index in Example 2 are both
IBIS groups, but with different rank, and corresponding to very different matroids:
in the first case, a blow-up &}, 5, and in the second casé, , with two added
loops (elements of rank 0). |

Thus, in all three cases, the Tutte cycle index suffices to distinguish the groups
concerned.

There are many other IBIS groups: for example, all Frobenius or Zassenhaus
groups, symplectic and unitary groups (acting on their natural vector spaces). The
classification problem for these groups, or even for the associated matroids, is
open.

8 A generalisation

In this section, there are some speculations about constructing a polynomial asso-
ciated with a grous acting on a matrooidl. We want a polynomial with the
following properties:

e it specialises to both the Tutte polynomialMfand the cycle index dB;

e for each “standard” enumeration problem solved by a specialisation of the
Tutte polynomial, the problem of countir@-orbits should be solved by a
specialisation of the new polynomial.

This aim has not yet been realised!

8.1 Equivariant Tutte polynomial

Let G be a group of automorphisms of the matrdid The equivariant Tutte
polynomial T(M,G) is obtained in the manner suggested by the Orbit-counting
Lemma: we average, fg < G, the terms in the summation for the Tutte polyno-
mial corresponding to sets fixed gy That is,

1 - —
T(M,Gxy) = G ZGAEE(X—l)P(E) P(A) (y — 1)A-P(A)
ge C

Ag=A
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1
- = (x— 1)PE)=P(A) (y— 1)A=p(A)
O ey,

1 E|GA,(X_ 1)P(E1-P(A) (y _ 1)A=p(A)

|G| AcZE/G |GA|
— z (x—1)PE=PA) (y_ 1)A-P(A)
AcZE/G

Thus, an alternative description of the equivariant Tutte polynomial is that it con-
tains the terms in the usual Tutte polynomial but summed over orit representatives
only.

It is cleaar that, if we substituid, 1), (1,2), (2,1) or (2, 2) into the equivariant
Tutte polynomial, we obtain the number of orbits®@bn bases, independent sets,
spanning sets, and arbitrary subsetg of

Unfortunately, not all specialisations work so nicely. It is not true that the
substitution which gives the chromatic polynomial of a graph from its Tutte poly-
nomial, when applied to the equivariant Tutte polynomial, gives the generating
function for the number of orbits on colourings. A similar remark applies to the
weight enumerator of a code.

So the equivariant Tutte polynomial is not the one we are looking for. We
will see, however, that it does arise as a specialisation of the Tutte cycle index
introduced below.

Example Let M be the uniform matroicliJZ3 (the cycle matroid of the triangle
graphK;), andG the symmetric grouf,. Then

T(M) = (x=1%+3(x=1)+3+(y—1) =x*+x+Y,
TM,G) = (Xx—=1)24+(X—=1)+1+(y—1) =x>—X+Y.

The chromatic polynomial df; is
P(k) =kT(M;1—k,0) = k(k—1)(k—2),

and no colouring is invariant under any permutation, so the number of orbits on
k-colourings is obtained by dividing by 6. However,

KT(M,G;1—k,0) = k?(k—1).
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8.2 The Tutte cycle index

TheTutte cycle indeis defined as follows:

ZTM,G) = 5 wEPANEGAIZ(G(A)).
AcZE/G

It has the following specialisations:

e Putu«—1,v—1: we obtairZ(G;s < s +1 for alli), by the Shift Theorem.

« Differentiate with respect teand putv < 1,5 « t' for alli. Since|G: G,|
is the size of the orbit oA, we obtain the sum over all o#E; moreover,
Z(G(A);s «t") =t/Al. So we obtain

tP(E) ZEt|A|P(A)(u/t)P(E)P(A) —tPET(M;x — u/t + 1Ly —t+1).
AC

e Putv—1,5 « t' (without differentiating): as in the preceding item, we
obtain the equivariant Tutte polynomial (with the same substitution).

| do not know whether the Tutte cycle index has the other desirable properties
listed earlier.

Remark The Tutte cycle index given here is essentially the same as the one
given in [2], but in a more general situation. Note thaGifs an IBIS group and

M the corresponding matroid, then the rank functiorvbis given byp(A) =

b(G) — b(G(A)), WhereG(A) is the pointwise stabiliser oA, andb(G) denotes

the minimum base size of the permutation grdbp So in this case the entire
definition can be written in terms of the permutation group, without mentioning
the matroid.
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