Random preorders

Peter Cameron and Dudley Stark

School of Mathematical Sciences

Queen Mary, University of London
Mile End, London, E1 4NS U.K.

Submitted to Combinatorica

Abstract

A random preorder on n elements consists of linearly ordered equivalence classes called blocks. We investigate the block structure of a preorder chosen uniformly at random from all preorders on n elements as $n \rightarrow \infty$.

1 Introduction

Let R be a binary relation on a set X. We say R is reflexive if $(x, x) \in R$ for all $x \in X$. We say R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$. A partial preorder is a relation R on X which is reflexive and transitive. A relation R is said to satisfy trichotomy if, for any $x, y \in X$, one of the cases $(x, y) \in R, x=y$, or $(y, x) \in R$ holds. We say that R is a preorder if it is a partial preorder that satisfies trichotomy. The members of X are said to be the elements of the preorder.

A relation R is antisymmetric if, whenever $(x, y) \in R$ and $(y, x) \in R$ both hold, then $x=y$. A relation R on X is a partial order if it is reflexive, transitive, and antisymmetric. A relation is a total order, if it is a partial order which satisfies trichotomy. Given a partial preorder R on X, define a new relation S on X by the rule that $(x, y) \in S$ if and only if both (x, y) and (y, x) belong to R. Then S is an equivalence relation. Moreover, R induces a partial order \bar{x} on the set of equivalence classes of S in a natural way: if $(x, y) \in R$, then $(\bar{x}, \bar{y}) \in \bar{R}$, where \bar{x} is the S-equivalence class containing x and similarly for y. We will call an S equivalence class a block. If R is a preorder, then the relation \bar{R} on the equivalence
classes of S is a total order. See Section 3.8 and question 19 of Section 3.13 in [4] for more on the above definitions and results.

Preorders are used in [6] to model the voting preferences of voters. (A different but equivalent definition of preorders is used in [6], where they are called weak orders.) We suppose that there are n candidates and m voters. Suppose that X is a finite set representing a collection of candidates. Let $R_{i}, i=1,2, \ldots, m$, be a set of weak orders on X. Then $(x, y) \in R_{i}$ means that the i th voter prefers candidate y to candidate x. The R_{i} blocks correspond to sets of candidates to which voter i is indifferent.

Let $p(n)$ denote the number of preorders possible on a set of n elements. The assumption is made in [6] that each voter chooses his voting preference uniformly at random from all of the $p(n)$ possibilities independently of the other voters. An algorithm for generating a random preorder is given in [6] and the ideas behind the algorithm are used to derive a formula for the probability of the occurrence of "Condorcet's paradox". See [5] for a survey of assumptions on voter preferences used in the study of Condorcet's paradox.

We are interested in the size of the blocks in a random preorder. Let B_{1} be the size of the first block, let B_{2} be the size of the second, and let B_{i} be the size of the i th block. If the preorder has N blocks we define $B_{i}=0$ for $i>N$. It is an identity that

$$
\begin{equation*}
\sum_{i=1}^{\infty} B_{i}=n . \tag{1.1}
\end{equation*}
$$

We can represent a preorder on the set X by the sequence (B_{1}, B_{2}, \ldots), where the B_{i} are disjoint and $\bigcup_{i} B_{i}=X$. A related combinatorial object to preorders is set partitions, for which the blocks are not ordered. The block structure of random set partitions has been studied in [8].

In this paper we look at the block structure of a random preorder. We give asymptotic estimates of the number of blocks, the size of a typical block, and the number of blocks of a particular size. We are able to show that the maximal size of a block asymptotically takes on one of two values.

Let $S(n, k)$ denote the Stirling number of the second kind. Note that the number of preorders with exactly r blocks is $p(n, r)=r!S(n, r)$ and therefore $p(n)=\sum_{r=1}^{n} r!S(n, r)$.

The identity

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{S(n, r) z^{n}}{n!}=\frac{\left(e^{z}-1\right)^{r}}{r!} \tag{1.2}
\end{equation*}
$$

is proven in Proposition (5.4.1) of [4] using inclusion-exclusion. The following
consequence of (1.2) will be useful. If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is a power series, then we use the notation $\left[z^{n}\right] f(z)$ to denote a_{n}.
Lemma 1 For any sequence $\theta_{r}, 1 \leq r \leq n$,

$$
\sum_{r=1}^{n} \theta_{r} p(n, r)=n!\left[z^{n}\right]\left(\sum_{n=0}^{\infty} \theta_{n}\left(e^{z}-1\right)^{n}\right)
$$

Proof We observe that

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(\sum_{r=1}^{n} \theta_{r} p(n, r)\right) \frac{z^{n}}{n!} & =\sum_{r=1}^{\infty}\left(\sum_{n=r}^{\infty} \frac{p(n, r) z^{n}}{n!}\right) \theta_{r} \\
& =\sum_{r=1}^{\infty}\left(\sum_{n=r}^{\infty} \frac{S(n, r) z^{n}}{n!}\right) r!\theta_{r} \\
& =\sum_{r=1}^{\infty} \theta_{r}\left(e^{z}-1\right)^{r} .
\end{aligned}
$$

The lemma follows immediately.
If we take $\theta_{r}=1$ in Lemma 1 , then we find that

$$
p(n)=n!\left[z^{n}\right]\left(2-e^{z}\right)^{-1}
$$

an identity proved in [2]. The singularity of smallest modulus of $\left(2-e^{z}\right)^{-1}$ occurs at $z=\log 2$ with residue

$$
\begin{equation*}
\lim _{z \rightarrow \log 2}\left(\frac{z-\log 2}{2-e^{z}}\right)=\lim _{z \rightarrow \log 2}\left(\frac{1}{-e^{z}}\right)=-\frac{1}{2} \tag{1.3}
\end{equation*}
$$

by l'Hôpital's rule. So the function

$$
\frac{1}{2-e^{z}}+\frac{1}{2(z-\log 2)}
$$

is analytic in a circle with centre at the origin and the next singularities of $\left(2-e^{z}\right)^{-1}$ (at $\log 2 \pm 2 \pi i$) on the boundary. Thus

$$
\begin{equation*}
p(n) \sim \frac{n!}{2}\left(\frac{1}{\log 2}\right)^{n+1} \tag{1.4}
\end{equation*}
$$

and indeed it follows from Theorem 10.2 of [7] that the difference between the two sides is $o\left((r-\varepsilon)^{-n}\right)$, where $r=|\log 2+2 \pi i|$; that is, exponentially small. An exact expression for $\left(2-e^{z}\right)^{-1}$ is given in [1] in terms of its singularities and the truncation error from using only a finite number of singularities is estimated.

2 The number of blocks

We denote the number of blocks of a random preorder on n elements by X_{n}. In terms of the block sizes B_{i} we may express X_{n} as $X_{n}=\sum_{i=1}^{\infty} I\left[B_{i}>0\right]$, where $I\left[B_{i}>0\right]$ is the indicator variable that the i th block has positive size. In this section we give asymptotics for X_{n}.

The k th falling factorial of a real number x is defined to be $(x)_{k}=x(x-1)(x-$ 2) $\cdots(x-k+1)$ and the k th falling moment of X_{n} to be

$$
\begin{equation*}
\mathbb{E}\left(X_{n}\right)_{k}=\mathbb{E} X_{n}\left(X_{n}-1\right)\left(X_{n}-2\right) \cdots\left(X_{n}-k+1\right) . \tag{2.5}
\end{equation*}
$$

Define λ_{n} to be

$$
\begin{equation*}
\lambda_{n}=\frac{n}{2 \log 2} . \tag{2.6}
\end{equation*}
$$

We will show that $\mathbb{E}\left(X_{n}\right)_{k} \sim \lambda_{n}^{k}$ for each fixed $k \geq 0$, where we use the notation $a_{n} \sim b_{n}$ for sequences a_{n}, b_{n} to mean $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$. By a standard argument using Chebyshev's inequality, the asymptotics of the first two moments implies that $X_{n} \stackrel{\text { a.a.s. }}{\sim} \frac{n}{2 \log 2}$, where we write $X_{n} \stackrel{\text { a.a.s. }}{\sim} a_{n}\left(X_{n}\right.$ converges to a_{n} asymptotically almost surely) to mean $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n} / a_{n}-1\right|>\varepsilon\right)=0$ for all $\varepsilon>0$.

Theorem 1 The kth falling moment of the number of blocks of a random preorder equals

$$
\begin{equation*}
\mathbb{E}\left(X_{n}\right)_{k}=\frac{k!n!}{p(n)}\left[z^{n}\right] \frac{\left(e^{z}-1\right)^{k}}{\left(2-e^{z}\right)^{k+1}} \tag{2.7}
\end{equation*}
$$

It follows that for fixed k

$$
\begin{equation*}
\mathbb{E}\left(X_{n}\right)_{k} \sim \lambda_{n}^{k} \tag{2.8}
\end{equation*}
$$

and that

$$
X_{n} \stackrel{\text { a.a.s. }}{\sim} \lambda_{n},
$$

where λ_{n} is defined by (2.6).
Proof In order to prove (2.7) it suffices to note that

$$
\mathbb{E}\left(X_{n}\right)_{k}=\sum_{r=1}^{n} \frac{p(n, r)}{p(n)}(r)_{k}=\frac{1}{p(n)} \sum_{r=1}^{n} p(n, r)(r)_{k},
$$

to apply Lemma 1 with $\theta_{r}=(r)_{k}$, and to observe that

$$
\sum_{n=0}^{\infty}(n)_{k} x^{n}=\frac{k!x^{k}}{(1-x)^{k+1}} .
$$

We now proceed to show (2.8). An analysis similar to (1.3) shows that

$$
\lim _{z \rightarrow \log 2} \frac{(z-\log 2)^{k+1}\left(e^{z}-1\right)^{k}}{\left(2-e^{z}\right)^{k+1}}=\left(-\frac{1}{2}\right)^{k+1}
$$

and that

$$
\frac{\left(e^{z}-1\right)^{k}}{\left(2-e^{z}\right)^{k+1}}-\frac{(-1 / 2)^{k+1}}{(z-\log 2)^{k+1}}
$$

is analytic on any disc of radius less than $|\log 2+2 \pi i|$. Singularity analysis (Section 11 of [7]) implies that

$$
\begin{align*}
{\left[z^{n}\right] \frac{\left(e^{z}-1\right)^{k}}{\left(2-e^{z}\right)^{k+1}} } & \sim\left(\frac{1}{2 \log 2}\right)^{k+1}\left[z^{n}\right](1-z / \log 2)^{-k-1} \\
& \sim\left(\frac{1}{2 \log 2}\right)^{k+1} \frac{n^{k}}{\Gamma(k+1)(\log 2)^{n}}, \tag{2.9}
\end{align*}
$$

where $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$. Therefore,

$$
\mathbb{E}\left(X_{n}\right)_{k} \sim \frac{n!}{p(n)}\left(\frac{1}{2 \log 2}\right)^{k+1} \frac{n^{k}}{(\log 2)^{n}} \sim \lambda_{n}^{k}
$$

where we have used (1.4) and $\Gamma(k+1)=k!$.
The variance of X_{n} is asymptotically $\operatorname{Var}\left(X_{n}\right)=\mathbb{E} X_{n}\left(X_{n}-1\right)+\mathbb{E} X_{n}-\left(\mathbb{E} X_{n}\right)^{2}=$ $\lambda_{n}^{2}+o\left(\lambda_{n}^{2}\right)+\left(\lambda_{n}+o\left(\lambda_{n}\right)\right)-\left(\lambda_{n}+o\left(\lambda_{n}\right)\right)^{2}=\lambda_{n}\left(1+o\left(\lambda_{n}\right)\right)$. The conclusion that $X_{n} \stackrel{\text { a.a.s. }}{\sim} \lambda_{n}$ is a consequence of

$$
\mathbb{P}\left(\left|X_{n} / \lambda_{n}-1\right|>\varepsilon\right)=\mathbb{P}\left(\left|X_{n}-\lambda_{n}\right|>\varepsilon \lambda_{n}\right) \leq \operatorname{Var}\left(X_{n}\right) /\left(\varepsilon \lambda_{n}\right)^{2}=o(1) .
$$

As a random variable Z with $\operatorname{Poisson}\left(\lambda_{n}\right)$ distribution has falling moments exactly equal to $\mathbb{E}(Z)_{k}=\lambda_{n}^{k}$, and $\left(Z-\lambda_{n}\right) / \sqrt{\lambda_{n}}$ converges weakly to the standard normal distribution if $\lambda_{n} \rightarrow \infty$, (2.8) indicates that $\left(X_{n}-\lambda_{n}\right) / \sqrt{\lambda_{n}}$ should have a distribution that is approximately normal. Asymptotic normality could be a subject for future research.

3 The size of a typical block

Because the blocks in a random preorder are linearly ordered, we may take B_{1} as the size of a typical block. Given a preorder $\left(B_{1}, B_{2}, \ldots\right)$ on X, we may define a new preorder on $X \backslash B_{1}$ by the sequence (B_{2}, B_{3}, \ldots). This operation can be reversed: given a preorder on $X \backslash B_{1},\left(B_{2}, B_{3}, \ldots\right)$, we can insert B_{1} to get the original preorder on X. The above correspondence implies

$$
\mathbb{P}\left(B_{1}=k\right)=\binom{n}{k} \frac{p(n-k)}{p(n)}
$$

and for fixed k the asymptotic (1.4) gives

$$
\begin{equation*}
\mathbb{P}\left(B_{1}=k\right) \sim\binom{n}{k} \frac{(n-k)!}{n!}(\log 2)^{k}=\frac{(\log 2)^{k}}{k!} \tag{3.10}
\end{equation*}
$$

It is easily checked that the distribution defined by the right hand side of (3.10) is the same as the distribution of the conditioned random variable $(Z \mid Z>0)$, where Z is Poisson $(\log 2)$ distributed.

We will use an argument similar to the one above and the results of Section 2 to show that the distribution of fixed block sizes are asymptotically i.i.d. and distributed as $(Z \mid Z>0)$.

Theorem 2 Let a finite set of indices $i_{1}, i_{2}, \ldots, i_{L}$ and a sequence of nonnegative integers $a_{1}, a_{2}, \ldots, a_{L}$ be given. Then

$$
\mathbb{P}\left(B_{i_{1}}=a_{1}, B_{i_{2}}=a_{2}, \ldots, B_{i_{L}}=a_{L}\right) \sim \prod_{i=1}^{L} \frac{(\log 2)^{a_{i}}}{a_{i}!}
$$

That is, the distribution of the $B_{i_{j}}$ converges weakly to an i.i.d. sequence of random variables distributed as $(Z \mid Z>0)$, where Z is Poisson $(\log 2)$ distributed.

Proof Given a preorder with blocks $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{L}}$ on X, we can form a new preorder by $\left(B_{1}, \ldots, B_{i_{1}-1}, B_{i-1+1}, \ldots, B_{i_{2}-1}, B_{i_{2}+1} \ldots\right)$ on $X \backslash \bigcup_{l=1}^{L} B_{i_{l}}$. On the other hand, a preorder $\left(B_{1}, \ldots, B_{i_{1}-1}, B_{i-1+1}, \ldots, B_{i_{2}-1}, B_{i_{2}+1} \ldots\right)$ on $X \backslash \bigcup_{l=1}^{L} B_{i_{l}}$ forms a valid preorder $\left(B_{1}, B_{2}, \ldots\right)$ on X by the insertion of the blocks $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{L}}$ if and only if $\left(B_{1}, \ldots, B_{i_{1}-1}, B_{i-1+1}, \ldots, B_{i_{2}-1}, B_{i_{2}+1} \ldots\right)$ is a preorder with at least
$i_{L}-L$ nonempty blocks. Therefore, with b defined as $b=\sum_{l=1}^{L} a_{l}$,

$$
\begin{align*}
& \mathbb{P}\left(B_{i_{1}}=a_{1}, B_{i_{2}}=a_{2}, \ldots, B_{i_{L}}=a_{L}\right) \\
= & \binom{n}{a_{1}, a_{2}, \ldots, a_{L}, n-b} \frac{\sum_{r=i_{L}-L}^{\infty} p(n-b, r)}{p(n)} \\
= & \binom{n}{a_{1}, a_{2}, \ldots, a_{L}, n-b} \frac{p(n-b)}{p(n)} \mathbb{P}\left(X_{n-b} \geq a_{L}-L\right) . \tag{3.11}
\end{align*}
$$

The probability in (3.11) approaches 1 because of Theorem 1. The other factors have asymptotics that give the theorem.

4 The number of blocks of fixed size

Define $X_{n}^{(s)}$ to be the number of blocks of size $s=s(n)$ in a random preorder on n elements. Define $\lambda_{n}^{(s)}$ to be

$$
\begin{equation*}
\lambda_{n}^{(s)}=\frac{(\log 2)^{s-1} n}{2 s!} \tag{4.12}
\end{equation*}
$$

Theorem 3 The kth falling moment of the number of s-blocks of a random preorder equals

$$
\begin{equation*}
\mathbb{E}\left(X_{n}^{(s)}\right)_{k}=\frac{k!n!}{p(n)(s!)^{k}}\left[z^{n-k s}\right] \sum_{j=0}^{k} \frac{(k)_{j}\left(e^{z}-1\right)^{k-j}}{j!\left(2-e^{z}\right)^{k-j+1}} \tag{4.13}
\end{equation*}
$$

It follows that for fixed k and $s=o(n)$ such that $\lambda_{n}^{(s)} \rightarrow \infty$,

$$
\mathbb{E}\left(X_{n}^{(s)}\right)_{k} \sim\left(\lambda_{n}^{(s)}\right)^{k}
$$

and that

$$
\begin{equation*}
X_{n}^{(s)} \stackrel{\text { a.a.s. }}{\sim} \lambda_{n}^{(s)}, \tag{4.14}
\end{equation*}
$$

where $\lambda_{n}^{(s)}$ is defined by (4.12).
Proof Let $p_{s}(n, k)$ be the number of preorders on n elements with exactly k blocks of size s. The k th falling moment of $X_{n}^{(s)}$ is

$$
\mathbb{E}\left(X_{n}^{(s)}\right)_{k}=\frac{1}{p(n)} \sum_{r=0}^{\infty}(r)_{k} p_{s}(n, r) .
$$

The quantity $\sum_{r=0}^{\infty}(r)_{k} p_{s}(n, r)$ counts the number of preorders with k labelled s blocks, where each of the labelled s-blocks is given a unique label from the set $\{1,2, \ldots, k\}$. This number is also counted by: first, choosing $k s$-blocks to be the ones marked; second, forming a preorder on the $n-k s$ remaining elements with r blocks; third, inserting the s-blocks into the preorder in the order they were chosen in one of $\binom{k+r}{k}$ ways; fourth, marking the inserted s-blocks in one of k ! ways. We therefore have

$$
\begin{align*}
\mathbb{E}\left(X_{n}^{(s)}\right)_{k} & =\frac{1}{p(n)} \sum_{r=1}^{\infty}\binom{n}{s}\binom{n-s}{s} \cdots\binom{n-(k-1) s}{s} p(n-k s, r)\binom{k+r}{k} k! \\
& =\frac{n!}{p(n)(s!)^{k}(n-k s)!} \sum_{r=1}^{\infty} p(n-k s, r)(k+r)_{k} \\
& =\frac{n!}{p(n)(s!)^{k}}\left[z^{n-k s}\right] \sum_{n=0}^{\infty}(k+n)_{k}\left(e^{z}-1\right)^{n} \tag{4.15}
\end{align*}
$$

where we have made use of Lemma 1 at (4.15). We use the identity

$$
\sum_{n=0}^{\infty}(k+n)_{k} x^{n}=\frac{d^{k}}{d x^{k}} \frac{x^{k}}{1-x}=\sum_{j=0}^{k}\binom{k}{j} \frac{(k-j)!(k)_{j} x^{k-j}}{(1-x)^{k-j+1}}
$$

in (4.15), which follows from the formula $\frac{d^{k}}{d x^{k}} u v=\sum_{j=0}^{k}\binom{k}{j} \frac{d^{j}}{d x^{j}} u \frac{d^{k-j}}{d x^{k-j}} v$ for functions $u(x)$ and $v(x)$. After substitution of the identity and simplification (4.15) becomes (4.13).

In (4.13), the singularity of largest degree occurs at $z=\log 2$ when $j=0$. The asymptotics of $\mathbb{E}\left(X_{n}^{(s)}\right)_{k}$ are given by

$$
\begin{aligned}
\mathbb{E}\left(X_{n}^{(s)}\right)_{k} & \sim \frac{n!k!}{p(n)(s!)^{k}}\left[z^{n-k s}\right] \frac{\left(e^{z}-1\right)^{k}}{\left(2-e^{z}\right)^{k+1}} \\
& \sim \frac{2 k!(\log 2)^{n+1}}{(s!)^{k}}\left(\frac{1}{2 \log 2}\right)^{k+1} \frac{(n-k s)^{k}}{\Gamma(k+1)(\log 2)^{n-k s}} \\
& \sim\left(\frac{(\log 2)^{s-1} n}{2 s!}\right)^{k}
\end{aligned}
$$

where we have used (1.4), (2.9), and the assumption $s=o(n)$. The almost sure convergence result (4.14) is an application of Chebyshev's inequality as in the
proof of Theorem 1.
One would expect from Theorem 3 that the distribution of $\frac{X_{n}^{(s)}-\lambda_{n}(s)}{\sqrt{\lambda_{n}(s)}}$ converges weakly to a standard normal distribution as long as $\lambda_{n}(s) \rightarrow \infty$, where $\lambda_{n}(s)=$ $\frac{(\log 2)^{s-1} n}{2 s!}$. This could be the subject of further investigations.

The method of the proof of Theorem 3 can be used to derive asymptotics of joint falling moments. For example, $\mathbb{E}\left(\left(X_{n}^{\left(s_{1}\right)}\right)_{k_{1}}\left(X_{n}^{\left(s_{2}\right)}\right)_{k_{2}}\right) \sim\left(\lambda_{n}^{\left(s_{1}\right)}\right)^{k_{1}}\left(\lambda_{n}^{\left(s_{2}\right)}\right)^{k_{2}}$ for fixed $s_{1}, s_{2}, k_{1}, k_{2}$.

Observe that $\sum_{s=1}^{\infty} s \lambda_{n}^{(s)}=n$ and $\sum_{s=1}^{\infty} \lambda_{n}^{(s)}=\lambda_{n}$, showing that Theorem 4.13 agrees with (1.1) and Theorem 1, respectively, and indicating that Theorem 3 gives a good picture of the block structure of a random preorder.

5 Maximal block size

We are also able to estimate closely the the maximum size of a block in a random preorder. Define μ_{n} to be

$$
\mu_{n}=\max \left\{s: \lambda_{n}^{(s)} \geq 1\right\}
$$

and define

$$
v_{n}= \begin{cases}\mu_{n} & \text { if } \lambda_{n}\left(\mu_{n}\right) \geq \sqrt{\mu_{n}}, \tag{5.16}\\ \mu_{n}-1 & \text { if } \lambda_{n}\left(\mu_{n}\right)<\sqrt{\mu_{n}}\end{cases}
$$

Theorem 4 Let $M_{n}=\max _{i>1} B_{i}$ be the maximal size of a block in a random preorder. Let v_{n} be defined by (5.16). Then $v_{n} \sim \log n / \log \log n$ and

$$
\begin{equation*}
\mathbb{P}\left(M_{n} \in\left\{v_{n}, v_{n}+1\right\}\right) \rightarrow 1 \text { as } n \rightarrow \infty . \tag{5.17}
\end{equation*}
$$

Proof Clearly, $\lambda_{n}^{(s)}$ is monotone decreasing in s for $s \geq 2$. Taking the logarithm of $\lambda_{n}^{(s)}$ produces

$$
\begin{align*}
\log \lambda_{n}^{(s)} & =\log n+(s-1) \log \log 2-\log s!-\log 2 \\
& =\log n-s \log s+O(s) \tag{5.18}
\end{align*}
$$

Plugging $s=\frac{\log n}{\log \log n}$ into (5.18) gives

$$
\log \lambda_{n}\left(\frac{\log n}{\log \log n}\right)=\frac{\log n \log \log \log n}{\log \log n}+O\left(\frac{\log n}{\log \log n}\right) \rightarrow \infty,
$$

from which it follows that for large enough $n, \mu_{n}>\log n / \log \log n$. On the other hand, if we plug $\frac{\log n}{\log \log n}\left(1+\frac{2 \log \log \log n}{\log \log n}\right)$ into the right hand side of (5.18) we get

$$
\begin{aligned}
& \log \lambda_{n}\left(\frac{\log n}{\log \log n}\left(1+\frac{2 \log \log \log n}{\log \log n}\right)\right) \\
= & \log n-\frac{\log n}{\log \log n}\left(1+\frac{2 \log \log \log n}{\log \log n}\right)\left(\log \log n-\log \log \log n+O\left(\frac{\log \log \log n}{\log \log n}\right)\right) \\
& +O\left(\frac{\log n}{\log \log n}\right) \\
= & -\frac{\log n \log \log \log n}{\log \log n}+O\left(\frac{\log n(\log \log \log n)^{2}}{(\log \log n)^{2}}\right) \rightarrow-\infty,
\end{aligned}
$$

so that $\mu_{n}<\frac{\log n}{\log \log n}\left(1+\frac{2 \log \log \log n}{\log \log n}\right)$ for large enough n. We have shown that

$$
\frac{\log n}{\log \log n}<\mu_{n}<\frac{\log n}{\log \log n}\left(1+\frac{2 \log \log \log n}{\log \log n}\right)
$$

for large enough n and, in particular, that $\mu_{n} \sim \frac{\log n}{\log \log n}$ and $v_{n} \sim \frac{\log n}{\log \log n}$.
Define the index sets

$$
\mathscr{N}_{1}=\left\{n \geq 1: \lambda_{n}\left(\mu_{n}\right) \geq \sqrt{\mu_{n}}\right\}
$$

and

$$
\mathscr{N}_{2}=\left\{n \geq 1: \lambda_{n}\left(\mu_{n}\right)<\sqrt{\mu_{n}}\right\} .
$$

We prove (5.17) first for indices going to infinity in \mathscr{N}_{1} and then for indices going to infinity in \mathscr{N}_{2}.

When $n \rightarrow \infty$ in $\mathscr{N}_{1}, \lambda_{n}\left(v_{n}\right) \geq \sqrt{\mu_{n}} \rightarrow \infty$ as $n \rightarrow \infty$, so the proof of Theorem 3 gives $\mathbb{P}\left(X_{n}^{\left(v_{n}\right)}>0\right) \rightarrow 1$ and so $\mathbb{P}\left(M_{n}<v_{n}\right) \rightarrow 0$. The ratio $\lambda_{n}^{\left(\mu_{n}+1\right)} / \lambda_{n}^{\left(\mu_{n}+2\right)}=$ $\left(\mu_{n}+2\right) / \log 2 \rightarrow \infty$ and $\lambda_{n}^{\left(\mu_{n}+1\right)}<1$ imply $\lambda_{n}^{\left(\mu_{n}+2\right)} \rightarrow 0$. We will show, furthermore, that

$$
\begin{equation*}
\sum_{s \geq \mu_{n}+2} \mathbb{E}\left(X_{n}^{(s)}\right)=o(1), \tag{5.19}
\end{equation*}
$$

which implies $\mathbb{P}\left(M_{n}>v_{n}+1\right) \rightarrow 0$. By Theorem 3, after some simplification, for all $s \in[1, n]$

$$
\mathbb{E}\left(X_{n}^{(s)}\right)=\frac{n!}{p(n) s!}\left[z^{n-s}\right]\left(2-e^{z}\right)^{-2}
$$

$$
\begin{align*}
& \leq \frac{K n!}{p(n) s!} \frac{n}{(\log 2)^{n-s}} \tag{5.20}\\
& \leq K^{\prime} \frac{(\log 2)^{s-1} n}{s!}
\end{align*}
$$

for constants $K, K^{\prime}>0$, where we have used the $O(\cdot)$ version of singularity analysis [7] at (5.20). The ratios $\frac{n(\log 2)^{s+1} /(s+1)!}{n(\log 2)^{s} /(s)!}=\frac{\log 2}{s+1}$ are less than some fixed $\rho<1$ for all $s \geq \mu_{n}+2$ for large enough n, so that for n large enough,

$$
\begin{equation*}
\sum_{s \geq \mu_{n}+2} \mathbb{E}\left(X_{n}^{(s)}\right) \leq K^{\prime} \sum_{s \geq \mu_{n}+2} \frac{n(\log 2)^{s-1}}{s!} \leq \frac{K^{\prime} \lambda_{n}^{\left(\mu_{n}+2\right)}}{1-\rho} \rightarrow 0 . \tag{5.21}
\end{equation*}
$$

When $n \rightarrow \infty$ in $\mathscr{N}_{2}, \lambda_{n}^{\left(\mu_{n}\right)} \geq 1$ and $\lambda_{n}^{\left(\mu_{n}-1\right)} / \lambda_{n}^{\left(\mu_{n}\right)}=\mu_{n} / \log 2 \rightarrow \infty$ give $\lambda^{\left(v_{n}\right)} \rightarrow$ ∞, hence $\mathbb{P}\left(M_{n}<v_{n}\right) \rightarrow 0$. On the other hand, $\lambda^{\left(\mu_{n}\right)}<\sqrt{\mu_{n}}$ and $\lambda_{n}^{\left(\mu_{n}\right)} / \lambda_{n}^{\left(\mu_{n}+1\right)}=$ $\left(\mu_{n}+1\right) / \log 2 \rightarrow \infty$ give $\lambda^{\left(\mu_{n}+1\right)}=O\left(\mu_{n}{ }^{-1 / 2}\right)=o(1)$ and an argument like the one showing (5.21) results in $\mathbb{P}\left(M_{n}>v_{n}+1\right) \rightarrow 0$.

Asymptotic two-point concentration theorems are well known from random graph theory. See Theorem 7, page 260 of [3] for such a result regarding clique number.

References

[1] Bailey, R. W. (1997) The number of weak orderings on a finite set. Soc. Choice Welfare, 15, 559-562.
[2] Barthelemy, J. P. (1980) An asymptotic equivalent for the number of total preorders on a finite set. Discrete Math., 29, 311-313.
[3] Bollobás, B. (1985) Random Graphs. Academic Press.
[4] Cameron, P. (1994) Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press.
[5] Gehrlein, W. V. (2002) Condorcet's Paradox and the Likelihood of its Occurrence: Different Perspectives on Balanced Preferences. Theory and Decision, 52, 171 - 199.
[6] Maassen, H. and Bezembinder, T. (2002) Generating random weak orders and the probability of a Condorcet winner. Soc. Choice Welfare, 19, 517 532.
[7] Odlyzko, A. M. (1995) Asymptotic enumeration methods. Handbook of combinatorics, Vol. 1, 2, 1063 - 1229, Elsevier, Amsterdam.
[8] Pittel, B. (1997) Random set partitions: asymptotics of subset counts. J. Combin. Theory, Ser. A, 79, 326 - 359.

