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Abstract

The group PSL(2, q) is 3-homogeneous on the projective line when q is a prime
power congruent to 3 modulo 4 and therefore it can be used to construct 3-designs.
In this paper, we determine all 3-designs admitting PSL(2, q) with block size not
congruent to 0 and 1 modulo p where q = pn.
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1 Introduction

The group PSL(2, q) is 3-homogeneous on the projective line when q is a prime
power congruent to 3 modulo 4. Therefore, a set of k-subsets of the projective
line is the block set of a 3-(q + 1, k, λ) design admitting PSL(2, q) for some
λ if and only if it is a union of orbits of PSL(2, q). This simple observation
has led different authors to use this group for constructing 3-designs, see for
example [1–3,6,8–10]. All 3-designs with block sizes 4, 5, and 6 admitting
PSL(2, q) as an automorphism group were completely determined [2,10]. Other
authors have also obtained partial results for a variety of values of block size.
In this paper, we investigate the existence of 3-designs with block size not
congruent to 0 and 1 modulo p (q = pn) with automorphism group PSL(2, q).
In particular, when q is prime, we give a complete solution. We hope to settle
the general problem in a forthcoming paper.
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2 Notation and Preliminaries

Let t, k, v, and λ be integers such that 0 ≤ t ≤ k ≤ v and λ > 0. Let X be
a v-set and Pk(X) denote the set of all k-subsets of X. A t-(v, k, λ) design
is a pair D = (X,D) in which D is a collection of elements of Pk(X) (called
blocks) such that every t-subset of X appears in exactly λ blocks. If D has
no repeated blocks, then it is called simple. Here we are concerned only with
simple designs. It is well known that a set of necessary conditions for the
existence of a t-(v, k, λ) design is

λ

(
v − i
t− i

)
≡ 0

(
mod

(
k − i
t− i

))
, (1)

for 0 ≤ i ≤ t. An automorphism of D is a permutation σ on X such that
σ(B) ∈ D for each B ∈ D. An automorphism group of D is a group whose
elements are automorphisms of D.

Let G be a finite group acting on X. For x ∈ X, the orbit of x is G(x) =
{gx| g ∈ G} and the stabilizer of x is Gx = {g ∈ G| gx = x}. It is well known
that |G| = |G(x)||Gx|. Orbits of size |G| are called regular and the others are
called non-regular. If there is an x ∈ X such that G(x) = X, then G is called
transitive. The action of G on X induces a natural action on Pk(X). If this
latter action is transitive, then G is called k-homogeneous.

Let q be a prime power and let X = GF (q)∪{∞}. Then the set of all mappings

g : x 7→ ax+ b

cx+ d
,

on X such that a, b, c, d ∈ GF (q), ad−bc is a nonzero square and g(∞) = a/c,
g(−d/c) =∞ if c 6= 0, and g(∞) =∞ if c = 0, is a group under composition
of mappings called projective special linear group and is denoted by PSL(2, q).
It is well known that PSL(2, q) is 3-homogeneous if and only if q ≡ 3 (mod 4).
Note that |PSL(2, q)| = (q3 − q)/2. Throughout this paper, we let q be
a power of a prime p and congruent to 3 (mod 4). Since PSL(2, q) is 3-
homogeneous, a set of k-subsets is a 3-(q+ 1, k, λ) design admitting PSL(2, q)
as an automorphism group if and only if it is a union of orbits of PSL(2, q) on
Pk(X). Thus, for constructing designs with block size k admitting PSL(2, q),
we need to determine the sizes of orbits in the action of PSL(2, q) on Pk(X).

Let H ≤ PSL(2, q) and let define

fk(H) := the number of k-subsets fixed by H,

gk(H) := the number of k-subsets with the stabilizer group H.
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Then we have

fk(H) =
∑

H≤U≤PSL(2,q)

gk(U). (2)

We are mostly interested in finding gk which help us directly to obtain the
sizes of orbits. It is a fairly simple task to find fk and then to use it to compute
gk. By Möbius inversion applied to (2), we have

gk(H) =
∑

H≤U≤PSL(2,q)

fk(U)µ(H,U), (3)

where µ is the Möbius function of the subgroup lattice of PSL(2, q).

For any subgroup H of PSL(2, q) we need to carry out the following:

(i) Find the sizes of orbits from the action of H on the projective line and then
compute fk(H).

(ii) Calculate µ(H,U) for any overgroup U of H and then compute gk(H) using
(3).

Note that if H and H ′ are conjugate, then fk(H) = fk(H
′) and gk(H) =

gk(H
′).

In Section 4, we determine the action of subgroups of PSL(2, q) on the pro-
jective line. Section 5 is devoted to the Möbius function on the subgroup
lattices of subgroups of PSL(2, q). We will compute fk and gk in Sections 6
and 7, respectively and then will use the results to find new 3-designs with
automorphism group PSL(2, q) in Section 8.

The following useful lemma is trivial by (1).

Lemma 1 Let B be a k-subset of the projective line, and let G be its stabilizer
group under the action of PSL(2, q). Then |G| divides 3

(
k
3

)
.

3 The subgroups of PSL(2, q)

The subgroups of PSL(2, q) are well known and given in [4,7]. In the following
theorems and lemmas we present a brief account on the structure of elements
and subgroups of PSL(2, q). These information will be used in the subsequent
sections.

Theorem 2 [4,7] Let g be a nontrivial element in PSL(2, q) of order d and
with f fixed points. Then d = p and f = 1, d| q+1

2
and f = 0, or d| q−1

2
and

f = 2.
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Theorem 3 [4,7] The subgroups of PSL(2, q) are as follows.

(i) q(q ∓ 1)/2 cyclic subgroups of order d where d| q±1
2
.

(ii) q(q2 − 1)/(4d) dihedral subgroups of order 2d where d| q±1
2

and d > 2 and
q(q2 − 1)/24 subgroups D4.

(iii) q(q2 − 1)/24 subgroups A4.
(iv) q(q2 − 1)/24 subgroups S4 when q ≡ 7 (mod 8).
(v) q(q2 − 1)/60 subgroups A5 when q ≡ ±1 (mod 10).

(vi) pn(p2n − 1)/(pm(p2m − 1)) subgroups PSL(2, pm) where m|n.
(vii) The elementary Abelian group of order pm for m ≤ n.
(viii) A semidirect product of the elementary Abelian group of order pm and the

cyclic group of order d where d| q−1
2

and d|pm − 1.

In this paper we are specially interested in the subgroups (i)-(v) in Theorem
3. Note that isomorphic subgroups of PSL(2, q) of types (i)–(v) in Theorem 3
are conjugate in PGL(2, q). Now since PSL(2, q) is normal in PGL(2, q), for
any subgroup of PSL(2, q) of types (i)-(v) one can easily find the number of
overgroups which are of these types using Theorem 3. We have the following
lemmas.

Lemma 4 Cd has a unique subgroup Cl for any l > 1 and l|d. The nontrivial
subgroups of the dihedral group D2d are as follows: d/l subgroups D2l for any
l|d and l > 1, a unique subgroup Cl for any l|d and l > 2, d subgroups C2 if d
is odd and d+1 subgroups C2 otherwise. Moreover D2d has a normal subgroup
C2 if and only if d is even.

Lemma 5 The conjugacy classes of nontrivial subgroups of A4, S4, and A5

are as follows.

group C2 C2 C3 C4 C5 D4 D4 D6 D8 D10 A4

A4 3 4 1

S4 3 6 4 3 1 3 4 3 1

A5 15 10 6 5 10 6 5

Lemma 6 Let l| q±1
2d

and f | q±1
2

.

(i) Any Cd is contained in a unique Cld.
(ii) If d > 2, then any Cd is contained in (q ± 1)/(2ld) subgroups D2ld.

(iii) Any C2 is contained in (q + 1)/4 subgroups D4, (q + 1)/2 subgroups D2f if
f > 1 is odd, and (q + 1)(f + 1)/(2f) subgroups D2f if f is even.

(iv) If d > 2, then any D2d is contained in a unique D2ld.
(v) Any D4 is contained in 3 subgroups D2f for f > 2 even.
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Lemma 7(i) Any C2 is contained in (q+ 1)/2 subgroups S4 as a subgroup C2

of S4 with 6 conjugates (see Lemma 5) when q ≡ 7 (mod 8).
(ii) Any C2 is contained in (q + 1)/2 subgroups A5 when q ≡ ±1 (mod 10).

(iii) Let 3| q±1
2

. Then any C3 is contained in (q ± 1)/3 subgroups A4, (q ± 1)/3
subgroups S4 when q ≡ 7 (mod 8), and (q±1)/3 subgroups A5 when q ≡ ±1
(mod 10).

(iv) Any A4 is contained in a unique S4 when q ≡ 7 (mod 8) and 2 subgroups
A5 when q ≡ ±1 (mod 10).

Lemma 8(i) Any D4 is contained in a unique A4 and if q ≡ 7 (mod 8), then
it is in a unique S4 in which it is normal.

(ii) Any D6 is contained in 2 subgroups S4 when q ≡ 7 (mod 8) and 2 subgroups
A5 when q ≡ ±1 (mod 10).

(iii) Any D8 is contained in 2 subgroups S4 when q ≡ 7 (mod 8).
(iv) Any D10 is contained in 2 subgroups A5 when q ≡ ±1 (mod 10).

4 The action of subgroups on the projective line

In this section we determine the sizes of orbits from the action of subgroups
of PSL(2, q) on the projective line. Here, the main tool is the following obser-
vation: If H ≤ K ≤ PSL(2, q), then any orbit of K is a union of orbits of H.
In the following lemmas we suppose that H is a subgroup of PSL(2, q) and Nl

denotes the number of orbits of size l.

Lemma 9 Let H be the cyclic group of order d. Then

(i) if d| q+1
2

, then Nd = (q + 1)/d,
(ii) if d| q−1

2
, then N1 = 2 and Nd = (q − 1)/d.

PROOF. This is trivial by Theorem 2.

Lemma 10 Let H be the dihedral group of order 2d. Then

(i) if d| q+1
2

, then N2d = (q + 1)/(2d),
(ii) if d| q−1

2
, then N2 = 1 and N2d = (q − 1)/(2d).

PROOF. (i) H has a cycle subgroup of order d and therefore by Lemma 9,
its orbit sizes are multiples of d. Since H has at least d elements of order 2
which are fixed point free, it does not have orbits of size d. Therefore all orbits
are of size 2d.
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(ii) Since H has a cycle subgroup of order 2, all orbits are of even size. On the
other hand, H has a cycle subgroup of order d and therefore by Lemma 9, we
have one orbit of size 2 and all other orbits are regular.

Lemma 11 Let H be the group A4. Then

(i) if 3| q+1
2

, then N12 = (q + 1)/12,
(ii) if 3| q−1

2
, then N4 = 2 and N12 = (q − 7)/12,

(iii) if 3|q, then N4 = 1 and N12 = (q − 3)/12.

PROOF. If B is a 6-subset of the projective line, then |GB| ≤ 6 (see [10,
Lemma 2.1]). Hence N6 = 0. There is an element of order 2 in H. So by
Lemma 9, all orbits are of even order.

(i) H has a fixed point free element of order 3 and therefore by Lemma 9, its
orbit sizes are multiples of 6. Since N6 = 0, all orbits are regular.

(ii) H has an element of order 3 with two fixed points. Hence by Lemma 9,
orbit sizes are 2,4,12. If N2 = 1, then N4 = 0 and N12 = (q − 1)/12 which is
not integer. So N2 = 0, N4 = 2, and N12 = (q − 7)/12.

(ii) H has an element of order 3 with one fixed point. Hence by Lemma 9,
orbit sizes are 4 and 12. We have N4 = 1 and N12 = (q − 3)/12.

Lemma 12 Let H be the group S4. Then

(i) if 3| q+1
2

, then N24 = (q + 1)/24,
(ii) if 3| q−1

2
, then N8 = 1 and N24 = (q − 7)/24.

PROOF. We have q ≡ 7 (mod 8). Hence 3 6 |q. Note that H has a subgroup
A4. Therefore, by Lemma 11, orbits are of sizes 4,8,12,24. If B is a 4-subset of
the projective line, then by Lemma 1, |GB| | 12 and so N4 = 0. By a similar
argument, N12 = 0.

(i) It is obvious by Lemma 11(i).

(ii) By Lemma 11(ii), we necessarily have N8 = 1 and all other orbits of size
24.

Lemma 13 the Let H be group A5. Then

(i) if 15| q+1
2

, then N60 = (q + 1)/60,
(ii) if 3| q+1

2
and 5| q−1

2
, then N12 = 1 and N60 = (q − 11)/60,

(iii) if 3| q−1
2

and 5| q+1
2

, then N20 = 1 and N60 = (q − 11)/60,
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(iv) if 15| q−1
2

, then N12 = 1, N20 = 1, and N60 = (q − 31)/60.

PROOF. We have q ≡ ±1 (mod 10). Hence 3 6 |q and 5| q±1
2

. Note that H
has a subgroup A4.

(i) By Lemma 11(i), all orbit sizes are multiples of 12. On the other hand, H
has a fixed point free element of order 5 which means that all orbit sizes are
multiples of 5. Therefore, all orbits are regular.

(ii) By Lemma 11(i), all orbit sizes are multiples of 12. On the other hand, H
has an element of order 5 with two fixed points which implies the existence of
one orbit of sizes 12. Hence, N12 = 1 and all other orbits of size 60.

(iii) If B is a 4-subset of the projective line, then by Lemma 1, |GB| | 12 and so
N4 = 0. Now by Lemma 11(ii), we have one orbit of size 20 and all other orbits
are of orders 12 or 60. On the other hand, H has a fixed point free element of
order 5 which means that all orbit sizes are multiples of 5. Therefore, N12 = 0
and all remaining orbits are regular.

(iv) Similar to (iii), we have one orbit of size 20 and all other orbits are of
orders 12 or 60. On the other hand, H has an element of order 5 with two
fixed points which forces N12 = 1 and all other orbits to be regular.

Lemma 14 Let H be the elementary Abelian group of order pm. Then N1 = 1
and Npm = pn−m.

PROOF. By the Cauchy-Frobenius lemma, the number of orbits is pn−m+1.
Note that all orbit sizes are powers of p. Therefore, we just have one orbit of
size one and all other orbits are regular.

Lemma 15 Let H be a semidirect product of the elementary Abelian group
of order pm and the cyclic group of order d where d| q−1

2
and d|pm − 1. Then

N1 = 1, Npm = 1, and Ndpm = (pn − pm)/(dpm).

PROOF. H has an elementary Abelian subgroup of order pm. So by Lemma
14, we have one orbit of size 1 and all other orbit sizes are multiples of pm. On
the other hand, H has a cyclic subgroup of order d and therefore by Lemma
9, orbit sizes are congruent 0 or 1 module d. If congruent 0 module d, then
orbit size is necessarily dpm. Otherwise, orbit size must be 1 or pm. Now the
assertion follows from the fact that an element of order d has two fixed points.

Lemma 16 Let H be PSL(2, pm) where m|n. Then Npm+1 = 1 and all other
orbits are regular.
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PROOF. All subgroups of the form PSL(2, pm) of PSL(2, q) are conjugate
[4]. So we can suppose that H is the group with elements x 7→ ax+b

cx+d
, a, b, c, d ∈

GF (pm), where GF (pm) is the unique subfield of order pm of GF (pn). Since H
is transitive on GF (pm) we have an orbit of size pm + 1. H has a subgroup of
order pm(pm − 1)/2 which is a semidirect product of the elementary Abelian
group of order pm and the cyclic group of order (pm− 1)/2. So by Lemma 15,
all other orbits of H are multiples of pm(pm− 1)/2. On the other hand H has
an fixed point free element of order (pm + 1)/2 which forces orbits to be of
sizes of multiples of (pm + 1)/2. Hence all orbits except one are regular.

We summarize the results of the previous lemmas in the following theorem.

Theorem 17 The sizes of non-regular orbits for any subgroup H of PSL(2, q)
are as given in Table 1. (Subgroups with no non-regular orbits do not appear
in the table).

H Condition The sizes of non-regular orbits

Cd d| q−1
2 1, 1

D2d d| q−1
2 2

A4 3| q−1
2 4, 4

A4 3|q 4

S4 3| q−1
2 8

A5 3| q+1
2 , 5| q−1

2 12

A5 3| q−1
2 , 5| q+1

2 20

A5 15| q−1
2 12, 20

Zmp m ≤ n 1

Zmp o Cd m ≤ n, d|(pn − 1, pm − 1) 1, pm

PSL(2, pm) m|n pm + 1

Table 1
Sizes of non-regular orbits of subgroups
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5 The Möbius function of the subgroup lattice of subgroups of
PSL(2, q)

In this section we do some calculations on the Möbius function of the lattice
of subgroups of PSL(2, q) which will be useful in Section 7. We start with the
cyclic subgroups Cd.

Lemma 18 µ(1, Cd) = µ(d) and µ(Cl, Cd) = µ(d/l) if l|d.

PROOF. Since Cl is normal in Cd, we have µ(Cl, Cd) = µ(1, Cd/l). So it
suffices to find µ(1, Cd). By Lemma 4, Cd has a unique subgroup of order
m for any divisor m of d. Therefore,

∑
m|d µ(1, Cm) = 0. On the other hand∑

m|d µ(m) = 0 and µ(1) = 1. So by the initial condition µ(1, 1) = 1, we obtain
that µ(1, Cd) = µ(d).

Lemma 19 Let d > 1.

(i) µ(1, D2d) = −dµ(d),
(ii) µ(D2l, D2d) = µ(d/l),

(iii) µ(Cl, D2d) = −(d/l)µ(d/l) if l|d and l > 2,
(iv) µ(C2, D2d) = −(d/2)µ(d/2) if C2 is normal in D2d and µ(C2, D2d) = µ(d)

otherwise.

PROOF. (i) We have

µ(1, D2d) =−
∑

1≤H<D2d

µ(1, H)

=−
∑
m|d

µ(1, Cm)−
∑

m|d,m6=d

d

m
µ(1, D2m)

=−
∑

m|d,m6=d

d

m
µ(1, D2m).

On the other hand, −dµ(d) =
∑
m|d,m6=d

d
m
mµ(m) and −2µ(2) = 2. So by the

initial condition µ(1, D4) = 2, we obtain that µ(1, D2d) = −dµ(d).

(ii) Let D2l ≤ H ≤ D2d and |H| = 2ml. Then H is unique and it is a dihedral
group. Now we have µ(D2l, D2d) = −∑m| d

l
,m 6= d

l
µ(D2l, D2ml). On the other

hand, µ(d
l
) = −∑m| d

l
,m 6= d

l
µ(m) and µ(1) = 1. So by the initial condition

µ(D2l, D2l) = 1, we obtain that µ(D2l, D2d) = µ(d/l).

(iii) since Cl is normal in D2d it is obvious by (i).
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(iv) If C2 is normal in D2d, then the assertion follows by (i). Otherwise, a
similar argument to (ii) is applied.

Lemma 20 µ(1, A4) = 4, µ(C2, A4) = 0, µ(C3, A4) = −1, and µ(D4, A4) =
−1.

PROOF. The subgroup lattice of A4 is shown in Figure 1. So the assertion
can easily be verified.

Lemma 21 µ(A4, S4) = −1, µ(D8, S4) = −1, µ(D6, S4) = −1, µ(C4, S4) = 0,
µ(D4, S4) = 3 for normal subgroup D4 of S4 and µ(D4, S4) = 0 otherwise,
µ(C3, S4) = −1, µ(C2, S4) = 0 if C2 is a subgroup with 3 conjugates (see
Lemma 5) and µ(C2, S4) = 2 otherwise, and µ(1, S4) = −12.

PROOF. The subgroup lattice of S4 is obtained by GAP [5]. The maxi-
mal subgroups of S4 are A4, D8, and D6. Therefore, µ(A4, S4) = µ(D8, S4) =
µ(D6, S4) = −1. Any subgroup C4 is contained in a unique maximal subgroup
D8 of S4. Hence, µ(C4, S4) = 0. This is true also for subgroup D4 which is
not normal. Using the sublattices of subgroups of S4 containing D4, C3, or C2

shown in Figure 2, the calculation of the remaining cases is straightforward.
Note that µ(1, S4) is already known [11] and it is also obtained by the relation∑

1≤H≤S4
µ(H,S4) = 0 and the previous results.
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Fig. 1. The subgroup lattice of A4

Lemma 22 µ(A4, A5) = −1, µ(D10, A5) = −1, µ(D6, A5) = −1, µ(C5, A5) =
0, µ(D4, A5) = 0, µ(C3, A5) = 2, µ(C2, A5) = 4, and µ(1, A5) = −60,

PROOF. The subgroup lattice of A5 is obtained by GAP [5]. The maximal
subgroups of A5 are A4, D10, and D6. Therefore, µ(A4, A5) = µ(D10, A5) =
µ(D6, A5) = −1. Any subgroup C5 is contained in a unique maximal subgroup
of A5. Hence, µ(C5, A5) = 0. This is true also for any subgroup D4. Using the
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sublattices of subgroups of A5 containing C3 or C2 shown in Figure 3, the
calculation of the remaining cases is straightforward. Note that µ(1, A5) is
found using the relation

∑
1≤H≤A5

µ(H,A5) = 0 and the preceding results.

6 Determination of fk

In Section 4, we determined the sizes of orbits from the action of subgroups
of PSL(2, q) on the projective line. The results can be used to calculate fk(H)
for any subgroup H and 1 ≤ k ≤ q + 1. Suppose that H has ri orbits of size
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li (1 ≤ i ≤ s). Then by the definition we have

fk(H) =
∑∑s

i=1
mili=k

(
s∏
i=1

(
ri
mi

))
.

Any subgroup of PSL(2, q) has at most two non-regular orbits and so it is an
easy task to compute fk.

Theorem 23 Let z(H) denote the sum of sizes of the non-regular orbits
of subgroup H of PSL(2, q) and let k ≡ l (mod |H|) where l < |H|. Then

fk(H) = c
(

(q+1−z(H))/|H|
(k−l)/|H|

)
in which

(i) c = 1 if l is a sum of some non-regular orbit sizes (possibly none) and H
has no two non-regular orbits of size l,

(ii) c = 2 if H has two non-regular orbits of size l,
(iii) c = 0 otherwise.

In Table 2, we present the values of fk(H) for subgroups H of PSL(2, q) and
k for which fk(H) is nonzero.

7 Determination of gk

In this section, we suppose that 1 ≤ k ≤ q + 1 and k 6≡ 0, 1 (mod p) and
try to calculate gk(H) for subgroups H of PSL(2, q). Note that the condition
k 6≡ 0, 1 (mod p) imposes fk(H) and gk(H) to be zero for any subgroup H
belonging to one of the classes (vi)-(viii) in Theorem 3. By

gk(H) =
∑

H≤U≤PSL(2,q)

fk(U)µ(H,U),

we only need to focus on those overgroups U of H for which fk(U) and µ(H,U)
are nonzero. All what we need on overgroups are provided by Theorem 3 and
Lemmas 6–8. The values of the Möbius function and fk have been determined
in Sections 5 and 6, respectively. Now we are ready to compute gk.

Theorem 24

gk(1) =fk(1) +
q(q2 − 1)

12
(2fk(A4)− 6fk(S4)− 12fk(A5) + fk(D4))

+
∑

l>1,l| q±1
2

q(q ∓ 1)

2
µ(l)fk(Cl)−

q(q2 − 1)

4

∑
l>2,l| q±1

2

µ(l)fk(D2l).

12



H Condition on q l ≡ k (mod |H|)) fk(H)

1 0
(
q+1
k

)
Cd d| q+1

2 0
((q+1)/d

(k−l)/d
)

Cd d| q−1
2 0, 2

((q−1)/d
(k−l)/d

)
Cd d| q−1

2 1 2
((q−1)/d

(k−l)/d
)

D2d d| q+1
2 0

((q+1)/2d
(k−l)/2d

)
D2d d| q−1

2 0, 2
((q−1)/2d

(k−l)/2d
)

A4 3| q+1
2 0

((q+1)/12
(k−l)/12

)
A4 3| q−1

2 0, 8
((q−7)/12

(k−l)/12

)
A4 3| q−1

2 4 2
((q−7)/12

(k−l)/12

)
A4 3|q 0, 4

((q−3)/12
(k−l)/12

)
S4 3| q+1

2 , 8|(q + 1) 0
((q+1)/24

(k−l)/24

)
S4 3| q−1

2 , 8|(q + 1) 0, 8
((q−7)/24

(k−l)/24

)
A5 15| q+1

2 0
((q+1)/60

(k−l)/60

)
A5 3| q+1

2 , 5| q−1
2 0, 12

((q−11)/60
(k−l)/60

)
A5 3| q−1

2 , 5| q+1
2 0, 20

((q−19)/60
(k−l)/60

)
A5 15| q−1

2 0, 12, 20, 32
((q−31)/60

(k−l)/60

)
Zmp m ≤ n 0, 1

( q/pm

(k−l)/pm
)

Zmp o Cd d| q−1
2 , d|pm − 1 0, 1, pm, pm + 1

((q−pm)/dpm

(k−l)/dpm
)

PSL(2, pm) m|n 0, pm + 1
(2(q−pm)/pm(p2m−1)

2(k−l)/pm(p2m−1)

)
Table 2
The nonzero values of fk(H) for subgroups H of PSL(2, q)
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Theorem 25

gk(C2) =
q + 1

4
(4fk(S4) + 8fk(A5)− fk(D4)) +

∑
l| q+1

4

µ(l)fk(C2l)

+
∑

l>1, 2-l, l| q±1
2

q + 1

2
µ(l)fk(D2l) +

∑
l>1, l| q+1

4

q + 1

2

(
µ(2l)− µ(l)

2

)
fk(D4l).

Theorem 26 Let 3| q±1
2

. Then

gk(C3) =
q ± 1

3
(2fk(A5)− fk(A4)− fk(S4))

+
∑
l| q±1

6

µ(l)
(
fk(C3l)−

q ± 1

6
fk(D6l)

)
.

Theorem 27 Let d > 3 and d| q±1
2

. Then

gk(Cd) =
∑
l| q±1

2d

µ(l)
(
fk(Cld)−

q ± 1

2d
fk(D2ld)

)
.

Theorem 28 Let hk(D2d) =
∑
l| q±1

2d
µ(l)fk(D2ld). Then

gk(D4) = 3fk(S4)− fk(A4)− 2fk(D4) + 3hk(D4),
gk(D6) = −2fk(S4)− 2fk(A5) + hk(D6),
gk(D8) = −2fk(S4) + hk(D8), gk(D10) = −2fk(A5) + hk(D10), and
gk(D2d) = hk(D2d) if d > 5 and d| q±1

2
.

Theorem 29 gk(A4) = fk(A4) − fk(S4) − 2fk(A5), gk(S4) = fk(S4), and
gk(A5) = fk(A5).

8 3-Designs from PSL(2, q)

We use the results of previous sections to show the existence of large families
of new 3-designs. First we state the following simple result.

Lemma 30 Let H be a subgroup of PSL(2, q) and let u(H) denote the num-
ber of subgroups of PSL(2, q) isomorphic to H. Then the number of orbits
of PSL(2, q) on k-subsets whose elements have stabilizers isomorphic to H is
equal to u(H)gk(H)|H|/|PSL(2, q)|.

PROOF. The number of k-subsets whose stabilizers are isomorphic to H is
u(H)gk(H) and such k-subsets lie in orbits of size |PSL(2, q)|/|H|.

14



The lemma above and Theorem 3 help us to compute the sizes of orbits of the
action of PSL(2, q) on k-subsets of the projective line. When the sizes of orbits
are known, we can utilize them to determine all 3-designs from PSL(2, q) as
shown in Theorem 32.

Theorem 31 Let 1 ≤ k ≤ q + 1 and k 6≡ 0, 1 (mod p). Then the sizes of
orbits of G = PSL(2, q) on k-subsets are as in Table 3, where d | q±1

2
and

d > 1.

orbit size |G| |G|
4

|G|
12

|G|
24

|G|
60

|G|
d

|G|
2d (d > 2)

number of orbits 2gk(1)
q3−q

gk(D4)
3 gk(A4) 2gk(S4) 2gk(A5) dgk(Cd)

q±1 gk(D2d)

Table 3
Sizes of orbits on k-sets

Theorem 32 Let 3 ≤ k ≤ q − 2 and k 6≡ 0, 1 (mod p). Then there exist

3-(q + 1, k, 3
(
k
3

)
λ) designs with automorphism group PSL(2, q) if and only if

λ = a1 +
a2

4
+
a3

12
+
a4

24
+
a5

60
+

∑
d>1,d| q±1

2

id
d

+
∑

d>2,d| q±1
2

jd
2d
,

where a1, . . . , a5, id, jd are non-negative integers satisfying
a1 ≤ 2gk(1)/(q(q2 − 1)), a2 ≤ gk(D4)/3, a3 ≤ gk(A4), a4 ≤ 2gk(S4),
a5 ≤ 2gk(A5), id ≤ dgk(Cd)/(q ± 1), jd ≤ gk(D2d).
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