3-designs from PSL(2,q)

P. J. Cameron ${ }^{\mathrm{a}, 1}$ H. R. Maimani ${ }^{\mathrm{b}, \mathrm{d}}$ G. R. Omidi ${ }^{\mathrm{b}, \mathrm{c}}$ B. Tayfeh-Rezaie ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ School of Mathematical Sciences, Queen Mary, University of London, U.K.
${ }^{\mathrm{b}}$ Institute for Studies in Theoretical Physics and Mathematics (IPM), Iran
${ }^{\text {c }}$ Department of Mathematics, University of Tehran, Iran
${ }^{\mathrm{d}}$ Department of Mathematics, Shahid Rajaee Teacher Training University, Iran

Abstract

The group $\operatorname{PSL}(2, q)$ is 3 -homogeneous on the projective line when q is a prime power congruent to 3 modulo 4 and therefore it can be used to construct 3-designs. In this paper, we determine all 3 -designs admitting $\operatorname{PSL}(2, q)$ with block size not congruent to 0 and 1 modulo p where $q=p^{n}$.

Key words: t-designs, automorphism groups, projective special linear groups, subgroup lattices, Möbius function

1 Introduction

The group $\operatorname{PSL}(2, q)$ is 3-homogeneous on the projective line when q is a prime power congruent to 3 modulo 4 . Therefore, a set of k-subsets of the projective line is the block set of a $3-(q+1, k, \lambda)$ design admitting $\operatorname{PSL}(2, q)$ for some λ if and only if it is a union of orbits of $\operatorname{PSL}(2, q)$. This simple observation has led different authors to use this group for constructing 3 -designs, see for example [1-3,6,8-10]. All 3 -designs with block sizes 4, 5, and 6 admitting $\operatorname{PSL}(2, q)$ as an automorphism group were completely determined [2,10]. Other authors have also obtained partial results for a variety of values of block size. In this paper, we investigate the existence of 3 -designs with block size not congruent to 0 and 1 modulo $p\left(q=p^{n}\right)$ with automorphism group $\operatorname{PSL}(2, q)$. In particular, when q is prime, we give a complete solution. We hope to settle the general problem in a forthcoming paper.

[^0]
2 Notation and Preliminaries

Let t, k, v, and λ be integers such that $0 \leq t \leq k \leq v$ and $\lambda>0$. Let X be a v-set and $P_{k}(X)$ denote the set of all k-subsets of X. A $t-(v, k, \lambda)$ design is a pair $\mathcal{D}=(X, D)$ in which D is a collection of elements of $P_{k}(X)$ (called blocks) such that every t-subset of X appears in exactly λ blocks. If D has no repeated blocks, then it is called simple. Here we are concerned only with simple designs. It is well known that a set of necessary conditions for the existence of a $t-(v, k, \lambda)$ design is

$$
\begin{equation*}
\lambda\binom{v-i}{t-i} \equiv 0 \quad\left(\bmod \binom{k-i}{t-i}\right) \tag{1}
\end{equation*}
$$

for $0 \leq i \leq t$. An automorphism of \mathcal{D} is a permutation σ on X such that $\sigma(B) \in D$ for each $B \in D$. An automorphism group of \mathcal{D} is a group whose elements are automorphisms of \mathcal{D}.

Let G be a finite group acting on X. For $x \in X$, the orbit of x is $G(x)=$ $\{g x \mid g \in G\}$ and the stabilizer of x is $G_{x}=\{g \in G \mid g x=x\}$. It is well known that $|G|=|G(x)|\left|G_{x}\right|$. Orbits of size $|G|$ are called regular and the others are called non-regular. If there is an $x \in X$ such that $G(x)=X$, then G is called transitive. The action of G on X induces a natural action on $P_{k}(X)$. If this latter action is transitive, then G is called k-homogeneous.

Let q be a prime power and let $X=G F(q) \cup\{\infty\}$. Then the set of all mappings

$$
g: x \mapsto \frac{a x+b}{c x+d},
$$

on X such that $a, b, c, d \in G F(q), a d-b c$ is a nonzero square and $g(\infty)=a / c$, $g(-d / c)=\infty$ if $c \neq 0$, and $g(\infty)=\infty$ if $c=0$, is a group under composition of mappings called projective special linear group and is denoted by $\operatorname{PSL}(2, q)$. It is well known that $\operatorname{PSL}(2, q)$ is 3 -homogeneous if and only if $q \equiv 3(\bmod 4)$. Note that $|\operatorname{PSL}(2, q)|=\left(q^{3}-q\right) / 2$. Throughout this paper, we let q be a power of a prime p and congruent to $3(\bmod 4)$. Since $\operatorname{PSL}(2, q)$ is $3-$ homogeneous, a set of k-subsets is a $3-(q+1, k, \lambda)$ design admitting $\operatorname{PSL}(2, q)$ as an automorphism group if and only if it is a union of orbits of $\operatorname{PSL}(2, q)$ on $P_{k}(X)$. Thus, for constructing designs with block size $k \operatorname{admitting} \operatorname{PSL}(2, q)$, we need to determine the sizes of orbits in the action of $\operatorname{PSL}(2, q)$ on $P_{k}(X)$.

Let $H \leq \operatorname{PSL}(2, q)$ and let define
$f_{k}(H):=$ the number of k-subsets fixed by H, $g_{k}(H):=$ the number of k-subsets with the stabilizer group H.

Then we have

$$
\begin{equation*}
f_{k}(H)=\sum_{H \leq U \leq \operatorname{PSL}(2, q)} g_{k}(U) . \tag{2}
\end{equation*}
$$

We are mostly interested in finding g_{k} which help us directly to obtain the sizes of orbits. It is a fairly simple task to find f_{k} and then to use it to compute g_{k}. By Möbius inversion applied to (2), we have

$$
\begin{equation*}
g_{k}(H)=\sum_{H \leq U \leq \operatorname{PSL}(2, q)} f_{k}(U) \mu(H, U), \tag{3}
\end{equation*}
$$

where μ is the Möbius function of the subgroup lattice of $\operatorname{PSL}(2, q)$.
For any subgroup H of $\operatorname{PSL}(2, q)$ we need to carry out the following:
(i) Find the sizes of orbits from the action of H on the projective line and then compute $f_{k}(H)$.
(ii) Calculate $\mu(H, U)$ for any overgroup U of H and then compute $g_{k}(H)$ using (3).

Note that if H and H^{\prime} are conjugate, then $f_{k}(H)=f_{k}\left(H^{\prime}\right)$ and $g_{k}(H)=$ $g_{k}\left(H^{\prime}\right)$.

In Section 4, we determine the action of subgroups of $\operatorname{PSL}(2, q)$ on the projective line. Section 5 is devoted to the Möbius function on the subgroup lattices of subgroups of $\operatorname{PSL}(2, q)$. We will compute f_{k} and g_{k} in Sections 6 and 7 , respectively and then will use the results to find new 3 -designs with automorphism group $\operatorname{PSL}(2, q)$ in Section 8.

The following useful lemma is trivial by (1).
Lemma 1 Let B be a k-subset of the projective line, and let G be its stabilizer group under the action of $\operatorname{PSL}(2, q)$. Then $|G|$ divides $3\binom{k}{3}$.

3 The subgroups of $\operatorname{PSL}(2, q)$

The subgroups of $\operatorname{PSL}(2, q)$ are well known and given in $[4,7]$. In the following theorems and lemmas we present a brief account on the structure of elements and subgroups of $\operatorname{PSL}(2, q)$. These information will be used in the subsequent sections.

Theorem $2[4,7]$ Let g be a nontrivial element in $\operatorname{PSL}(2, q)$ of order d and with f fixed points. Then $d=p$ and $f=1, d \left\lvert\, \frac{q+1}{2}\right.$ and $f=0$, or $d \left\lvert\, \frac{q-1}{2}\right.$ and $f=2$.

Theorem 3 [4,7] The subgroups of $\operatorname{PSL}(2, q)$ are as follows.
(i) $q(q \mp 1) / 2$ cyclic subgroups of order d where $d \left\lvert\, \frac{q \pm 1}{2}\right.$.
(ii) $q\left(q^{2}-1\right) /(4 d)$ dihedral subgroups of order $2 d$ where $d \left\lvert\, \frac{q \pm 1}{2}\right.$ and $d>2$ and $q\left(q^{2}-1\right) / 24$ subgroups D_{4}.
(iii) $q\left(q^{2}-1\right) / 24$ subgroups A_{4}.
(iv) $q\left(q^{2}-1\right) / 24$ subgroups S_{4} when $q \equiv 7(\bmod 8)$.
(v) $q\left(q^{2}-1\right) / 60$ subgroups A_{5} when $q \equiv \pm 1(\bmod 10)$.
(vi) $p^{n}\left(p^{2 n}-1\right) /\left(p^{m}\left(p^{2 m}-1\right)\right)$ subgroups $\operatorname{PSL}\left(2, p^{m}\right)$ where $m \mid n$.
(vii) The elementary Abelian group of order p^{m} for $m \leq n$.
(viii) A semidirect product of the elementary Abelian group of order p^{m} and the cyclic group of order d where $d \left\lvert\, \frac{q-1}{2}\right.$ and $d \mid p^{m}-1$.

In this paper we are specially interested in the subgroups (i)-(v) in Theorem 3. Note that isomorphic subgroups of PSL $(2, q)$ of types (i)-(v) in Theorem 3 are conjugate in $\operatorname{PGL}(2, q)$. Now since $\operatorname{PSL}(2, q)$ is normal in $\operatorname{PGL}(2, q)$, for any subgroup of $\operatorname{PSL}(2, q)$ of types (i)-(v) one can easily find the number of overgroups which are of these types using Theorem 3. We have the following lemmas.

Lemma $4 C_{d}$ has a unique subgroup C_{l} for any $l>1$ and $l \mid d$. The nontrivial subgroups of the dihedral group $D_{2 d}$ are as follows: d/l subgroups $D_{2 l}$ for any $l \mid d$ and $l>1$, a unique subgroup C_{l} for any $l \mid d$ and $l>2$, d subgroups C_{2} if d is odd and $d+1$ subgroups C_{2} otherwise. Moreover $D_{2 d}$ has a normal subgroup C_{2} if and only if d is even.

Lemma 5 The conjugacy classes of nontrivial subgroups of A_{4}, S_{4}, and A_{5} are as follows.

| group | C_{2} | C_{2} | C_{3} | C_{4} | C_{5} | D_{4} | D_{4} | D_{6} | D_{8} | D_{10} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |A_{4}.

Lemma 6 Let $l \left\lvert\, \frac{q \pm 1}{2 d}\right.$ and $f \left\lvert\, \frac{q \pm 1}{2}\right.$.
(i) Any C_{d} is contained in a unique $C_{l d}$.
(ii) If $d>2$, then any C_{d} is contained in $(q \pm 1) /(2 l d)$ subgroups $D_{2 l d}$.
(iii) Any C_{2} is contained in $(q+1) / 4$ subgroups $D_{4},(q+1) / 2$ subgroups $D_{2 f}$ if $f>1$ is odd, and $(q+1)(f+1) /(2 f)$ subgroups $D_{2 f}$ if f is even.
(iv) If $d>2$, then any $D_{2 d}$ is contained in a unique $D_{2 l d}$.
(v) Any D_{4} is contained in 3 subgroups $D_{2 f}$ for $f>2$ even.

Lemma 7(i) Any C_{2} is contained in $(q+1) / 2$ subgroups S_{4} as a subgroup C_{2} of S_{4} with 6 conjugates (see Lemma 5) when $q \equiv 7(\bmod 8)$.
(ii) Any C_{2} is contained in $(q+1) / 2$ subgroups A_{5} when $q \equiv \pm 1(\bmod 10)$.
(iii) Let $3 \left\lvert\, \frac{q \pm 1}{2}\right.$. Then any C_{3} is contained in $(q \pm 1) / 3$ subgroups $A_{4},(q \pm 1) / 3$ subgroups S_{4} when $q \equiv 7(\bmod 8)$, and $(q \pm 1) / 3$ subgroups A_{5} when $q \equiv \pm 1$ $(\bmod 10)$.
(iv) Any A_{4} is contained in a unique S_{4} when $q \equiv 7(\bmod 8)$ and 2 subgroups A_{5} when $q \equiv \pm 1(\bmod 10)$.

Lemma 8(i) Any D_{4} is contained in a unique A_{4} and if $q \equiv 7(\bmod 8)$, then it is in a unique S_{4} in which it is normal.
(ii) Any D_{6} is contained in 2 subgroups S_{4} when $q \equiv 7(\bmod 8)$ and 2 subgroups A_{5} when $q \equiv \pm 1(\bmod 10)$.
(iii) Any D_{8} is contained in 2 subgroups S_{4} when $q \equiv 7(\bmod 8)$.
(iv) Any D_{10} is contained in 2 subgroups A_{5} when $q \equiv \pm 1(\bmod 10)$.

4 The action of subgroups on the projective line

In this section we determine the sizes of orbits from the action of subgroups of $\operatorname{PSL}(2, q)$ on the projective line. Here, the main tool is the following observation: If $H \leq K \leq \operatorname{PSL}(2, q)$, then any orbit of K is a union of orbits of H. In the following lemmas we suppose that H is a subgroup of $\operatorname{PSL}(2, q)$ and N_{l} denotes the number of orbits of size l.

Lemma 9 Let H be the cyclic group of order d. Then
(i) if $d \left\lvert\, \frac{q+1}{2}\right.$, then $N_{d}=(q+1) / d$,
(ii) if $d \left\lvert\, \frac{q-1}{2}\right.$, then $N_{1}=2$ and $N_{d}=(q-1) / d$.

PROOF. This is trivial by Theorem 2.

Lemma 10 Let H be the dihedral group of order $2 d$. Then
(i) if $d \left\lvert\, \frac{q+1}{2}\right.$, then $N_{2 d}=(q+1) /(2 d)$,
(ii) if $d \left\lvert\, \frac{q-1}{2}\right.$, then $N_{2}=1$ and $N_{2 d}=(q-1) /(2 d)$.

PROOF. (i) H has a cycle subgroup of order d and therefore by Lemma 9, its orbit sizes are multiples of d. Since H has at least d elements of order 2 which are fixed point free, it does not have orbits of size d. Therefore all orbits are of size $2 d$.
(ii) Since H has a cycle subgroup of order 2, all orbits are of even size. On the other hand, H has a cycle subgroup of order d and therefore by Lemma 9 , we have one orbit of size 2 and all other orbits are regular.

Lemma 11 Let H be the group A_{4}. Then
(i) if $3 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{12}=(q+1) / 12$,
(ii) if $3 \left\lvert\, \frac{q^{-1}}{2}\right.$, then $N_{4}=2$ and $N_{12}=(q-7) / 12$,
(iii) if $3 \mid q$, then $N_{4}=1$ and $N_{12}=(q-3) / 12$.

PROOF. If B is a 6 -subset of the projective line, then $\left|G_{B}\right| \leq 6$ (see [10, Lemma 2.1]). Hence $N_{6}=0$. There is an element of order 2 in H. So by Lemma 9, all orbits are of even order.
(i) H has a fixed point free element of order 3 and therefore by Lemma 9, its orbit sizes are multiples of 6 . Since $N_{6}=0$, all orbits are regular.
(ii) H has an element of order 3 with two fixed points. Hence by Lemma 9, orbit sizes are $2,4,12$. If $N_{2}=1$, then $N_{4}=0$ and $N_{12}=(q-1) / 12$ which is not integer. So $N_{2}=0, N_{4}=2$, and $N_{12}=(q-7) / 12$.
(ii) H has an element of order 3 with one fixed point. Hence by Lemma 9, orbit sizes are 4 and 12 . We have $N_{4}=1$ and $N_{12}=(q-3) / 12$.

Lemma 12 Let H be the group S_{4}. Then
(i) if $3 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{24}=(q+1) / 24$,
(ii) if $3 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{8}=1$ and $N_{24}=(q-7) / 24$.

PROOF. We have $q \equiv 7(\bmod 8)$. Hence $3 \not \backslash q$. Note that H has a subgroup A_{4}. Therefore, by Lemma 11 , orbits are of sizes $4,8,12,24$. If B is a 4 -subset of the projective line, then by Lemma $1,\left|G_{B}\right| \mid 12$ and so $N_{4}=0$. By a similar argument, $N_{12}=0$.
(i) It is obvious by Lemma 11(i).
(ii) By Lemma 11(ii), we necessarily have $N_{8}=1$ and all other orbits of size 24.

Lemma 13 the Let H be group A_{5}. Then
(i) if $15 \left\lvert\, \frac{q+1}{2}\right.$, then $N_{60}=(q+1) / 60$,
(ii) if $3 \left\lvert\, \frac{q+1}{2}\right.$ and $5 \left\lvert\, \frac{q-1}{2}\right.$, then $N_{12}=1$ and $N_{60}=(q-11) / 60$,
(iii) if $\left.3\right|^{\frac{q^{2}-1}{2}}$ and $\left.5\right|^{\frac{q+1}{2}}$, then $N_{20}=1$ and $N_{60}=(q-11) / 60$,
(iv) if $\left.15\right|^{\frac{q-1}{2}}$, then $N_{12}=1, N_{20}=1$, and $N_{60}=(q-31) / 60$.

PROOF. We have $q \equiv \pm 1(\bmod 10)$. Hence $3 \backslash q$ and $5 \left\lvert\, \frac{q \pm 1}{2}\right.$. Note that H has a subgroup A_{4}.
(i) By Lemma 11(i), all orbit sizes are multiples of 12 . On the other hand, H has a fixed point free element of order 5 which means that all orbit sizes are multiples of 5 . Therefore, all orbits are regular.
(ii) By Lemma 11(i), all orbit sizes are multiples of 12 . On the other hand, H has an element of order 5 with two fixed points which implies the existence of one orbit of sizes 12 . Hence, $N_{12}=1$ and all other orbits of size 60 .
(iii) If B is a 4 -subset of the projective line, then by Lemma $1,\left|G_{B}\right| \mid 12$ and so $N_{4}=0$. Now by Lemma 11(ii), we have one orbit of size 20 and all other orbits are of orders 12 or 60 . On the other hand, H has a fixed point free element of order 5 which means that all orbit sizes are multiples of 5 . Therefore, $N_{12}=0$ and all remaining orbits are regular.
(iv) Similar to (iii), we have one orbit of size 20 and all other orbits are of orders 12 or 60 . On the other hand, H has an element of order 5 with two fixed points which forces $N_{12}=1$ and all other orbits to be regular.

Lemma 14 Let H be the elementary Abelian group of order p^{m}. Then $N_{1}=1$ and $N_{p^{m}}=p^{n-m}$.

PROOF. By the Cauchy-Frobenius lemma, the number of orbits is $p^{n-m}+1$. Note that all orbit sizes are powers of p. Therefore, we just have one orbit of size one and all other orbits are regular.

Lemma 15 Let H be a semidirect product of the elementary Abelian group of order p^{m} and the cyclic group of order d where $d \left\lvert\, \frac{q-1}{2}\right.$ and $d \mid p^{m}-1$. Then $N_{1}=1, N_{p^{m}}=1$, and $N_{d p^{m}}=\left(p^{n}-p^{m}\right) /\left(d p^{m}\right)$.

PROOF. H has an elementary Abelian subgroup of order p^{m}. So by Lemma 14, we have one orbit of size 1 and all other orbit sizes are multiples of p^{m}. On the other hand, H has a cyclic subgroup of order d and therefore by Lemma 9 , orbit sizes are congruent 0 or 1 module d. If congruent 0 module d, then orbit size is necessarily $d p^{m}$. Otherwise, orbit size must be 1 or p^{m}. Now the assertion follows from the fact that an element of order d has two fixed points.

Lemma 16 Let H be $\operatorname{PSL}\left(2, p^{m}\right)$ where $m \mid n$. Then $N_{p^{m}+1}=1$ and all other orbits are regular.

PROOF. All subgroups of the form $\operatorname{PSL}\left(2, p^{m}\right)$ of $\operatorname{PSL}(2, q)$ are conjugate [4]. So we can suppose that H is the group with elements $x \mapsto \frac{a x+b}{c x+d}, a, b, c, d \in$ $G F\left(p^{m}\right)$, where $G F\left(p^{m}\right)$ is the unique subfield of order p^{m} of $G F\left(p^{n}\right)$. Since H is transitive on $G F\left(p^{m}\right)$ we have an orbit of size $p^{m}+1$. H has a subgroup of order $p^{m}\left(p^{m}-1\right) / 2$ which is a semidirect product of the elementary Abelian group of order p^{m} and the cyclic group of order $\left(p^{m}-1\right) / 2$. So by Lemma 15 , all other orbits of H are multiples of $p^{m}\left(p^{m}-1\right) / 2$. On the other hand H has an fixed point free element of order $\left(p^{m}+1\right) / 2$ which forces orbits to be of sizes of multiples of $\left(p^{m}+1\right) / 2$. Hence all orbits except one are regular.

We summarize the results of the previous lemmas in the following theorem.
Theorem 17 The sizes of non-regular orbits for any subgroup H of $\operatorname{PSL}(2, q)$ are as given in Table 1. (Subgroups with no non-regular orbits do not appear in the table).

H	Condition	The sizes of non-regular orbits
C_{d}	$d \left\lvert\, \frac{q-1}{2}\right.$	1,1
$D_{2 d}$	$d \left\lvert\, \frac{q-1}{2}\right.$	2
A_{4}	$3 \left\lvert\, \frac{q-1}{2}\right.$	4,4
A_{4}	$3 \mid q$	4
S_{4}	$3 \left\lvert\, \frac{q-1}{2}\right.$	8
A_{5}	$3\left\|\frac{q+1}{2}, 5\right\| \frac{q-1}{2}$	12
A_{5}	$3\left\|\frac{q-1}{2}, 5\right\| \frac{q+1}{2}$	20
A_{5}	$15 \left\lvert\, \frac{q-1}{2}\right.$	12,20
Z_{p}^{m}	$m \leq n$	1
$Z_{p}^{m} \rtimes C_{d}$	$m \leq n, d \mid\left(p^{n}-1, p^{m}-1\right)$	$1, p^{m}$
$\operatorname{PSL}\left(2, p^{m}\right)$	$m \mid n$	$p^{m}+1$

Table 1
Sizes of non-regular orbits of subgroups

5 The Möbius function of the subgroup lattice of subgroups of $\operatorname{PSL}(2, q)$

In this section we do some calculations on the Möbius function of the lattice of subgroups of PSL $(2, q)$ which will be useful in Section 7. We start with the cyclic subgroups C_{d}.

Lemma $18 \mu\left(1, C_{d}\right)=\mu(d)$ and $\mu\left(C_{l}, C_{d}\right)=\mu(d / l)$ if $l \mid d$.

PROOF. Since C_{l} is normal in C_{d}, we have $\mu\left(C_{l}, C_{d}\right)=\mu\left(1, C_{d / l}\right)$. So it suffices to find $\mu\left(1, C_{d}\right)$. By Lemma $4, C_{d}$ has a unique subgroup of order m for any divisor m of d. Therefore, $\sum_{m \mid d} \mu\left(1, C_{m}\right)=0$. On the other hand $\sum_{m \mid d} \mu(m)=0$ and $\mu(1)=1$. So by the initial condition $\mu(1,1)=1$, we obtain that $\mu\left(1, C_{d}\right)=\mu(d)$.

Lemma 19 Let $d>1$.
(i) $\mu\left(1, D_{2 d}\right)=-d \mu(d)$,
(ii) $\mu\left(D_{2 l}, D_{2 d}\right)=\mu(d / l)$,
(iii) $\mu\left(C_{l}, D_{2 d}\right)=-(d / l) \mu(d / l)$ if $l \mid d$ and $l>2$,
(iv) $\mu\left(C_{2}, D_{2 d}\right)=-(d / 2) \mu(d / 2)$ if C_{2} is normal in $D_{2 d}$ and $\mu\left(C_{2}, D_{2 d}\right)=\mu(d)$ otherwise.

PROOF. (i) We have

$$
\begin{aligned}
\mu\left(1, D_{2 d}\right) & =-\sum_{1 \leq H<D_{2 d}} \mu(1, H) \\
& =-\sum_{m \mid d} \mu\left(1, C_{m}\right)-\sum_{m \mid d, m \neq d} \frac{d}{m} \mu\left(1, D_{2 m}\right) \\
& =-\sum_{m \mid d, m \neq d} \frac{d}{m} \mu\left(1, D_{2 m}\right) .
\end{aligned}
$$

On the other hand, $-d \mu(d)=\sum_{m \mid d, m \neq d} \frac{d}{m} m \mu(m)$ and $-2 \mu(2)=2$. So by the initial condition $\mu\left(1, D_{4}\right)=2$, we obtain that $\mu\left(1, D_{2 d}\right)=-d \mu(d)$.
(ii) Let $D_{2 l} \leq H \leq D_{2 d}$ and $|H|=2 m l$. Then H is unique and it is a dihedral group. Now we have $\mu\left(D_{2 l}, D_{2 d}\right)=-\sum_{m \left\lvert\, \frac{d}{l}\right., m \neq \frac{d}{l}} \mu\left(D_{2 l}, D_{2 m l}\right)$. On the other hand, $\mu\left(\frac{d}{l}\right)=-\sum_{m \left\lvert\, \frac{d}{l}\right., m \neq \frac{d}{l}} \mu(m)$ and $\mu(1)=1$. So by the initial condition $\mu\left(D_{2 l}, D_{2 l}\right)=1$, we obtain that $\mu\left(D_{2 l}, D_{2 d}\right)=\mu(d / l)$.
(iii) since C_{l} is normal in $D_{2 d}$ it is obvious by (i).
(iv) If C_{2} is normal in $D_{2 d}$, then the assertion follows by (i). Otherwise, a similar argument to (ii) is applied.

Lemma $20 \mu\left(1, A_{4}\right)=4, \mu\left(C_{2}, A_{4}\right)=0, \mu\left(C_{3}, A_{4}\right)=-1$, and $\mu\left(D_{4}, A_{4}\right)=$ -1 .

PROOF. The subgroup lattice of A_{4} is shown in Figure 1. So the assertion can easily be verified.

Lemma $21 \mu\left(A_{4}, S_{4}\right)=-1, \mu\left(D_{8}, S_{4}\right)=-1, \mu\left(D_{6}, S_{4}\right)=-1, \mu\left(C_{4}, S_{4}\right)=0$, $\mu\left(D_{4}, S_{4}\right)=3$ for normal subgroup D_{4} of S_{4} and $\mu\left(D_{4}, S_{4}\right)=0$ otherwise, $\mu\left(C_{3}, S_{4}\right)=-1, \mu\left(C_{2}, S_{4}\right)=0$ if C_{2} is a subgroup with 3 conjugates (see Lemma 5) and $\mu\left(C_{2}, S_{4}\right)=2$ otherwise, and $\mu\left(1, S_{4}\right)=-12$.

PROOF. The subgroup lattice of S_{4} is obtained by GAP [5]. The maximal subgroups of S_{4} are A_{4}, D_{8}, and D_{6}. Therefore, $\mu\left(A_{4}, S_{4}\right)=\mu\left(D_{8}, S_{4}\right)=$ $\mu\left(D_{6}, S_{4}\right)=-1$. Any subgroup C_{4} is contained in a unique maximal subgroup D_{8} of S_{4}. Hence, $\mu\left(C_{4}, S_{4}\right)=0$. This is true also for subgroup D_{4} which is not normal. Using the sublattices of subgroups of S_{4} containing D_{4}, C_{3}, or C_{2} shown in Figure 2, the calculation of the remaining cases is straightforward. Note that $\mu\left(1, S_{4}\right)$ is already known [11] and it is also obtained by the relation $\sum_{1 \leq H \leq S_{4}} \mu\left(H, S_{4}\right)=0$ and the previous results.

Fig. 1. The subgroup lattice of A_{4}
Lemma $22 \mu\left(A_{4}, A_{5}\right)=-1, \mu\left(D_{10}, A_{5}\right)=-1, \mu\left(D_{6}, A_{5}\right)=-1, \mu\left(C_{5}, A_{5}\right)=$ $0, \mu\left(D_{4}, A_{5}\right)=0, \mu\left(C_{3}, A_{5}\right)=2, \mu\left(C_{2}, A_{5}\right)=4$, and $\mu\left(1, A_{5}\right)=-60$,

PROOF. The subgroup lattice of A_{5} is obtained by GAP [5]. The maximal subgroups of A_{5} are A_{4}, D_{10}, and D_{6}. Therefore, $\mu\left(A_{4}, A_{5}\right)=\mu\left(D_{10}, A_{5}\right)=$ $\mu\left(D_{6}, A_{5}\right)=-1$. Any subgroup C_{5} is contained in a unique maximal subgroup of A_{5}. Hence, $\mu\left(C_{5}, A_{5}\right)=0$. This is true also for any subgroup D_{4}. Using the

Fig. 2. The sublattices of subgroups of S_{4} containing D_{4}, C_{3}, or C_{2}

Fig. 3. The sublattices of subgroups of A_{5} containing C_{3}, or C_{2}
sublattices of subgroups of A_{5} containing C_{3} or C_{2} shown in Figure 3 , the calculation of the remaining cases is straightforward. Note that $\mu\left(1, A_{5}\right)$ is found using the relation $\sum_{1 \leq H \leq A_{5}} \mu\left(H, A_{5}\right)=0$ and the preceding results.

6 Determination of f_{k}

In Section 4, we determined the sizes of orbits from the action of subgroups of $\operatorname{PSL}(2, q)$ on the projective line. The results can be used to calculate $f_{k}(H)$ for any subgroup H and $1 \leq k \leq q+1$. Suppose that H has r_{i} orbits of size
$l_{i}(1 \leq i \leq s)$. Then by the definition we have

$$
f_{k}(H)=\sum_{\sum_{i=1}^{s} m_{i} l_{i}=k}\left(\prod_{i=1}^{s}\binom{r_{i}}{m_{i}}\right)
$$

Any subgroup of $\operatorname{PSL}(2, q)$ has at most two non-regular orbits and so it is an easy task to compute f_{k}.

Theorem 23 Let $z(H)$ denote the sum of sizes of the non-regular orbits of subgroup H of $\operatorname{PSL}(2, q)$ and let $k \equiv l(\bmod |H|)$ where $l<|H|$. Then $f_{k}(H)=c\binom{(q+1-z(H)) /|H|}{(k-l) /|H|}$ in which
(i) $c=1$ if l is a sum of some non-regular orbit sizes (possibly none) and H has no two non-regular orbits of size l,
(ii) $c=2$ if H has two non-regular orbits of size l,
(iii) $c=0$ otherwise.

In Table 2, we present the values of $f_{k}(H)$ for subgroups H of $\operatorname{PSL}(2, q)$ and k for which $f_{k}(H)$ is nonzero.

7 Determination of g_{k}

In this section, we suppose that $1 \leq k \leq q+1$ and $k \not \equiv 0,1(\bmod p)$ and try to calculate $g_{k}(H)$ for subgroups H of $\operatorname{PSL}(2, q)$. Note that the condition $k \not \equiv 0,1(\bmod p)$ imposes $f_{k}(H)$ and $g_{k}(H)$ to be zero for any subgroup H belonging to one of the classes (vi)-(viii) in Theorem 3. By

$$
g_{k}(H)=\sum_{H \leq U \leq \operatorname{PSL}(2, q)} f_{k}(U) \mu(H, U),
$$

we only need to focus on those overgroups U of H for which $f_{k}(U)$ and $\mu(H, U)$ are nonzero. All what we need on overgroups are provided by Theorem 3 and Lemmas 6-8. The values of the Möbius function and f_{k} have been determined in Sections 5 and 6, respectively. Now we are ready to compute g_{k}.

Theorem 24

$$
\begin{aligned}
g_{k}(1)= & f_{k}(1)+\frac{q\left(q^{2}-1\right)}{12}\left(2 f_{k}\left(A_{4}\right)-6 f_{k}\left(S_{4}\right)-12 f_{k}\left(A_{5}\right)+f_{k}\left(D_{4}\right)\right) \\
& +\sum_{l>1, l \left\lvert\, \frac{q+1}{2}\right.} \frac{q(q \mp 1)}{2} \mu(l) f_{k}\left(C_{l}\right)-\frac{q\left(q^{2}-1\right)}{4} \sum_{l>2, l \left\lvert\, \frac{q \pm 1}{2}\right.} \mu(l) f_{k}\left(D_{2 l}\right) .
\end{aligned}
$$

H	Condition on q	$l \equiv k \quad(\bmod \|H\|))$	$f_{k}(H)$
1		0	$\binom{q+1}{k}$
C_{d}	$d \left\lvert\, \frac{q+1}{2}\right.$	0	$\binom{(q+1) / d}{(k-l) / d}$
C_{d}	$d \left\lvert\, \frac{q-1}{2}\right.$	0, 2	$\binom{(q-1) / d}{(k-l) / d}$
C_{d}	$d \left\lvert\, \frac{q-1}{2}\right.$	1	$2\binom{(q-1) / d}{(k-l) / d}$
$D_{2 d}$	$d \left\lvert\, \frac{q+1}{2}\right.$	0	$\binom{(q+1) / 2 d}{(k-l) / 2 d}$
$D_{2 d}$	$d \left\lvert\, \frac{q-1}{2}\right.$	0, 2	$\binom{(q-1) / 2 d}{k-l) / 2 d}$
A_{4}	$\left.3\right\|^{\frac{q+1}{2}}$	0	$\binom{(q+1) / 12}{k-l) / 12}$
A_{4}	$\left.3\right\|^{\frac{q-1}{2}}$	0, 8	$\left(\begin{array}{c}\binom{q-7) / 12}{k-l) / 12}\end{array}\right.$
A_{4}	$\left.3\right\|^{\frac{q-1}{2}}$	4	$2\binom{(q-7) / 12}{(k-l) / 12}$
A_{4}	$3 \mid q$	0, 4	$\binom{(q-3) / 12}{k-l) / 12}$
S_{4}	$3\left\|\frac{q+1}{2}, 8\right\|(q+1)$	0	$\binom{(q+1) / 24}{k-l) / 24}$
S_{4}	$3\left\|\frac{q-1}{2}, 8\right\|(q+1)$	0, 8	$\binom{(q-7) / 24}{(k-l) / 24}$
A_{5}	$15 \left\lvert\, \frac{q+1}{2}\right.$	0	$\binom{(q+1) / 60}{(k-l) / 60}$
A_{5}	$3\left\|\frac{q+1}{2}, 5\right\| \frac{q-1}{2}$	0,12	$\binom{(q-11) / 60}{(k-l) / 60}$
A_{5}	$3\left\|\frac{q-1}{2}, 5\right\| \frac{q+1}{2}$	0,20	$\binom{(q-19) / 60}{(k-l) / 60}$
A_{5}	$15 \left\lvert\, \frac{q-1}{2}\right.$	0, 12, 20, 32	$\binom{(q-31) / 60}{(k-l) / 60}$
Z_{p}^{m}	$m \leq n$	0,1	$\binom{q / p^{m}}{(k-l) / p^{m}}$
$Z_{p}^{m} \rtimes C_{d}$	$d\left\|\frac{q-1}{2}, d\right\| p^{m}-1$	$0,1, p^{m}, p^{m}+1$	$\binom{\left(q-p^{m}\right) / d p^{m}}{(k-l) / d p^{m}}$
$\operatorname{PSL}\left(2, p^{m}\right)$	$m \mid n$	$0, p^{m}+1$	$\binom{2\left(q-p^{m}\right) / p^{m}\left(2^{2 m}-1\right)}{2(k-l) / p^{m}\left(p^{2 m}-1\right)}$

Table 2
The nonzero values of $f_{k}(H)$ for subgroups H of $\operatorname{PSL}(2, q)$

Theorem 25

$$
\begin{aligned}
g_{k}\left(C_{2}\right) & =\frac{q+1}{4}\left(4 f_{k}\left(S_{4}\right)+8 f_{k}\left(A_{5}\right)-f_{k}\left(D_{4}\right)\right)+\sum_{l \left\lvert\, \frac{q+1}{4}\right.} \mu(l) f_{k}\left(C_{2 l}\right) \\
& +\sum_{l>1,2 \nmid, l \left\lvert\, \frac{q+1}{2}\right.} \frac{q+1}{2} \mu(l) f_{k}\left(D_{2 l}\right)+\sum_{l>1, l \left\lvert\, \frac{q+1}{4}\right.} \frac{q+1}{2}\left(\mu(2 l)-\frac{\mu(l)}{2}\right) f_{k}\left(D_{4 l}\right) .
\end{aligned}
$$

Theorem 26 Let $3 \left\lvert\, \frac{q \pm 1}{2}\right.$. Then

$$
\begin{aligned}
g_{k}\left(C_{3}\right) & =\frac{q \pm 1}{3}\left(2 f_{k}\left(A_{5}\right)-f_{k}\left(A_{4}\right)-f_{k}\left(S_{4}\right)\right) \\
& +\sum_{l \left\lvert\, \frac{q \pm 1}{6}\right.} \mu(l)\left(f_{k}\left(C_{3 l}\right)-\frac{q \pm 1}{6} f_{k}\left(D_{6 l}\right)\right) .
\end{aligned}
$$

Theorem 27 Let $d>3$ and $d \left\lvert\, \frac{q \pm 1}{2}\right.$. Then

$$
g_{k}\left(C_{d}\right)=\sum_{l \left\lvert\, \frac{q+1}{2 d}\right.} \mu(l)\left(f_{k}\left(C_{l d}\right)-\frac{q \pm 1}{2 d} f_{k}\left(D_{2 l d}\right)\right) .
$$

Theorem 28 Let $h_{k}\left(D_{2 d}\right)=\sum_{l \left\lvert\, \frac{q+1}{2 d}\right.} \mu(l) f_{k}\left(D_{2 l d}\right)$. Then
$g_{k}\left(D_{4}\right)=3 f_{k}\left(S_{4}\right)-f_{k}\left(A_{4}\right)-2 f_{k}\left({ }^{2 d} D_{4}\right)+3 h_{k}\left(D_{4}\right)$,
$g_{k}\left(D_{6}\right)=-2 f_{k}\left(S_{4}\right)-2 f_{k}\left(A_{5}\right)+h_{k}\left(D_{6}\right)$,
$g_{k}\left(D_{8}\right)=-2 f_{k}\left(S_{4}\right)+h_{k}\left(D_{8}\right), \quad g_{k}\left(D_{10}\right)=-2 f_{k}\left(A_{5}\right)+h_{k}\left(D_{10}\right)$, and
$g_{k}\left(D_{2 d}\right)=h_{k}\left(D_{2 d}\right)$ if $d>5$ and $d \left\lvert\, \frac{q \pm 1}{2}\right.$.
Theorem $29 g_{k}\left(A_{4}\right)=f_{k}\left(A_{4}\right)-f_{k}\left(S_{4}\right)-2 f_{k}\left(A_{5}\right), g_{k}\left(S_{4}\right)=f_{k}\left(S_{4}\right)$, and $g_{k}\left(A_{5}\right)=f_{k}\left(A_{5}\right)$.

8 3-Designs from $\operatorname{PSL}(2, q)$

We use the results of previous sections to show the existence of large families of new 3 -designs. First we state the following simple result.

Lemma 30 Let H be a subgroup of $\operatorname{PSL}(2, q)$ and let $u(H)$ denote the number of subgroups of $\operatorname{PSL}(2, q)$ isomorphic to H. Then the number of orbits of $\operatorname{PSL}(2, q)$ on k-subsets whose elements have stabilizers isomorphic to H is equal to $u(H) g_{k}(H)|H| /|\operatorname{PSL}(2, q)|$.

PROOF. The number of k-subsets whose stabilizers are isomorphic to H is $u(H) g_{k}(H)$ and such k-subsets lie in orbits of size $|\operatorname{PSL}(2, q)| /|H|$.

The lemma above and Theorem 3 help us to compute the sizes of orbits of the action of $\operatorname{PSL}(2, q)$ on k-subsets of the projective line. When the sizes of orbits are known, we can utilize them to determine all 3 -designs from $\operatorname{PSL}(2, q)$ as shown in Theorem 32.

Theorem 31 Let $1 \leq k \leq q+1$ and $k \not \equiv 0,1(\bmod p)$. Then the sizes of orbits of $G=\operatorname{PSL}(2, q)$ on k-subsets are as in Table 3, where $d \left\lvert\, \frac{q \pm 1}{2}\right.$ and $d>1$.

orbit size	$\|G\|$	$\frac{\|G\|}{4}$	$\frac{\|G\|}{12}$	$\frac{\|G\|}{24}$	$\frac{\|G\|}{60}$	$\frac{\|G\|}{d}$	$\frac{\|G\|}{2 d}(d>2)$

number of orbits $\quad \frac{2 g_{k}(1)}{q^{3}-q} \frac{g_{k}\left(D_{4}\right)}{3} g_{k}\left(A_{4}\right) 2 g_{k}\left(S_{4}\right) 2 g_{k}\left(A_{5}\right) \frac{d g_{k}\left(C_{d}\right)}{q \pm 1} \quad g_{k}\left(D_{2 d}\right)$
Table 3
Sizes of orbits on k-sets
Theorem 32 Let $3 \leq k \leq q-2$ and $k \not \equiv 0,1(\bmod p)$. Then there exist $3-\left(q+1, k, 3\binom{k}{3} \lambda\right)$ designs with automorphism group $\operatorname{PSL}(2, q)$ if and only if

$$
\lambda=a_{1}+\frac{a_{2}}{4}+\frac{a_{3}}{12}+\frac{a_{4}}{24}+\frac{a_{5}}{60}+\sum_{d>1, d \left\lvert\, \frac{q \pm 1}{2}\right.} \frac{i_{d}}{d}+\sum_{d>2, d \left\lvert\, \frac{q+1}{2}\right.} \frac{j_{d}}{2 d},
$$

where $a_{1}, \ldots, a_{5}, i_{d}, j_{d}$ are non-negative integers satisfying $a_{1} \leq 2 g_{k}(1) /\left(q\left(q^{2}-1\right)\right), a_{2} \leq g_{k}\left(D_{4}\right) / 3, a_{3} \leq g_{k}\left(A_{4}\right), a_{4} \leq 2 g_{k}\left(S_{4}\right)$, $a_{5} \leq 2 g_{k}\left(A_{5}\right), i_{d} \leq d g_{k}\left(C_{d}\right) /(q \pm 1), j_{d} \leq g_{k}\left(D_{2 d}\right)$.

References

[1] T. Beth, D. Jungnickel, and H. Lenz, Design theory, Second edition, Cambridge University Press, Cambridge, 1999.
[2] C. A. Cusack, S. W. Graham, and D. L. Kreher, Large sets of 3-designs from PSL (2, q), with block sizes 4 and 5, J. Combinatorial Designs 3 (1995), 147-160.
[3] C. A. Cusack and S. S. Magliveras, Semiregular large sets, Designs Codes Cryptogr. 18 (1999), 81-87.
[4] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958.
[5] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3; 2002, (http://www.gap-system.org).
[6] D. R. Hughes, On t-designs and groups, Amer. J. Math. 87 (1965), 761-778.
[7] B. Huppert, Endliche gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967,
[8] S. Iwasaki, Infinite families of 2 - and 3-designs with parameters $v=p+1$, $k=(p-1) / 2^{i}+1$, where p odd prime, $2^{e} \top(p-1), e \geq 2,1 \leq i \leq e, J$. Combinatorial Designs 5 (1997), 95-110.
[9] D. L. Kreher, t-Designs, $t \geq 3$, in: The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton (1996), pp. 47-66.
[10] G. R. Omidi, M. R. Pournaki, and B. Tayfeh-Rezaie, 3-Designs from $\operatorname{PSL}(2, q)$ with block size 6 and their large sets, submitted.
[11] J. Shareshian, On the Möbius number of the subgroup lattice of the symmetric group, J. Combinatorial Theory Ser. A 78 (1997), 236-267.

[^0]: ${ }^{1}$ Corresponding author, email: p.j.cameron@qmul.ac.uk.

