
Random preorders

Peter Cameron and Dudley Stark

School of Mathematical Sciences

Queen Mary, University of London

Mile End, London, E1 4NS U.K.

Submitted toCombinatorica

Abstract

A random preorder onn elements consists of linearly ordered equiva-
lence classes calledblocks. We investigate the block structure of a preorder
chosen uniformly at random from all preorders onn elements asn→ ∞.

1 Introduction

Let R be a binary relation on a setX. We sayR is reflexiveif (x,x) ∈ R for all
x ∈ X. We sayR is transitive if (x,y) ∈ R and (y,z) ∈ R implies (x,z) ∈ R. A
partial preorderis a relationRonX which is reflexive and transitive. A relationR
is said to satisfytrichotomyif, for anyx,y∈X, one of the cases(x,y)∈R, x= y, or
(y,x) ∈ R holds. We say thatR is apreorderif it is a partial preorder that satisfies
trichotomy. The members ofX are said to be theelementsof the preorder.

A relationR is antisymmetricif, whenever(x,y) ∈ R and(y,x) ∈ R both hold,
thenx = y. A relationR on X is a partial order if it is reflexive, transitive, and
antisymmetric. A relation is atotal order, if it is a partial order which satisfies
trichotomy. Given a partial preorderR on X, define a new relationS on X by
the rule that(x,y) ∈ S if and only if both (x,y) and (y,x) belong toR. ThenS
is an equivalence relation. Moreover,R induces a partial orderx on the set of
equivalence classes ofS in a natural way: if(x,y) ∈ R, then(x,y) ∈ R, where
x is theS-equivalence class containingx and similarly fory. We will call anS-
equivalence class ablock. If R is a preorder, then the relationRon the equivalence
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classes ofS is a total order. See Section 3.8 and question 19 of Section 3.13 in [4]
for more on the above definitions and results.

Preorders are used in [6] to model the voting preferences of voters. (A different
but equivalent definition of preorders is used in [6], where they are called weak
orders.) We suppose that there aren candidates andm voters. Suppose thatX is
a finite set representing a collection of candidates. LetRi , i = 1,2, . . . ,m, be a set
of weak orders onX. Then(x,y) ∈ Ri means that theith voter prefers candidatey
to candidatex. TheRi blocks correspond to sets of candidates to which voteri is
indifferent.

Let p(n) denote the number of preorders possible on a set ofn elements. The
assumption is made in [6] that each voter chooses his voting preference uniformly
at random from all of thep(n) possibilities independently of the other voters. An
algorithm for generating a random preorder is given in [6] and the ideas behind
the algorithm are used to derive a formula for the probability of the occurrence of
“Condorcet’s paradox”. See [5] for a survey of assumptions on voter preferences
used in the study of Condorcet’s paradox.

We are interested in the size of the blocks in a random preorder. LetB1 be the
size of the first block, letB2 be the size of the second, and letBi be the size of the
ith block. If the preorder hasN blocks we defineBi = 0 for i >N. It is an identity
that

∞

∑
i=1

Bi = n. (1.1)

We can represent a preorder on the setX by the sequence(B1,B2, . . .), where the
Bi are disjoint and

⋃
i Bi = X. A related combinatorial object to preorders is set

partitions, for which the blocks are not ordered. The block structure of random
set partitions has been studied in [8].

In this paper we look at the block structure of a random preorder. We give
asymptotic estimates of the number of blocks, the size of a typical block, and the
number of blocks of a particular size. We are able to show that the maximal size
of a block asymptotically takes on one of two values.

Let S(n,k) denote the Stirling number of the second kind. Note that the
number of preorders with exactlyr blocks is p(n, r) = r!S(n, r) and therefore
p(n) = ∑n

r=1 r!S(n, r).
The identity

∞

∑
n=0

S(n, r)zn

n!
=

(ez−1)r

r!
(1.2)

is proven in Proposition (5.4.1) of [4] using inclusion-exclusion. The following
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consequence of (1.2) will be useful. Iff (z) = ∑∞
n=0anzn is a power series, then

we use the notation[zn] f (z) to denotean.

Lemma 1 For any sequenceθr , 1≤ r ≤ n,

n

∑
r=1

θr p(n, r) = n! [zn]

(
∞

∑
n=0

θn(ez−1)n

)
.

Proof We observe that
∞

∑
n=0

(
n

∑
r=1

θr p(n, r)

)
zn

n!
=

∞

∑
r=1

( ∞

∑
n=r

p(n, r)zn

n!

)
θr

=
∞

∑
r=1

( ∞

∑
n=r

S(n, r)zn

n!

)
r! θr

=
∞

∑
r=1

θr(ez−1)r .

The lemma follows immediately.

If we takeθr = 1 in Lemma 1, then we find that

p(n) = n![zn] (2−ez)−1 ,

an identity proved in [2]. The singularity of smallest modulus of(2−ez)−1 occurs
atz= log2 with residue

lim
z→log2

(
z− log2
2−ez

)
= lim

z→log2

(
1
−ez

)
=−1

2
, (1.3)

by l’Hôpital’s rule. So the function

1
2−ez +

1
2(z− log2)

is analytic in a circle with centre at the origin and the next singularities of(2−ez)−1

(at log2±2π i) on the boundary. Thus

p(n)∼ n!
2

(
1

log2

)n+1

, (1.4)

and indeed it follows from Theorem 10.2 of [7] that the difference between the
two sides iso((r−ε)−n), wherer = | log2+2π i|; that is, exponentially small. An
exact expression for(2−ez)−1 is given in [1] in terms of its singularities and the
truncation error from using only a finite number of singularities is estimated.
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2 The number of blocks

We denote the number of blocks of a random preorder onn elements byXn. In
terms of the block sizesBi we may expressXn as Xn = ∑∞

i=1 I [Bi > 0], where
I [Bi > 0] is the indicator variable that theith block has positive size. In this section
we give asymptotics forXn.

Thekth falling factorial of a real numberx is defined to be(x)k = x(x−1)(x−
2) · · ·(x−k+1) and thekth falling moment ofXn to be

E(Xn)k = EXn(Xn−1)(Xn−2) · · ·(Xn−k+1). (2.5)

Defineλn to be
λn =

n
2log2

. (2.6)

We will show thatE(Xn)k ∼ λ
k
n for each fixedk≥ 0, where we use the notation

an∼ bn for sequencesan, bn to mean limn→∞ an/bn = 1. By a standard argument
using Chebyshev’s inequality, the asymptotics of the first two moments implies
thatXn

a.a.s.∼ n
2log2, where we writeXn

a.a.s.∼ an (Xn converges toan asymptotically
almost surely) to mean limn→∞P(|Xn/an−1|> ε) = 0 for all ε > 0.

Theorem 1 The kth falling moment of the number of blocks of a random preorder
equals

E(Xn)k =
k!n!
p(n)

[zn]
(ez−1)k

(2−ez)k+1 . (2.7)

It follows that for fixed k
E(Xn)k ∼ λ

k
n (2.8)

and that
Xn

a.a.s.∼ λn,

whereλn is defined by (2.6).

Proof In order to prove (2.7) it suffices to note that

E(Xn)k =
n

∑
r=1

p(n, r)
p(n)

(r)k =
1

p(n)

n

∑
r=1

p(n, r)(r)k,

to apply Lemma 1 withθr = (r)k, and to observe that

∞

∑
n=0

(n)kx
n =

k!xk

(1−x)k+1 .
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We now proceed to show (2.8). An analysis similar to (1.3) shows that

lim
z→log2

(z− log2)k+1(ez−1)k

(2−ez)k+1 =
(
−1

2

)k+1

and that
(ez−1)k

(2−ez)k+1 −
(−1/2)k+1

(z− log2)k+1

is analytic on any disc of radius less than| log2+2π i|. Singularity analysis (Sec-
tion 11 of [7]) implies that

[zn]
(ez−1)k

(2−ez)k+1 ∼
(

1
2log2

)k+1

[zn](1−z/ log2)−k−1

∼
(

1
2log2

)k+1 nk

Γ(k+1)(log2)n , (2.9)

whereΓ(x) =
∫ ∞

0 e−ttx−1dt. Therefore,

E(Xn)k ∼
n!

p(n)

(
1

2log2

)k+1 nk

(log2)n ∼ λ
k
n ,

where we have used (1.4) andΓ(k+1) = k!.
The variance ofXn is asymptotically Var(Xn) =EXn(Xn−1)+EXn−(EXn)2 =

λ
2
n + o(λ

2
n ) + (λn + o(λn))− (λn + o(λn))2 = λn(1+ o(λn)). The conclusion that

Xn
a.a.s.∼ λn is a consequence of

P(|Xn/λn−1|> ε) = P(|Xn−λn|> ελn)≤ Var(Xn)/(ελn)2 = o(1).

As a random variableZ with Poisson(λn) distribution has falling moments
exactly equal toE(Z)k = λ

k
n , and(Z−λn)/

√
λn converges weakly to the standard

normal distribution ifλn→ ∞, (2.8) indicates that(Xn− λn)/
√

λn should have
a distribution that is approximately normal. Asymptotic normality could be a
subject for future research.
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3 The size of a typical block

Because the blocks in a random preorder are linearly ordered, we may takeB1 as
the size of a typical block. Given a preorder(B1,B2, . . .) on X, we may define
a new preorder onX\B1 by the sequence(B2,B3, . . .). This operation can be
reversed: given a preorder onX\B1, (B2,B3, . . .), we can insertB1 to get the
original preorder onX. The above correspondence implies

P(B1 = k) =
(

n
k

)
p(n−k)

p(n)

and for fixedk the asymptotic (1.4) gives

P(B1 = k)∼
(

n
k

)
(n−k)!

n!
(log2)k =

(log2)k

k!
. (3.10)

It is easily checked that the distribution defined by the right hand side of (3.10) is
the same as the distribution of the conditioned random variable(Z|Z> 0), where
Z is Poisson(log2) distributed.

We will use an argument similar to the one above and the results of Section 2
to show that the distribution of fixed block sizes are asymptotically i.i.d. and dis-
tributed as(Z|Z> 0).

Theorem 2 Let a finite set of indices i1, i2, . . . , iL and a sequence of nonnegative
integers a1,a2, . . . ,aL be given. Then

P(Bi1
= a1,Bi2

= a2, . . . ,BiL
= aL)∼

L

∏
i=1

(log2)ai

ai !
.

That is, the distribution of the Bi j
converges weakly to an i.i.d. sequence of random

variables distributed as(Z|Z> 0), where Z is Poisson(log2) distributed.

Proof Given a preorder with blocksBi1
,Bi2

, . . . ,BiL
onX, we can form a new pre-

order by(B1, . . . ,Bi1−1,Bi−1+1, . . . ,Bi2−1,Bi2+1 . . .) on X\
⋃L

l=1Bi l
. On the other

hand, a preorder(B1, . . . ,Bi1−1,Bi−1+1, . . . ,Bi2−1,Bi2+1 . . .) on X\
⋃L

l=1Bi l
forms

a valid preorder(B1,B2, . . .) on X by the insertion of the blocksBi1
,Bi2

, . . . ,BiL
if

and only if (B1, . . . ,Bi1−1,Bi−1+1, . . . ,Bi2−1,Bi2+1 . . .) is a preorder with at least
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iL−L nonempty blocks. Therefore, withb defined asb = ∑L
l=1al ,

P(Bi1
= a1,Bi2

= a2, . . . ,BiL
= aL)

=
(

n
a1,a2, . . . ,aL,n−b

)∑∞
r=iL−L p(n−b, r)

p(n)

=
(

n
a1,a2, . . . ,aL,n−b

)
p(n−b)

p(n)
P(Xn−b≥ aL−L). (3.11)

The probability in (3.11) approaches 1 because of Theorem 1. The other factors
have asymptotics that give the theorem.

4 The number of blocks of fixed size

DefineX(s)
n to be the number of blocks of sizes= s(n) in a random preorder onn

elements. Defineλ (s)
n to be

λ
(s)
n =

(log2)s−1n
2s!

. (4.12)

Theorem 3 The kth falling moment of the number of s-blocks of a random pre-
order equals

E(X(s)
n )k =

k!n!
p(n)(s!)k [zn−ks]

k

∑
j=0

(k) j(e
z−1)k− j

j!(2−ez)k− j+1 . (4.13)

It follows that for fixed k and s= o(n) such thatλ (s)
n → ∞,

E(X(s)
n )k ∼ (λ

(s)
n )k

and that
X(s)

n
a.a.s.∼ λ

(s)
n , (4.14)

whereλ
(s)
n is defined by (4.12).

Proof Let ps(n,k) be the number of preorders onn elements with exactlyk blocks
of sizes. Thekth falling moment ofX(s)

n is

E(X(s)
n )k =

1
p(n)

∞

∑
r=0

(r)kps(n, r).
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The quantity∑∞
r=0(r)kps(n, r) counts the number of preorders withk labelleds-

blocks, where each of the labelleds-blocks is given a unique label from the set
{1,2, . . . ,k}. This number is also counted by: first, choosingk s-blocks to be the
ones marked; second, forming a preorder on then−ksremaining elements withr
blocks; third, inserting thes-blocks into the preorder in the order they were chosen
in one of

(k+r
k

)
ways; fourth, marking the inserteds-blocks in one ofk! ways. We

therefore have

E(X(s)
n )k =

1
p(n)

∞

∑
r=1

(
n
s

)(
n−s

s

)
· · ·
(

n− (k−1)s
s

)
p(n−ks, r)

(
k+ r

k

)
k!

=
n!

p(n)(s!)k(n−ks)!

∞

∑
r=1

p(n−ks, r)(k+ r)k

=
n!

p(n)(s!)k [zn−ks]
∞

∑
n=0

(k+n)k(e
z−1)n

(4.15)

where we have made use of Lemma 1 at (4.15). We use the identity

∞

∑
n=0

(k+n)k xn =
dk

dxk

xk

1−x
=

k

∑
j=0

(
k
j

)(k− j)!(k) jx
k− j

(1−x)k− j+1

in (4.15), which follows from the formuladk

dxk uv = ∑k
j=0

(k
j

)
d j

dxj u
dk− j

dxk− j v for func-
tions u(x) andv(x). After substitution of the identity and simplification (4.15)
becomes (4.13).

In (4.13), the singularity of largest degree occurs atz= log2 whenj = 0. The
asymptotics ofE(X(s)

n )k are given by

E(X(s)
n )k ∼

n!k!
p(n)(s!)k [zn−ks]

(ez−1)k

(2−ez)k+1

∼ 2k!(log2)n+1

(s!)k

(
1

2log2

)k+1 (n−ks)k

Γ(k+1)(log2)n−ks

∼
(

(log2)s−1n
2s!

)k

,

where we have used (1.4), (2.9), and the assumptions = o(n). The almost sure
convergence result (4.14) is an application of Chebyshev’s inequality as in the
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proof of Theorem 1.

One would expect from Theorem 3 that the distribution ofX(s)
n −λn(s)√

λn(s)
converges

weakly to a standard normal distribution as long asλn(s)→ ∞, whereλn(s) =
(log2)s−1n

2s! . This could be the subject of further investigations.
The method of the proof of Theorem 3 can be used to derive asymptotics of

joint falling moments. For example,E((X(s1)
n )k1

(X(s2)
n )k2

)∼ (λ
(s1)
n )k1(λ

(s2)
n )k2 for

fixeds1, s2, k1, k2.
Observe that∑∞

s=1sλ
(s)
n = n and∑∞

s=1λ
(s)
n = λn, showing that Theorem 4.13

agrees with (1.1) and Theorem 1, respectively, and indicating that Theorem 3 gives
a good picture of the block structure of a random preorder.

5 Maximal block size

We are also able to estimate closely the the maximum size of a block in a random
preorder. Defineµn to be

µn = max
{

s : λ
(s)
n ≥ 1

}
and define

νn =
{

µn if λn(µn)≥√µn,
µn−1 if λn(µn)<

√
µn.

(5.16)

Theorem 4 Let Mn = maxi≥1Bi be the maximal size of a block in a random pre-
order. Letνn be defined by (5.16). Thenνn∼ logn/ log logn and

P(Mn ∈ {νn,νn +1})→ 1 asn→ ∞. (5.17)

Proof Clearly,λ (s)
n is monotone decreasing ins for s≥ 2. Taking the logarithm

of λ
(s)
n produces

logλ
(s)
n = logn+(s−1) log log2− logs!− log2

= logn−slogs+O(s). (5.18)

Pluggings= logn
log logn into (5.18) gives

logλn

(
logn

log logn

)
=

lognlog log logn
log logn

+O

(
logn

log logn

)
→ ∞,
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from which it follows that for large enoughn, µn > logn/ log logn. On the other

hand, if we plug logn
log logn

(
1+ 2log log logn

log logn

)
into the right hand side of (5.18) we get

logλn

(
logn

log logn

(
1+

2log log logn
log logn

))
= logn− logn

log logn

(
1+

2log log logn
log logn

)(
log logn− log log logn+O

(
log log logn

log logn

))
+O

(
logn

log logn

)
= − lognlog log logn

log logn
+O

(
logn(log log logn)2

(log logn)2

)
→−∞,

so thatµn <
logn

log logn

(
1+ 2log log logn

log logn

)
for large enoughn. We have shown that

logn
log logn

< µn <
logn

log logn

(
1+

2log log logn
log logn

)
for large enoughn and, in particular, thatµn∼ logn

log logn andνn∼ logn
log logn.

Define the index sets

N1 = {n≥ 1 : λn(µn)≥√µn}

and
N2 = {n≥ 1 : λn(µn)<

√
µn}.

We prove (5.17) first for indices going to infinity inN1 and then for indices going
to infinity in N2.

Whenn→∞ in N1, λn(νn)≥√µn→∞ asn→∞, so the proof of Theorem 3
givesP(X(νn)

n > 0)→ 1 and soP(Mn < νn)→ 0. The ratioλ
(µn+1)
n /λ

(µn+2)
n =

(µn + 2)/ log2→ ∞ andλ
(µn+1)
n < 1 imply λ

(µn+2)
n → 0. We will show, further-

more, that

∑
s≥µn+2

E(X(s)
n ) = o(1), (5.19)

which impliesP(Mn> νn +1)→ 0. By Theorem 3, after some simplification, for
all s∈ [1,n]

E(X(s)
n ) =

n!
p(n)s!

[zn−s](2−ez)−2
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≤ Kn!
p(n)s!

n
(log2)n−s (5.20)

≤ K′
(log2)s−1n

s!

for constantsK,K′ > 0, where we have used theO(·) version of singularity anal-

ysis [7] at (5.20). The ratiosn(log2)s+1/(s+1)!
n(log2)s/(s)! = log2

s+1 are less than some fixedρ < 1
for all s≥ µn +2 for large enoughn, so that forn large enough,

∑
s≥µn+2

E(X(s)
n )≤ K′ ∑

s≥µn+2

n(log2)s−1

s!
≤

K′λ (µn+2)
n

1−ρ

→ 0. (5.21)

Whenn→∞ in N2, λ
(µn)
n ≥1 andλ

(µn−1)
n /λ

(µn)
n = µn/ log2→∞ giveλ

(νn)→
∞, henceP(Mn < νn)→ 0. On the other hand,λ (µn) <

√
µn andλ

(µn)
n /λ

(µn+1)
n =

(µn + 1)/ log2→ ∞ give λ
(µn+1) = O(µn

−1/2) = o(1) and an argument like the
one showing (5.21) results inP(Mn > νn +1)→ 0.

Asymptotic two-point concentration theorems are well known from random
graph theory. See Theorem 7, page 260 of [3] for such a result regarding clique
number.
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