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1. Introduction

Let X be a finite set of ‘points’ and d be a metric on X which takes
integral values. For any v ∈ X and t ≥ 0, we refer to the set Bt(v) = {u ∈
X : d(u, v) ≤ t} as the ball of radius t centered at v, and we denote the
minimum (maximum, respectively) volume of a ball with radius t in X as
V min
t (V max

t ).
Let C ⊆ X, C 6= ∅ be a code, i.e. a set of points, which we will refer to as

codewords. The maximum distance between any two codewords in C is the
diameter of C:

δ(C) = max
c,c′∈C

d(c, c′),

while the minimum radius of a ball centered at a codeword needed to cover
C is the radius of C:

ρ(C) = min
c∈C

max
c′∈C

d(c, c′).

It is well-known that the diameter and the radius are related by [10, Ch. 6,
Problem 10]

ρ(C) ≤ δ(C) ≤ 2ρ(C).

Another important parameter of a code C is its covering radius, defined
as the minimum radius such that the balls centered around the codewords
cover the whole set X:

cr(C) = max
v∈X

min
c∈C

d(v, c).
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For a thorough exposition of the covering radius, see [5].

2. Results for all metric spaces

Definition 1. For any code C ⊆ X, the remoteness of C is defined as the
minimum radius of a ball that covers the whole code:

r(C) = min
v∈X

max
c∈C

d(v, c).

For any code C, we have

δ(C)

2
≤ r(C) ≤ ρ(C).

Furthermore, r({v}) = 0 for all v ∈ X and r(X) = ρ(X).
Clearly, the maximum cardinality of a code with remoteness at most t is

given by V max
t . We are hence interested in the minimum cardinality of a code

with remoteness at least t for t = 0, . . . , ρ(X), which we denote as m(X, d, t)
henceforth, or simply

m(X, t) = min
r(C)=t

|C|.

We have m(X, 0) = 1, m(X, t) = 2 for 1 ≤ t ≤
⌈
δ(X)
2

⌉
, and in general m(X, t)

is a non-decreasing function of t. The consideration above also shows that
m(X, t) ≤ V max

t−1 + 1; however this bound is usually very poor.
We now give a lower bound on the remoteness. Recall that an (n, r, k)-

covering design is a family of r-subsets (called blocks) of a set of size n, where
each k-set is contained in at least one block [12]. We denote the minimum
cardinality of an (n, r, k)-covering design as K(n, r, k). A table of the tightest
bounds on K(n, r, k) known so far is available at [11]. Denote the maximum
remoteness of a code with cardinality k as r(k) = max{r(C) : |C| = k}; thus
r(k) = max{t : m(X, t) ≤ k}.

Proposition 1. For all v ∈ X, let B′r(k)(v) be a set of V max
r(k) vertices con-

taining Br(k)(v). Then the family {B′r(k)(v) : v ∈ X} forms an (|X|, V max
r(k) , k)-

covering design and

r(k) ≥ min{t : K(|X|, V max
t , k) ≤ |X|}.
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Proof. By definition, for any code C of k codewords, there exists a point
v such that C ⊆ Br(k)(v) ⊆ B′r(k)(v). Therefore, the collection {B′r(k)(v)}
forms a covering design and K(|X|, V max

r(k) , k) ≤ |X|. �

For any code C, we denote the number of points at distance no more
than t from all codewords as µ(t, C). Remark that µ(t, C) > 0 if and only if
t ≤ r(C). Then we have |µ(t−1, C)|+|C| ≥ m(X, t) for t ≤ ρ(X). This holds
because for each element in µ(t − 1, C) we could choose a point at distance
at least t from it. Adding these points to C yields a set with remoteness
at least t and cardinality at most |µ(t − 1, C)| + |C|. Thus, m(X, t) can be
viewed as a lower bound on the intersection of balls.

In general, the problem of remoteness can be viewed as a special case of
strong domination in graphs [9]. Recall that a strong dominating set (also
referred to as total dominating set) in a graph is a set of vertices C ⊆ V such
that any vertex of the graph is adjacent to some element of C. The following
proposition is easily seen.

Proposition 2. For 0 ≤ t ≤ ρ(X), let Et = {uv : u, v ∈ X, d(u, v) ≥ t} and
define the graph Gt = (X,Et). Then r(C) ≥ t if and only if C is a strong
dominating set of Gt.

Since m(X, t) is the solution of a special set cover problem [6], we can
apply the bounds derived for the general case. We obtain [5]

n

n− V min
t−1 + 1

≤ m(X, t) ≤ n

n− V min
t−1 + 1

+
n

n− V max
t−1 + 1

ln(n− V min
t−1 + 1).

The lower bound is usually very poor, as we need V min
t−1 > n

2
+1 to make it

non-trivial. A code with a cardinality no more than the upper bound can be
obtained by using a greedy algorithm [13]. The upper bound can be further
refined by the techniques in [4].

The remoteness is closely related to the covering radius, as seen in Propo-
sition 3 below.

Proposition 3. For any code C,

ρ(X) ≤ r(C) + cr(C) ≤ ρ(X) + δ(X).
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Proof. The upper bound is trivial, we now prove the lower bound. It
suffices to show that for any point v ∈ X, there exists a codeword in C
at distance at least ρ(X) − cr(C) from v. For any v, there exists u such
that d(u, v) ≥ ρ(X), and by definition of the covering radius there exists
c ∈ C such that d(u, c) ≤ cr(C). Hence the triangular inequality implies
d(v, c) ≥ ρ(X)− cr(C). �

Note that the bounds in Proposition 3 can be tight. For instance, if
C = X, then r(C) + cr(C) = ρ(X). On the other hand, a pair of leaves
in the star graph with at least 4 vertices satisfies r(C) = 1 = ρ(X), while
cr(C) = 2 = δ(X).

Denoting the minimum cardinality of a code with covering radius t as
Mcr(X, t), Proposition 3 implies m(X, t) ≤Mcr(X, ρ(X)− t).

Furthermore, we say that the metric space (X, d) is balanced if ρ(X) =
δ(X) and if for any v ∈ X, there exists v̄ ∈ X at distance ρ(X) such that

d(u, v) + d(u, v̄) = ρ(X)

for all u ∈ X. For instance the binary Hamming graph H(n, 2) (the n-
dimensional hypercube) with the shortest path distance is a balanced metric
space, where v̄ = v + 1n, the all-ones vector.

Corollary 1. If X is balanced, then r(C) + cr(C) = ρ(X) for any code
C ⊆ X. Therefore, m(X, t) = Mcr(X, ρ(X)− t).

Proof. There exists v ∈ X such that d(v, c) ≥ cr(C) for all c ∈
C, with equality being reached for some codeword in C. Then we have
d(v̄, c) ≤ ρ(X) − cr(C) for all c ∈ C by the triangular inequality. Hence
r(C) ≤ ρ(X)− cr(C). �

3. Remoteness of permutation codes

We now consider X = Sn the symmetric group on the first n natural
integers, where the distance between two permutations is the Hamming dis-
tance: d(π, σ) = |{i : iπ 6= iσ}| for any π, σ ∈ Sn. Remark that the Hamming
distance is invariant under left and right translation: d(π, σ) = d(τπ, τσ) =
d(πτ, στ) for all π, σ, τ ∈ Sn. Note that d(π, σ) ∈ {0}∪{2, 3, . . . , n}. We shall
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commonly represent a permutation π ∈ Sn in passive form: π = 1π 2π . . . nπ.
We will also use the notation Jπ = {jπ : j ∈ J} for any set J ⊆ {1, . . . , n}.

Subsets of the symmetric group, referred to as permutation codes, have
been intensively studied recently (see the thorough survey in [2] and refer-
ences therein). In particular, the covering radius of permutation codes has
been investigated in [3].

3.1. Preliminary results

First of all, let us consider the remoteness of any pair of permutations.
If they are at distance 2, then the remoteness is clearly 2. However, when
the distance increases, the remoteness may vary for pairs of permutations
with the same distance. By translation, we only consider pairs of the form
C = {(1), σ}, where (1) denotes the identity. The remoteness of C depends on
the cycle structure of σ, denoted as T1, T2, . . . , Tk ⊆ {1, . . . , n} of respective
lengths l1, . . . , lk, where lc ≥ 2 and

∑k
c=1 lc = d((1), σ) = d and σ reduces

to a cyclic permutation σc of Tc for all c. We are interested in finding a
permutation π ∈ Sn which minimizes max{d(π, (1)), d(π, σ)}, which we will
refer to as a minimal permutation. Let us first focus on the case where k = 1,
i.e. σ is a cyclic permutation.

Lemma 1. If κ ∈ Sn is a cyclic permutation and π ∈ Sn\C, then

d(π, (1)) + d(π, κ) ≥ n+ 1.

Conversely, for all 1 ≤ e ≤ n−1, there exists τe ∈ Sn such that d(τe, (1)) = e
and d(τe, κ) = n+ 1− e.

Proof. It is clear that d(π, (1)) + d(π, κ) ≥ n for any π ∈ Sn by the
triangular inequality. Suppose π /∈ C satisfies d(π, (1)) + d(π, κ) = n and let
S = {j : jπ = j} be the set of indices on which π agrees with the identity,
and S̄ = {1, . . . , n}\S be the set of indices on which π agrees with κ. Since
π /∈ C, we have S̄ /∈ {∅, {1, . . . , n}} and hence there exists j in S̄κ∩S. Thus
jπ = j and j = iκ = iπ for some i ∈ S̄ and hence j = i which contradicts
the fact that S and S̄ are disjoint.

Assuming κ is the standard cyclic permutation, jκ = j + 1 for j ≤ n− 1
and nκ = 1. Then define τe as jτe = j for 1 ≤ j ≤ n − e, jτe = j + 1 for
n− e+ 1 ≤ e ≤ n− 1 and nτe = n− e+ 1. It is easily seen that τe satisfies
the claim. �
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Note that if π ∈ C = {(1), σ}, then d((1), π) + d(σ, π) = n. Hence
Lemma 1 indicates that we can either minimize the sum of distances between
π and the pair of codewords (if π ∈ C) or try to balance the distances
(otherwise) with an additional penalty of 1 unit of distance. The strategy
to obtain a minimal permutation for the general case is hence to pay the
minimal amount of penalties. This amount is no more than one, and can
even be zero under certain circumstances.

Proposition 4. Suppose d = d((1), σ) is even, and that we can order the cy-
cle lengths l1, . . . , lk such that there exists s for which

∑s
c=1 lc =

∑k
c=s+1 lc =

d
2
. Then r(C) = d

2
. Otherwise, r(C) =

⌊
d
2

⌋
+ 1. Thus m(Sn, t) = 2 for

2 ≤ t ≤
⌊
n
2

⌋
+ 1.

Proof. First of all, we have r(C) ≥
⌈
d
2

⌉
. We now prove that there exists

a minimal permutation π such that Tcπ = Tc for all 1 ≤ c ≤ k. Suppose the
contrary, i.e. for any minimal permutation τ , there exists a nonempty set of
indices c for which Tc 6= Tcτ . For all such c, denote the elements of Tc mapped
outside of Tc as {tc,1, . . . , tc,lc} and the elements outside of Tc mapped into
Tc as {sc,1, . . . , sc,lc}. Remark that tc,jτ /∈ {tc,j, tc,jσ} and sc,jτ /∈ {sc,j, sc,jσ}
for all c and j. Construct the permutation τ ′ as sc,jτ

′ = tc,jτ , tc,jτ
′ = sc,jτ

for all c, j and aτ ′ = aτ for any other a ∈ {1, . . . , n}. Then it is readily
checked that τ ′ is also minimal, while Tc = Tcτ for all c, which contradicts
our hypothesis.

Therefore, π can be decomposed into permutations π1, . . . , πk of T1, . . . , Tk
respectively. If the assumptions of the first sentence are satisfied, then simply
let πc be the identity for c ≤ s and πc = σc for c ≥ s+ 1, then it is clear that
π is at distance d

2
from both codewords.

Otherwise, a penalty has to be paid, for if πc is the identity for c ∈ J
and πc = σc for all c /∈ J for some set of indices J ⊆ {1, . . . , k}, then
d((1), π) =

∑
c∈J lc 6=

d
2

(similarly for σ) while d((1), π) + d(σ, π) = d, and
the maximum between the two distances is greater than d

2
. Let us pay the

penalty only once: let 1 ≤ s ≤ k such that
∑s−1

c=1 lc <
d
2

while
∑s

c=1 lc >
d
2
.

Let πc be the identity for c ≤ s − 1, πc = σc for c ≥ s + 1, and πs = τe,
where e =

⌊
d
2

⌋
−
∑k

c=s+1 lc + 1. Then d((1), π) = e+
∑k

c=s+1 lc =
⌊
d
2

⌋
+ 1 and

d(σ, π) = ls + 1− e+
∑s−1

c=1 lc =
⌈
d
2

⌉
. �

We are now interested in a refinement of the r(C) + cr(C) ≥ n bound.
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Proposition 5. If C is neither a singleton nor the whole symmetric group
Sn, then

r(C) + cr(C) ≥ n+ 1.

Proof. First of all, some trivial cases have to be dealt with. The state-
ment is easily verified for n ≤ 3; let us assume n ≥ 4. Then, if cr(C) = n
either r(C) = 0 and hence C is a singleton or r(C)+cr(C) ≥ n+2. Similarly
if r(C) = n then either cr(C) = 0 hence C = Sn or r(C) + cr(C) ≥ n+ 2.

Let us then assume that C is a code in Sn with cr(C) ≤ n−1 and r(C) ≤
n − 1. Remark that for any π ∈ Sn, we can construct a cyclic permutation
κ at distance n from π as follows. Let us express π in cycle decomposition:
π = (1 a2 a3 . . .) . . . (aj . . . an), then κ = (1 a3 . . . an−1 a2 a4 . . . an) if n is
even or κ = (1 a3 . . . an a2 a4 . . . an−1) if n is odd.

Therefore, for any π ∈ Sn, C does not contain the set of all cyclic
permutations multiplied by π (as such a set has remoteness n). There
hence exists a cyclic permutation κ for which πκ /∈ C. Due to the cover-
ing radius of C, there exists c ∈ C such that d(c, πκ) ≤ cr(C) and thus
d(c, π) ≥ n+ 1− cr(C) by Lemma 1 (for c 6= πκ because πκ /∈ C and c 6= π
because d(c, π) ≥ n− cr(C) > 0). �

Equality in Proposition 5 is achieved by many a code, e.g. any ball with
radius r, with 2 ≤ r ≤ n− 1.

3.2. Bounds

Let us derive a lower bound on m(Sn, t).

Proposition 6. For t ≤ n, we have

m(Sn, t) ≥
⌊

2n− t+ 1

2(n− t+ 1)

⌋
+ 1.

Proof. Let µ =
⌊

2n−t+1
2(n−t+1)

⌋
and let C = {c1, c2, . . . , cµ} be a code of µ

permutations. We construct a permutation π at Hamming distance at most
t − 1 from all codewords in C recursively as follows. Let I1 = ∅, and for all
1 ≤ j ≤ µ, let Aj be a set of cardinality n− t+ 1 such that Aj ∩ Ij = ∅ and
Ajcj ∩ Ijπ = ∅; then set aπ = acj for any a ∈ Aj and update Ij+1 = Ij ∪Aj.
Finally, denote Aµ+1 = {1, . . . , n}\Iµ+1 and its elements as {a1, . . . , al} and
{1, . . . , n}\Iµ+1π = {b1, . . . , bl}; then let aiπ = bi for all 1 ≤ i ≤ l.
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We first verify that Aj exists for all 1 ≤ j ≤ µ. This is done by recursion,
where the initial step j = 1 is trivial. Assume it is true up to j− 1; We have

|Ijcj ∪ Ijπ| ≤ |Ijcj|+ |Ijπ| = 2(j − 1)(n− t+ 1) ≤ t− 1.

Therefore, there exists a set Bj of cardinality n − t + 1 which does not
intersect Ijcj ∪ Ijπ. Let Aj = Bjc

−1
j , then |Aj| = n− t+ 1, Aj ∩ Ij = ∅, and

Ajcj ∩ Ijπ = ∅. Finally, Aµ+1 is well defined, for |Iµ+1| ≤ n.
Second, we verify that π is indeed a permutation by considering two dis-

tinct numbers 1 ≤ a < b ≤ n. Either a, b ∈ Aj for some j and aπ = acj 6=
bcj = bπ; or a ∈ Ai and b ∈ Aj for some i 6= j and hence bπ /∈ Aiπ, from
which bπ 6= aπ. �

Let us now design a code with high remoteness by using rows of a Latin
square. Recall that a Latin square of order n is an n×n array over {1, . . . , n}
such that any element of {1, . . . , n} appears in each row and each column
[1, Ch. 6]. The cyclic Latin square has as first row the elements 1 to n in
increasing order, and each row is obtained from the previous one by a cyclic
shift to the left. In other words, the rows of the cyclic Latin square are the
passive forms of the elements of the group generated by the standard cyclic
permutation.

Proposition 7. Let C be the first k rows of a Latin square of order n, then

r(C) ≥ n−
⌊n
k

⌋
.

Furthermore, if 2 | k|n and C consists of the first k rows of the cyclic Latin
square of order n, then r(C) ≥ n − n

k
+ 1. We obtain m(t) ≤ n

n−t+1
if

n− t+ 1 | n
2

and m(t) ≤
⌊

n
n−t+1

⌋
+ 1 if n− t+ 1 - n

2
and t ≤ n− 1.

Proof. Let ci denote the i-th row of a Latin square. For any π ∈ Sn, we
have

∑n
i=1 d(π, ci) ≥ n(k − 1) and hence there exists cj such that d(π, cj) ≥

n(k−1)
k

. This proves the first result. Now, let 2 | k |n and let C be the first
k rows of the cyclic Latin square of order n. Suppose there exists π ∈ Sn
such that d(π, ci) ≤ n(k−1)

k
for all 1 ≤ i ≤ k. By the argument above, there

actually has to be equality for all i, hence for all 1 ≤ j ≤ k, there exists ij
such that jπ = jcij . Denoting the content of the (i, j) cell of the Latin square
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as L(i, j) and ∆(i, j) = L(i, j)− i− j + 1 mod n, then ∆ is identically zero
on the cyclic Latin square. We have

0 =
n∑
j=1

∆(ij, j) ≡
n∑
z=1

z − n

k

k∑
ij=1

ij −
n∑
j=1

j mod n ≡ −nk + 1

2
mod n,

which contradicts the fact that k is even. Thus, r(C) ≥ n(k−1)
k

+ 1. �

A transversal in a Latin square of order n is a collection of n positions
of the square comprising one from each row and one from each column, such
that the symbols in those positions are distinct. A transversal can hence be
viewed as a permutation π ∈ Sn at Hamming distance n− 1 from all rows.

Corollary 2. The whole set of rows of a Latin square has remoteness n−1 if
it has a transversal and remoteness n otherwise. We obtain m(Sn, n−1) ≤ n
for all n, and if n is even then m(Sn, n) ≤ n.

For n odd, the case of the full remoteness is not covered by our construc-
tions based on Latin squares. However, we can add more codewords to a
Latin square to reach a remoteness of n. For n ≥ 5, [14] indicates that there
exists a Latin square of order n (referred to as a confirmed bachelor) which
contains an entry through which no transversal passes.

Proposition 8. Let n ≥ 5 be odd and let C ⊆ Sn consist of the rows of a
confirmed bachelor Latin square of order n. Let D = {(2i − 1 2i) : 1 ≤ i ≤
n−1
2
}, then r(C ∪D) = n. Therefore, m(Sn, n) ≤ 3n−1

2
.

Proof. By permutation of rows and columns, let us assume that the en-
try through which no transversal passes is (n, n). Also, by renaming entries,
we can assume that the first row of the confirmed bachelor Latin square is
the identity. If π ∈ Sn is not a transversal of that Latin square, then there
exists a row of the Latin square at distance n from it. Otherwise, π agrees
with the identity in exactly one position, say j ≤ n− 1: we have jπ = j and
iπ 6= i for i 6= j. Then it is easily checked that d(π, (2k − 1 2k)) = n, where
j ∈ {2k − 1, 2k}. �

Now let us consider the cartesian product of two codes. Let C1, C2 be two
codes in Sn1 and Sn2 , respectively. Their cartesian product C = C1 × C2 ⊆
Sn1+n2 is the set of permutations c = (c1, c2), where ic = ic1 for 1 ≤ i ≤ n1

and ic = (i− n1)c2 + n1 for n1 + 1 ≤ i ≤ n2.
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Proposition 9. For all C1, C2, we have

r(C1 × C2) = r(C1) + r(C2).

Proof. For all π = (π1, π2) ∈ Sn1+n2 and c ∈ C, we have d(π, c) =
d(π1, c1) + d(π2, c2). Thus for any π ∈ Sn1+n2 , there exists a codeword at
distance at least r(C1) + r(C2) from π; conversely, if π1 and π2 are minimal
for C1 and C2 respectively then d(π, c) = r(C1) + r(C2). �

Corollary 3. If all codewords π ∈ C satisfy ilπ = jl for l = 1, . . . , k, then
by translation we may assume il = jl for l = 1, . . . , k; the remoteness is
unaffected by restriction to {1, . . . , n}\{i1, . . . , ik}.

The remoteness satisfies some inequalities analogous to the Singleton
bound for the minimum distance of codes.

Proposition 10. We have

m(Sn−1, t− 2) ≤ m(Sn, t) ≤ m(Sn−1, t).

Proof. We first prove the upper bound. For any injection π : {1, 2, . . . , n−
1} → {1, 2, . . . , n}, we denote π′ ∈ Sn as the permutation where iπ′ = iπ for
all 1 ≤ i ≤ n− 1 and nπ′ is the remaining value between 1 and n. In passive
form, we have π′ = π nπ′; in particular, π ∈ Sn−1 if and only if π′ = π n.

Let C ⊆ Sn−1 be a code with remoteness at least t and let C ′ = {c′ = c n ∈
Sn : c ∈ C}. We shall prove that r(C ′) ≥ t by considering any permutation
π′ = π nπ′ ∈ Sn. There are two cases to consider. First, if nπ′ = n, then
d(π′, c′) = d(π, c) for all c′ and hence there exists c′ such that d(π′, c′) ≥ t.
Second, if nπ′ = a ≤ n− 1, then n(π′)−1 = b ≤ n− 1 and consider π̄ ∈ Sn−1
such that bπ̄ = a and iπ̄ = iπ′ for all other i ≤ n − 1. Then there exists c′

such that d(π′, c′) = 1 + d(π, c) ≥ 1 + d(π̄, c) ≥ t+ 1.
We now prove the lower bound. Let C ′ ∈ Sn be a code with remote-

ness t and cardinality m(Sn, t). For any c′ ∈ C ′, let c ∈ Sn−1 such that
ic = ic′ for all i ≤ n − 1, i 6= nc′−1, and (nc′−1)c = nc′ if nc′ 6= n. For any
π ∈ Sn−1, we have d(π, c) ≥ d(π′, c′)− 2. Let C = {c : c′ ∈ C ′}, then C has
remoteness at least t−2 and hence m(Sn−1, t−2) ≤ |C| ≤ |C ′| = m(Sn, t). �

10



By using the passive form, a permutation in Sn can be viewed as a word
in the Hamming graph H(n, n). It immediately follows that if C is a per-
mutation code, then r(Sn, C) ≥ r(H(n, n), C). On the other hand, some
codewords can be added to C to produce a remote code for the Hamming
graph.

Proposition 11. We have

m(H(n, n), n) ≤ n+m(Sn, n).

Proof. Let C ⊆ Sn be a permutation code with remoteness n and let
D ⊆ H(n, n) be defined as D = {da = (a, a, . . . , a) : 1 ≤ a ≤ n}. Viewing the
permutations in C in passive form as words in H(n, n), we shall prove that
r(C∪D) = n. Let v ∈ H(n, n); there are two cases. First, if v also represents
a permutation, then there exists a codeword in C at distance n from v. Oth-
erwise, a coordinate value a is not on any coordinate of v, and d(v, da) = n. �

4. Remoteness of permutation groups

4.1. Groups generated by one element

Let us now consider the remoteness of a group G generated by one element
g. In view of Corollary 3, we assume that g has no fixed points. Let T1, . . . , Tk
of lengths l1, . . . , lk denote the cycle decomposition of g. Then it is easily seen
that r(G) ≥ n−k and that r(G) = n−k if and only if there is a permutation
π ∈ Sn at distance n− k from all the elements of G.

Theorem 1. If g is an even permutation, then r(〈g〉) = n − k; if g is an
odd permutation, then r(〈g〉) = n− k + 1.

Proof. We first prove the following claim: Let κ be a cyclic permutation
on {0, . . . , 2m− 1}, then there exist π0, π1 ∈ S2m such that

d(π0, κ
a) =

{
2m− 2 if a is even
2m if a is odd,

d(π1, κ
a) =

{
2m if a is even
2m− 2 if a is odd.

We assume that κ is the standard cyclic permutation, i.e. iκa = i + a
(all operations are modulo 2m). We differentiate on the parity of m. If m is
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even, then let iπ0 = 3i and iπ1 = 3i+1 for all 0 ≤ i ≤ 2m−1. We prove that
π0 is indeed a permutation at distance 2m− 2 from all even powers of κ and
at distance 2m from all odd powers. First, π0 is a permutation since 3i = 3j
implies i = j. Second, iκa = iπ0 if and only if a = 2i: all even values of a
occur twice. The proof for π1 is similar. If m is odd, let iπ0 = i+ 2

⌊
i
2

⌋
and

iπ1 = iπ0 + 1 for all i. It is easily checked that π0 and π1 are permutations
satisfying the claims.

We now prove that r(G) = n− k if g is even and r(G) ≤ n− k+ 1 if g is
odd. Let g be an even permutation, i.e. there is an even number of even cycle
lengths, say 2s. Let us construct a permutation π such that d(π, ga) = n− k
for all 0 ≤ a ≤ |G| − 1. Let π reduce to π0 for the first s cycles of even
lengths, to π1 for the other s cycles of even lengths, and let π reduce to a
transversal of the cyclic Latin square for all the k − 2s odd cycles. Since ga

reduces to κ mod (a,lc) (κ is a cyclic permutation) on Tc for all 1 ≤ c ≤ k, we
have

d(π, ga) =
s∑
c=1

d(π0, κ
a) +

2s∑
c=s+1

d(π1, κ
a) +

k∑
c=2s+1

(lc− 1) =
k∑
c=1

lc− k = n− k.

If g is an odd permutation, then without loss l1 is even and the restriction g′

of g on T2∪ . . .∪Tk is even. Therefore, there exists π′ at distance n−l1−k+1
from all the powers of g′, and by extension there exists π ∈ Sn at distance
at most n− k + 1 from all powers of g.

Let us finally prove that when g is an even permutation, then there is no
permutation π such that d(π, gi) = n− k for all 0 ≤ i ≤ |G| − 1. We show it
by contradiction. First, by an argument similar to that for Proposition 4, we
can show that there is always a minimal permutation π which restricts to a
permutation on all Tc’s. Let χ(i, j) = 1 if jgi = jπ and χ(i, j) = 0 otherwise.
Thus

n−1∑
j=0

|G|−1∑
i=0

iχ(i, j) = k

|G|−1∑
i=0

i = k|G| |G| − 1

2
. (1)

For any cycle Tc of length lc, denote mc = |G|
lc

. For all j ∈ Tc, we can express

{i : jπ = jgi} as {i′ + alc : 0 ≤ a ≤ mc − 1} for some i′ with 0 ≤ i′ ≤ lc − 1.

12



We obtain

n−1∑
j=0

|G|−1∑
i=0

iχ(i, j) =
n−1∑
j=0

mc−1∑
a=0

(i′ + alc)

=
n−1∑
j=0

i′mc +
n−1∑
j=0

|G|mc − 1

2

=
n−1∑
j=0

i′mc + k
|G|2

2
− n |G|

2
. (2)

Combining (1) and (2), we obtain

n−1∑
j=0

i′mc = |G|n− k
2

. (3)

On the other hand, for all j ∈ Tc, denote j′ = j −
∑c−1

b=1 lb (so that j′

ranges from 0 to lc− 1) and Zj = (j′+ i′) mod lc = jπ−
∑c−1

b=1 lb. Note that
Zj also ranges from 0 to lc − 1. Thus,

n−1∑
j=0

mcZj =
n∑
j=0

mcj
′ =

k∑
c=1

mc

lc−1∑
j′=0

j′ =
k∑
c=1

|G| lc − 1

2
= |G|n− k

2
. (4)

Finally, combining (3) and (4) yields

|G|n− k
2

=
n−1∑
j=0

mcZj ≡
n−1∑
j=0

mc(i
′+j′) mod |G| = |G|(n−k) ≡ 0 mod |G|.

Therefore, n − k is even. However, this is equivalent to: there are an even
number of cycle lengths. Indeed, denote the number of even-length cycles as
E and that of odd cycles as O, where E + O = k. We have n ≡ O mod 2
and hence n− k ≡ O − (E +O) ≡ E mod 2. �

4.2. Transitive groups

Proposition 12. A transitive group has remoteness n − 1 if and only if it
has covering radius n− 1; otherwise, it has remoteness n.

13



Proof. Let G be a transitive group; we know that cr(G) ≤ n − 1 by
[3, Proposition 15]. By the coset version of the orbit-counting lemma, the
average distance between any permutation π ∈ Sn and to G is n− 1. There-
fore, r(G) ≥ n− 1 with equality if and only if there exists π ∈ Sn such that
d(π, g) = n− 1 for all g ∈ G and hence cr(G) ≥ n− 1. �

Corollary 4. Any 2-transitive group has remoteness n. If G acts regularly,
then the Hall-Paige conjecture [8] implies that r(G) = n− 1 if and only if its
Sylow 2-subgroup is non-cyclic.

We remark that if a transitive permutation group G has remoteness n−1,
then for any 1 ≤ i ≤ n, StabG(i), acting on the remaining n− 1 points, has
covering radius n.

We have shown in Proposition 7 that the remoteness of the cyclic group
Cn acting on n elements has remoteness n− 1 when n is odd and remoteness
n when n is even. The dihedral group D2n is treated in the next proposition.

Proposition 13. We have r(D2n) = n−1 if n is congruent to 1 or 5 modulo
6 and r(D2n) = n otherwise.

Proof. For ease of presentation, assume that D2n acts on Zn. The whole
dihedral group can be viewed as two Latin squares: the cyclic Latin square
formed by elements κa for 0 ≤ a ≤ n−1, where jκa = a+j, and its symmetric
formed by elements σκb for 0 ≤ b ≤ n−1 where jσκb = b−j. First, Cn ≤ D2n,
so r(D2n) ≥ n − 1 for all n and r(D2n) = n for n even. Second, for n odd
and not a multiple of 3, we can easily show that the permutation π defined
as jπ = 2j–i.e., the diagonal of the cyclic Latin square–is at distance n − 1
from all the elements of the dihedral group (it agrees with κj and σκ3j on
position j). Third, let n be an odd multiple of 3, and suppose that there
exists π ∈ Sn at distance n − 1 from all the elements of D2n. It agrees on
position j with κaj where aj = jπ − j, and with σκbj where bj = jπ + j.

Denoting the square pyramidal number P =
∑n−1

j=0 j
2 = n (n−1)(2n−1)

6
, we have
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∑n−1
j=0 (2j)2 ≡ P mod n and hence

P ≡
n−1∑
j=0

4(jπ)2 mod n

≡
n−1∑
j=0

(aj + bj)
2 mod n

≡ 2P +
n−1∑
j=0

ajbj mod n

≡ 2P +
n−1∑
j=0

((jπ)2 − j2) mod n

≡ 2P mod n.

However, P = n2n2−3n+1
6

is not a multiple of n when n is a multiple of 3,
which is the desired contradiction. �

4.3. Transitive groups of odd order

Let G act on Ω = {1, . . . , n}. An orbital of G is an orbit of G on ordered
pairs. The number of orbitals is the rank of G. If G is transitive on Ω, there
is one diagonal orbital consisting of all pairs (x, x) for x ∈ Ω. The edge set
of any G-invariant graph or digraph is a union of orbitals.

There is a natural bijection between the orbitals of a transitive group and
the orbits of the stabiliser of a point: if O is an orbital, the set {y : (x, y) ∈ O}
is an orbit of the stabiliser of x.

Proposition 14. Let G be a transitive permutation group of degree n. Then
the permutation π satisfies d(g, π) = n − 1 for all g ∈ G if and only if, for
every non-diagonal orbital O, (x, y) ∈ O implies (xπ, yπ) /∈ O.

Proof. If (x, y), (xπ, yπ) ∈ O, then there exists g ∈ G with (xπ, yπ) =
(xg, yg), and d(π, g) ≤ n−2. Conversely, if not all distances d(g, π) are n−1,
then (since their average is n − 1) there exists g ∈ G with d(π, g) ≤ n − 2,
so π and g agree on two distinct points x and y, and (xπ, yπ) = (xg, yg). �
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Corollary 5. Let G be a normal subgroup of a 2-transitive group of degree
n. Then r(G) = n−1 unless G is itself 2-transitive, in which case r(G) = n.

Proof. If G is 2-transitive, there is only one non-diagonal orbital, and
the result follows.

Suppose that G is a normal subgroup of the 2-transitive group H, and
that it has r non-diagonal orbitals, where r > 1. Then H/G permutes these
orbitals transitively. By Jordan’s Theorem, H/G contains an element fixing
no orbital. If π is a permutation in this coset of G, then π has distance n− 1
from every element of G. �

Corollary 6. If G is transitive of degree n, and a point stabiliser has an
orbit of size greater than (n− 1)/2, then G has remoteness n.

Proof. There is an orbital O with |O| > n(n− 1)/2; so O ∩ Oπ 6= ∅ for
all permutations π. �

Part of the following Corollary is explained by Theorem 2 below.

Corollary 7. A permutation group of rank 3 has remoteness n − 1 if and
only if either it has odd order (in which case it is a group of automorphisms
of a Paley tournament) or the graphs formed by the two non-diagonal orbitals
are isomorphic.

Proof. If the non-diagonal orbitals have different sizes, the preceding
corollary applies. If they have the same size, then π satisfies the condition
of Proposition 14 if and only if it interchanges the two orbitals, i.e. it is an
isomorphism between each orbital graph and its complement. �

Corollary 8. If G is transitive and there is a self-complementary G-invariant
graph, or a self-converse G-invariant tournament, then G has remoteness
n− 1.

Proof. The orbitals which are edges or arcs of the given graph or tour-
nament are interchanged with those which are not by π. �

A powerful consequence is given below.
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Theorem 2. A transitive permutation group of degree n with odd order has
remoteness n− 1.

Proof. Let G be a transitive permutation group of degree n. By our
earlier result, it suffices to show that G is contained in the automorphism
group of a self-converse tournament. We prove this by induction on n, so
assume that this statement holds for permutation groups of smaller degree.
Note that it suffices to prove the result in the case where G is a subgroup of
Sn maximal subject to having odd order.

Case 1: G is imprimitive. By maximality, G is the wreath product of H
and K, where H and K are transitive groups of smaller degree having odd
order. By the inductive hypothesis, each is contained in the automorphism
group of a self-converse tournament; call these tournaments S and T . Then
form the lexicographic product of S and T : that is, take |T | copies of S
indexed by vertices of T , and orient edges between two copies of S according
to the arc between the corresponding vertices of T . Clearly G is a group
of automorphisms of the resulting tournament. We have to show that it
is self-converse. Choose an isomorphism σ from S to its complement, and
put a copy of σ on each copy of S. Now compose with an isomorphism τ
from T to its complement, blown up to act on copies of S as it does on
vertices of T . (This blow-up procedure means that the blown-up τ induces
an isomorphism between any two copies of S; combined with σ this makes it
an anti-isomorphism.)

Case 2: G is primitive. By the Feit–Thompson theorem, G is soluble;
so it has a normal elementary abelian subgroup (isomorphic to the additive
group of a vector space V over a prime field) which acts regularly on the
points. So we can identify the point set with V . Since G has odd order, no
ordered pair is reversed by G. So the orbits of G on ordered pairs of vertices
come in self-converse pairs, and we may pick one out of each pair to form a
tournament. Since V acts regularly, this tournament is a Cayley tournament
for the group V : that is, there is a set S such that we have arcs from 0 to v
for v ∈ S, and arcs v to 0 for v /∈ S (and note that, if v ∈ S, then −v /∈ S
and conversely); all other arcs are obtained by translation. Now the linear
map represented by −I reverses the orientation of all edges, so induces an
anti-automorphism. �

Remark. The Paley graphs are isomorphic to their complements, so their
automorphism groups have remoteness n− 1.
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The symmetric and alternating groups S7 and A7 acting on the set of
2-element subsets of {1, . . . , 7} have rank 3, with two orbitals of the same
size, but the two invariant graphs (the line graph of K7 and its complement)
are not isomorphic. So these groups have remoteness n.

Remark. Our results resolve the question of remoteness for many, but not
all, transitive permutation groups. So the complexity question remains open:
given permutations which generate a transitive group G, decide whether
r(G) = n.

4.4. The remoteness graph

Let G be a group acting transitively on a set Ω with cardinality n.

Definition 2. The remoteness graph R(G) of G has vertex set Ω2 and edge
set {(a, ag), (b, bg) : a, b ∈ Ω, g ∈ G}∪{(a, b), (a, c) : a, b, c ∈ Ω}∪{(b, a), (c, a) :
a, b, c ∈ Ω}.

Alternatively, two distinct ordered pairs of points (a, b), (c, d) ∈ Ω2 are
adjacent in R(G) if and only if a = c or b = d or there exists g ∈ G such
that (b, d) = (ag, cg) (and hence (b, d) and (a, c) lie in the same orbital). We
easily obtain that R(G) is complete if and only if G is 2-transitive.

Proposition 15. For any transitive group G, α(R(G)) ≤ n with equality if
and only if r(G) = n− 1.

Proof. Clearly, R(G) contains the Hamming graph H(2, n) as a span-
ning subgraph, hence α ≤ n. We have α = n if and only if there are n
ordered pairs (ai, bi) such that all ai and all bi are distinct and for any i 6= j,
(ai, aj) is not in the same orbital as (bi, bj). Denoting bi = aiπ for all i, we
see that π is a permutation which satisfies the conditions of Proposition 14. �

Lemma 2. The graph R(G) is vertex-transitive.

Proof. We prove that G × G acting coordinatewise is in the automor-
phism group of R(G). Let (a, b), (x, y) ∈ Ω2; we have x = ag, y = bh for some
g, h ∈ G. Therefore, consider two vertices (c, d), (e, f) ∈ Ω2; they are adja-
cent if and only if either c = e, d = f , or (c, e) = (dg1, fg1) for some g1 ∈ G.
This is equivalent to either cg = eg, dh = fh, or (cg, eg) = (dhg2, fhg2)
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where g2 = h−1g1g; in other words, (cg, dh) is adjacent to (eg, fh). �

Comment. Is it a Cayley graph?
We hence have the following inequalities [7, Corollary 7.5.2]:

n ≤ ω(R(G)) ≤ n2

α(R(G))
≤ χ(R(G)),

and we want to know when equality holds for the first two. Note that if
G has a subset of n permutations with minimum distance n (e.g., a regular
subgroup), then we require that not only α(R(G)) = n, but also that the
whole vertex set be partitioned into n stable sets. In other words, if G has
a regular subgroup, then it has remoteness n − 1 if and only if χ(R(G)) =
α(R(G)) = ω(R(G)) = n.

Since R(G) is vertex-transitive, it is regular, and its valency can be easily
computed. We have (a, a) ∼ (b, c) if and only if either b = a, c = a, or (a, b)
and (a, c) are in the same non-diagonal orbital. For any non-diagonal orbital

O, we have
(
|O|
n

)2
neighbours of (a, a) from O. Therefore, the valency is

given by

2(n− 1) +
1

n2

∑
Onon-diagonal

|O|2.

We can define an analogous graph for any set of permutations. If the
set is a Latin square (in particular if it is a regular permutation group),
then the graph is the strongly regular Latin square graph with parameters
(n2, 3(n− 1), n, 6); its clique number is n (if n > 2), its stability number is n
if and only if the Latin square has a transversal, and its chromatic number
is n if and only if the Latin square has an orthogonal mate.

4.5. List of transitive groups with remoteness n− 1

The table gives all transitive groups of degree n < 10 which have remote-
ness n−1. The first column gives the degree; the second column the number
in the GAP listing (so that the GAP command TransitiveGroup(9,17) pro-
duces the last group in the list, for example); the third column the order of
the group; and the fourth column refers to a note giving a result in our paper
justifying the conclusion where possible. There are no transitive groups of
degree 6 with remoteness 5; for the last three groups of degree 8, the result
is shown by computation.
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n k |G| Note
3 1 3 1
4 2 4 2
5 1 5 1

2 10 3
7 1 7 1

2 14 3
3 21 4

8 2 8 2
3 8 2
4 8 2
5 8 2
9 16

10 16
11 16

9 1 9 1
2 9 4
4 18 5
5 18 5
6 27 4
7 27 4
8 36 5
9 36 5

16 72 5
17 81 4

Notes.

1 Cyclic group; Theorem 1

2 Regular group, non-cyclic Sylow 2-subgroup; Corollary 4

3 Dihedral group; Proposition 13

4 Group of odd order; Theorem 2

5 Automorphism group of Paley graph; Corollary 8
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