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Abstract

A preorder consists of linearly ordered equivalence classes called
blocks, and an alignment is a sequence of cycles on n labelled ele-
ments. We investigate the block structure of a random preorder cho-
sen uniformly at random among all preorders on n elements, and also
the distribution of cycles in a random alignment chosen uniformly at
random among all alignments on n elements, as n →∞.

1 Introduction

A preorder consists of linearly ordered equivalence classes called blocks, and
an alignment is a sequence of cycles on n labelled elements. The number of
preorders and alignments are closely related to the Stirling number of the
second kind and of the first kind, which are well studied numbers [7, 9].
Let n and r be positive integers with 1 ≤ r ≤ n. Let p(n) denote the
number of preorders possible on a set of n elements, say [n] := {1, 2, · · · , n}.
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Let S(n, k) denote the Stirling number of the second kind. Note that the
number of preorders with exactly r blocks is

p(n, r) = r!S(n, r) (1)

Therefore, p(n) =
∑n

r=0 r!S(n, r). Let q(n) denote the number of alignment
possible on [n], and let q(n, r) denote the number of alignment possible on
[n] with exactly r cycles. Let s(n, r) denote the Stirling number of the first
kind, which is defined by the rule that (−1)n−rs(n, r) counts the number of
permutations of [n] with exactly r cycles. Note that the number of alignments
on [n] with exactly r cycles is

q(n, r) = r!(−1)n−rs(n, r) (2)

and therefore q(n) =
∑n

r=1 q(n, r) =
∑n

r=1 r!|s(n, r)|. These numbers can be
extended for all nonnegative integers n and r by defining p(n, r) = 0 unless
1 ≤ r ≤ n, but p(0, 0) = 1, and s(n, r) = 0 unless 1 ≤ r ≤ n, but s(0, 0) = 1.
The identity

∞∑
n=0

S(n, r)zn

n!
=

(ez − 1)r

r!
(3)

is proven in Proposition (5.4.1) of [7] using inclusion-exclusion. It is also
proved that the exponential generating function of the Stirling number of
the first kind s(n, r) with r fixed has an explicit form (see e.g., Proposition
(5.4.4) of [7])

∞∑
n=0

s(n, r)zn

n!
=

∞∑
n=r

s(n, r)zn

n!
=

(ln(1 + z))r

r!
. (4)

In this paper we derive a key lemma (Lemma 3.1) from (1) to look at the
block structure of a random preorder. We give asymptotic estimates of the
number of blocks, the size of a typical block, and the number of blocks of
a particular size. We show that the maximal size of a block asymptotically
takes on one of two values.

There have been previous results about random preorders. It was shown
in [3] that the number of blocks is asymptotically normal. In [9], Proposition
V.6, the asymptotic expectation and variance of the number of blocks of size
s are derived for fixed s only, while we find the asymptotic number of blocks
of size s for s = s(n), thereby giving a complete description of the block
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structure of random preorders. The distribution of the maximal block size of
a random preorder was looked at in Example 8 (Largest number of pre-images
in surjections) of [12]. We go further and get a two point concentration result.

We also use (2) to derive another key lemma (Lemma 4.1) and use it to
study the cycle structure of random alignments. We get a complete descrip-
tion of the cycle structure and size of a typcial cycle as well as an almost sure
asymptotic for the size of the largest cycle. Previous results on alignments,
such as the moments of the number of cycles of fixed size, can be found in
[9].

Preorders and alignments are orbits of particular oligomorphic permuta-
tion groups and the structure of orbits of other oligomorphic permutation
groups may be the subject of further related study. Some further remarks to
that effect are made in the concluding section.

2 Preliminaries

If f(z) =
∑∞

n=0 anz
n is a power series, then we use the notation [zn] f(z) to

denote an.

Lemma 2.1 Let f (z) = (1− z)−α with α 6∈ {0,−1,−2, . . .}. For large n
the coefficients [zn] f(z) has a singular expansion in descending powers of n,

[zn] f(z) =

(
n + α− 1

n

)
∼ nα−1

Γ (α)

(
1 +

∞∑
k=1

ek (k)

nk

)
(5)

where Γ (α) :=
∫∞

0
e−ttα−1dt for α 6∈ {0,−1,−2, . . .}, and ek (k) is a polyno-

mial in k of degree 2k.

Note in particular that Γ(k + 1) = k! for positive integer k.
A random variable X has the logarithmic distribution with parameter

p ∈ (0, 1) if for k = 1, 2, 3, · · ·,

P(X = k) =
pk

k ln(1− p)−1
.

It is denoted by Log(p) and its mean and variance are given by

E(X) =
p

(1− p) ln(1− p)−1
, Var(X) =

−p(p + ln(1− p))

(1− p)2 ln2(1− p)
.
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We use the notation an ∼ bn for sequences an, bn to mean limn→∞ an/bn =
1. We write Xn

a.a.s.∼ an (Xn converges to an asymptotically almost surely) to
mean limn→∞ P(|Xn/an − 1| > ε) = 0 for all ε > 0.

We need Chebyshev’s inequality: for a random variable X and any λ > 0

P(|X − E(X)| ≥ λ) ≤ Var(X)

λ2
(6)

The kth falling factorial of a real number x is defined to be

(x)k = x(x− 1)(x− 2) · · · (x− k + 1)

(and thus (x)k = 0 for a nonnegative integer x < k). The kth factorial
moment of a random variable X to be

E(X)k = EX(X − 1)(X − 2) · · · (X − k + 1).

Observe that for any x

∞∑
r=0

(r)kx
r =

k!xk

(1− x)k+1
. (7)

∞∑
r=0

(k + r)k xr =
dk

dxk

xk

1− x
=

k∑
j=0

(
k

j

)
(k − j)!(k)jx

k−j

(1− x)k−j+1
, (8)

which follows from the Leibnitz formula dk

dxk uv =
∑k

j=0

(
k
j

)
dj

dxj u
dk−j

dxk−j v for

functions u(x) and v(x).

3 Random preorders

Let R be a binary relation on a set X. We say R is reflexive if (x, x) ∈ R
for all x ∈ X. We say R is transitive if (x, y) ∈ R and (y, z) ∈ R implies
(x, z) ∈ R. A partial preorder is a relation R on X which is reflexive and
transitive. A relation R is said to satisfy trichotomy if, for any x, y ∈ X,
one of the cases (x, y) ∈ R, x = y, or (y, x) ∈ R holds. We say that R is a
preorder if it is a partial preorder that satisfies trichotomy. The members of
X are said to be the elements of the preorder.
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A relation R is antisymmetric if, whenever (x, y) ∈ R and (y, x) ∈ R
both hold, then x = y. A relation R on X is a partial order if it is reflexive,
transitive, and antisymmetric. A relation is a total order, if it is a partial
order which satisfies trichotomy. Given a partial preorder R on X, define a
new relation S on X by the rule that (x, y) ∈ S if and only if both (x, y) and
(y, x) belong to R. Then S is an equivalence relation. Moreover, R induces
a partial order x on the set of equivalence classes of S in a natural way: if
(x, y) ∈ R, then (x, y) ∈ R, where x is the S-equivalence class containing
x and similarly for y. We will call an S-equivalence class a block. If R is a
preorder, then the relation R on the equivalence classes of S is a total order.
See Section 3.8 and question 19 of Section 3.13 in [7] for more on the above
definitions and results.

Preorders are used in [14] to model the voting preferences of voters. (A
different but equivalent definition of preorders is used in [14], where they are
called weak orders.) We suppose that there are n candidates and m voters.
Suppose that X is a finite set representing a collection of candidates. Let Ri,
i = 1, 2, . . . ,m, be a set of weak orders on X. Then (x, y) ∈ Ri means that
the ith voter prefers candidate y to candidate x. The Ri blocks correspond
to sets of candidates to which voter i is indifferent.

The assumption is made in [14] that each voter chooses his voting pref-
erence uniformly at random from all of the p(n) possibilities independently
of the other voters. An algorithm for generating a random preorder is given
in [14] and the ideas behind the algorithm are used to derive a formula for
the probability of the occurrence of “Condorcet’s paradox”. See [11] for a
survey of assumptions on voter preferences used in the study of Condorcet’s
paradox.

3.1 The number of preorders

In this subsection we study the asymptotic number of preorders and the
distribution of blocks in a random preorder. The following consequence of
(1) and (3) will be used to derive complete information about the block
structure of a random preorder.

Lemma 3.1 For any sequence θr and any nonnegative integer n,

n∑
r=0

θrp(n, r) = n! [zn]

(
∞∑

n=0

θn(ez − 1)n

)
.
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Proof We observe that

∞∑
n=0

(
n∑

r=0

θrp(n, r)

)
zn

n!
=

∞∑
r=0

(
∞∑

n=r

p(n, r)zn

n!

)
θr

(1)
=

∞∑
r=0

(
∞∑

n=r

S(n, r)zn

n!

)
r! θr

(3)
=

∞∑
r=0

θr(e
z − 1)r.

The lemma follows immediately.

If we take θr = 1 in Lemma 3.1, then we find that

p(n) = n![zn] (2− ez)−1 ,

an identity proved in [2]. The singularity of smallest modulus of (2− ez)−1

occurs at z = log 2 with residue

lim
z→log 2

(
z − log 2

2− ez

)
= lim

z→log 2

(
1

−ez

)
= −1

2
, (9)

by l’Hôpital’s rule. So the function

1

2− ez
+

1

2(z − log 2)

is analytic in a circle with centre at the origin and the next singularities of
(2− ez)−1 (at log 2± 2πi) on the boundary. Thus

p(n) ∼ n!

2

(
1

log 2

)n+1

, (10)

and indeed it follows from Theorem 10.2 of [15] that the difference between
the two sides is o((r − ε)−n), where r = | log 2 + 2πi|; that is, exponen-
tially small. An exact expression for (2− ez)−1 is given in [1] in terms of
its singularities and the truncation error from using only a finite number of
singularities is estimated.
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3.2 The number of blocks

We are interested in the size of the blocks in a random preorder. Let B1

be the size of the first block, let B2 be the size of the second, and let Bi be
the size of the ith block. If the preorder has N blocks we define Bi = 0 for
i > N . It is an identity that

∞∑
i=1

Bi = n. (11)

We can represent a preorder on the set X by the sequence (B1, B2, . . .),
where the Bi are disjoint and

⋃
i Bi = X. A related combinatorial object to

preorders is set partitions, for which the blocks are not ordered. The block
structure of random set partitions has been studied in [16].

We denote the number of blocks of a random preorder on n elements by
Xn. In terms of the block sizes Bi we may express Xn as Xn =

∑∞
i=1 I[Bi >

0], where I[Bi > 0] is the indicator variable that the ith block has positive
size. In this section we give asymptotics for Xn.

Define λn to be

λn =
n

2 log 2
. (12)

We will show that E(Xn)k ∼ λk
n for each fixed k ≥ 0. By a standard argument

using Chebyshev’s inequality, the asymptotics of the first two moments im-
plies that Xn

a.a.s.∼ n
2 log 2

. Theorem 3.1 agrees with Example 3.4 of [3], where it

is shown that (Xn−λn)/
√

λn converges in distribution to a standard normal.

Theorem 3.1 The kth falling moment of the number of blocks of a random
preorder equals

E(Xn)k =
k!n!

p(n)
[zn]

(ez − 1)k

(2− ez)k+1
. (13)

It follows that for fixed k
E(Xn)k ∼ λk

n (14)

and that
Xn

a.a.s.∼ λn,

where λn is defined by (12).
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Proof In order to prove (13) it suffices to note that

E(Xn)k =
n∑

r=0

p(n, r)

p(n)
(r)k =

1

p(n)

n∑
r=0

p(n, r)(r)k,

to apply Lemma 3.1 with θr = (r)k, and to observe (7).
We now show (14). An analysis similar to (9) shows that

lim
z→log 2

(z − log 2)k+1(ez − 1)k

(2− ez)k+1
=

(
−1

2

)k+1

and that

(ez − 1)k

(2− ez)k+1
− (−1/2)k+1

(z − log 2)k+1
(15)

is analytic on any disc of radius less than | log 2 + 2πi|. Singularity analysis
(Section 11 of [15]) implies that

[zn]
(ez − 1)k

(2− ez)k+1

(15)∼
(

1

2 log 2

)k+1

[zn](1− z/ log 2)−k−1

(5)∼
(

1

2 log 2

)k+1
nk

Γ(k + 1)(log 2)n
. (16)

Therefore,

E(Xn)k
(13)∼ k!n!

p(n)
[zn]

(ez − 1)k

(2− ez)k+1

(16)∼ n!

p(n)

(
1

2 log 2

)k+1
nk

(log 2)n

(10)∼ λk
n.

The variance of Xn is asymptotically Var(Xn) = EXn(Xn − 1) + EXn −
(EXn)2 = λ2

n + o(λ2
n) + (λn + o(λn)) − (λn + o(λn))2 = λn + o(λ2

n). The
conclusion that Xn

a.a.s.∼ λn is a consequence of

P (|Xn/λn − 1| > ε) = P (|Xn − λn| > ελn) ≤ Var(Xn)/(ελn)2 = o(1).
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3.3 The size of a typical block

Because the blocks in a random preorder are linearly ordered, we may take
B1 as the size of a typical block. Given a preorder (B1, B2, . . .) on X, we may
define a new preorder on X\B1 by the sequence (B2, B3, . . .). This operation
can be reversed: given a preorder on X\B1, (B2, B3, . . .), we can insert B1

to get the original preorder on X. The above correspondence implies

P(B1 = k) =

(
n

k

)
p(n− k)

p(n)

and for fixed k the asymptotic (10) gives

P(B1 = k) ∼
(

n

k

)
(n− k)!

n!
(log 2)k =

(log 2)k

k!
. (17)

It is easily checked that the distribution defined by the right hand side of (17)
is the same as the distribution of the conditioned random variable (Z|Z > 0),
where Z is Poisson(log 2) distributed.

We will use an argument similar to the one above and the results of
Section 2 to show that the distribution of fixed block sizes are asymptotically
i.i.d. and distributed as (Z|Z > 0).

Theorem 3.2 Let a finite set of indices i1, i2, . . . , iL and a sequence of non-
negative integers a1, a2, . . . , aL be given. Then

P(Bi1 = a1, Bi2 = a2, . . . , BiL = aL) ∼
L∏

i=1

(log 2)ai

ai!
.

That is, the distribution of the Bij converges weakly to an i.i.d. sequence
of random variables distributed as (Z|Z > 0), where Z is Poisson(log 2)
distributed.

Proof Given a preorder with blocks Bi1 , Bi2 , . . . , BiL on X, we can form a
new preorder by (B1, . . . , Bi1−1, Bi−1+1, . . . , Bi2−1, Bi2+1 . . .) on X\

⋃L
l=1 Bil .

On the other hand, a preorder (B1, . . . , Bi1−1, Bi−1+1, . . . , Bi2−1, Bi2+1 . . .) on
X\
⋃L

l=1 Bil forms a valid preorder (B1, B2, . . .) on X by the insertion of the
blocks Bi1 , Bi2 , . . . , BiL if and only if (B1, . . . , Bi1−1, Bi−1+1, . . . , Bi2−1, Bi2+1 . . .)
is a preorder with at least iL−L nonempty blocks. Therefore, with b defined
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as b =
∑L

l=1 al,

P(Bi1 = a1, Bi2 = a2, . . . , BiL = aL)

=

(
n

a1, a2, . . . , aL, n− b

)∑∞
r=iL−L p(n− b, r)

p(n)

=

(
n

a1, a2, . . . , aL, n− b

)
p(n− b)

p(n)
P(Xn−b ≥ aL − L). (18)

The probability in (18) approaches 1 because of Theorem 3.1. The other
factors have asymptotics that give the theorem.

3.4 The number of blocks of fixed size

Define X
(s)
n to be the number of blocks of size s = s(n) in a random preorder

on n elements. Define λ
(s)
n to be

λ(s)
n =

(log 2)s−1n

2s!
. (19)

Theorem 3.3 The kth falling moment of the number of s-blocks of a random
preorder equals

E(X(s)
n )k =

k!n!

p(n)(s!)k
[zn−ks]

k∑
j=0

(k)j(e
z − 1)k−j

j!(2− ez)k−j+1
. (20)

It follows that for fixed k and s = o(n) such that λ
(s)
n →∞,

E(X(s)
n )k ∼ (λ(s)

n )k

and that
X(s)

n
a.a.s.∼ λ(s)

n , (21)

where λ
(s)
n is defined by (19).

Proof Let ps(n, k) be the number of preorders on n elements with exactly

k blocks of size s. The kth falling moment of X
(s)
n is

E(X(s)
n )k =

1

p(n)

∞∑
r=0

(r)kps(n, r).
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The quantity
∑∞

r=0(r)kps(n, r) counts the number of preorders with k labelled
s-blocks, where each of the labelled s-blocks is given a unique label from the
set {1, 2, . . . , k}. This number is also counted by: first, choosing k s-blocks
to be the ones marked; second, forming a preorder on the n− ks remaining
elements (with r blocks); third, inserting the s-blocks into the preorder in
the order they were chosen in one of

(
k+r

k

)
ways; fourth, marking the inserted

s-blocks in one of k! ways. We therefore have

E(X(s)
n )k =

1

p(n)

∞∑
r=0

(
n

s

)(
n− s

s

)
· · ·
(

n− (k − 1)s

s

)
p(n− ks, r)

(
k + r

k

)
k!

=
n!

p(n)(s!)k(n− ks)!

∞∑
r=0

p(n− ks, r)(k + r)k

=
n!

p(n)(s!)k
[zn−ks]

∞∑
n=0

(k + n)k(e
z − 1)n

(22)

where we have made use of Lemma 3.1 at (22). We use the identity (8) in
(22). After substitution of the identity and simplification (22) becomes (20).

In (20), the singularity of largest degree occurs at z = log 2 when j = 0.

The asymptotics of E(X
(s)
n )k are given by

E(X(s)
n )k ∼ n!k!

p(n)(s!)k
[zn−ks]

(ez − 1)k

(2− ez)k+1

∼ 2k!(log 2)n+1

(s!)k

(
1

2 log 2

)k+1
(n− ks)k

Γ(k + 1)(log 2)n−ks

∼
(

(log 2)s−1n

2s!

)k

,

where we have used (10), (16), and the assumption s = o(n). The almost
sure convergence result (21) is an application of Chebyshev’s inequality as in
the proof of Theorem 3.1.

The method of the proof of Theorem 3.3 can be used to derive asymptotics
of joint falling moments. For example, E((X

(s1)
n )k1(X

(s2)
n )k2) ∼ (λ

(s1)
n )k1(λ

(s2)
n )k2

for fixed s1, s2, k1, k2.
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Observe that
∑∞

s=1 sλ
(s)
n = n and

∑∞
s=1 λ

(s)
n = λn, showing that Theo-

rem 20 agrees with (11) and Theorem 3.1, respectively, and indicating that
Theorem 3.3 gives a good picture of the block structure of a random preorder.

3.5 Maximal block size

Let Mn = maxi≥1 Bi be the maximal size of a block in a random preorder.
We are able to closely estimate the maximum size of a block in a random
preorder. It was stated in [12] that

P (Mn ≤ m) = exp
(
−λ(m+1)

n (1 + o(1))
)
(1 + O(e−mε)) (23)

for some ε > 0. We will show that, asymptotically, Mn is concentrated on at
most two values.

Define µn to be
µn = max

{
s : λ(s)

n ≥ 1
}

and define

νn =

{
µn if λn(µn) ≥ √

µn,
µn − 1 if λn(µn) <

√
µn.

(24)

Theorem 3.4 Let Mn = maxi≥1 Bi be the maximal size of a block in a
random preorder. Let νn be defined by (24). Then νn ∼ log n/ log log n and

P (Mn ∈ {νn, νn + 1}) → 1 as n →∞. (25)

Proof Clearly, λ
(s)
n is monotone decreasing in s for s ≥ 2. Taking the

logarithm of λ
(s)
n produces

log λ(s)
n = log n + (s− 1) log log 2− log s!− log 2

= log n− s log s + O(s). (26)

Plugging s = log n
log log n

into (26) gives

log λn

(
log n

log log n

)
=

log n log log log n

log log n
+ O

(
log n

log log n

)
→∞,

from which it follows that for large enough n, µn > log n/ log log n. On the

other hand, if we plug log n
log log n

(
1 + 2 log log log n

log log n

)
into the right hand side of
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(26) we get

log λn

(
log n

log log n

(
1 +

2 log log log n

log log n

))
= − log n

log log n

(
1 +

2 log log log n

log log n

)(
log log n− log log log n + O

(
log log log n

log log n

))
+ log n + O

(
log n

log log n

)
= − log n log log log n

log log n
+ O

(
log n(log log log n)2

(log log n)2

)
→ −∞,

so that µn < log n
log log n

(
1 + 2 log log log n

log log n

)
for large enough n. We have shown

that
log n

log log n
< µn <

log n

log log n

(
1 +

2 log log log n

log log n

)
for large enough n and, in particular, that µn ∼ log n

log log n
and νn ∼ log n

log log n
.

Define the index sets

N1 = {n ≥ 1 : λn(µn) ≥ √
µn}

and
N2 = {n ≥ 1 : λn(µn) <

√
µn}.

When n →∞ inN1, λ
(νn)
n ≥ √

µn →∞ as n →∞. The ratio λ
(µn+1)
n /λ

(µn+2)
n =

(µn + 2)/ log 2 → ∞ and λ
(µn+1)
n < 1 imply λ

(νn+2)
n → 0. When n → ∞ in

N2, λ
(µn)
n ≥ 1 and λ

(µn−1)
n /λ

(µn)
n = µn/ log 2 → ∞ give λ(νn) → ∞ and

λ
(νn)
n <

√
νn implies λ(νn+2) → 0. Now (23) implies the result.

Asymptotic two-point concentration theorems are well known from ran-
dom graph theory. See Theorem 7, page 260 of [5] for such a result regarding
clique number.

4 Random alignments

Random permutations are well studied objects and fundamental results on
random permutation deal with the cycle structure of a random permuta-
tion [5]. The distribution of the number of cycles of a random permuta-
tion on [n] is asymptotically Normal with mean log n and variance log n.
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The expected length of a longest cycle converges to cn as n → ∞, where
c =

∫∞
0

exp(−x−
∫∞

x
y−1 exp(−y)dy)dx = 0.624329 · · ·.

What can we say about the distribution of cycle structures if we change
the weight of cycles in the cycle decomposition of a random permutation ?
In particular, we are interested in the case that we weight a cycle decomposi-
tion of a permutation according to the number of ways of linearly arranging
the cycles in the cycle decomposition. This corresponds exactly to an align-
ment, which is a sequence of cycles on n labelled elements, in other words, a
collection of directed cycles arranged in a linear order.

In this section we study the asymptotic number of alignments and the
distribution of cycles and the length of a longest cycle in a random alignment.

4.1 The asymptotic number of alignments

In order to investigate the structure of cycles in a random alignments we start
with the following consequence of (2) and (4) which is similar to Lemma 3.1.

Lemma 4.1 For any sequence θr and any nonnegative integer n

n∑
r=0

θrq(n, r) = n! [zn]

(
∞∑

r=0

θr(ln(1− z)−1)r

)
. (27)

Proof Using the identities (2) and (4) gives

∞∑
n=0

∞∑
r=0

θrq(n, r)
zn

n!
=

∞∑
n=0

(
n∑

r=0

θrq(n, r)

)
zn

n!

=
∞∑

r=0

θr(ln(1− z)−1)r. (28)

If we take θr = ur in Equation (28), we obtain the bivariate exponential
generating function for the number of alignments q(n, r) on [n] with exactly
r cycles

Q(z, u) : =
∞∑

n=0

∞∑
r=0

urq(n, r)
zn

n!

14



=
∞∑

r=0

(u ln(1− z)−1)r

=
1

1− u ln(1− z)−1
, (29)

which can also be found in Chapter IX 6. [9]. In particular taking u = 1 in
Equation (29) we obtain the exponential generating function for the number
of alignments q(n) on [n]

Q(z) : =
∞∑

n=0

q(n)
zn

n!
=

∞∑
n=0

∞∑
r=0

q(n, r)
zn

n!
= Q(z, 1) =

1

1− ln(1− z)−1
,

which yields immediately that

q(n) = n! [zn]

(
1

1− ln(1− z)−1

)
.

The dominant singularity of Q(z) = (1− ln(1− z)−1)
−1

occurs at z = 1−e−1

with residue

lim
z→1−e−1

(
z − (1− e−1)

1− ln(1− z)−1

)
= lim

z→1−e−1

(
1

−1/(1− z)

)
= −e−1, (30)

by l’Hôpital’s rule. So the function

1

1− ln(1− z)−1
+

e−1

z − (1− e−1)

is analytic in a circle with centre at the origin and the next singularities of
(1− ln(1− z)−1)

−1
(at 1− e−1 ± 2πi) on the boundary. Thus

q(n) ∼ n! [zn]
−e−1

z − (1− e−1)
∼ n!

e(1− e−1)n+1
, (31)

which one can also find in Example 7 in Chapter IV of [9].

4.2 The number of cycles

We are interested in the size of the cycles in a random alignment. Let C1

be the size of the first cycle, let C2 be the size of the second, and let Ci be

15



the size of the ith cycle. If the alignment has N cycles we define Ci = 0 for
i > N . It holds that

∞∑
i=1

Ci = n. (32)

We denote the number of cycles of a random alignment on n elements by
Yn. In terms of the cycle sizes Ci we may express Yn as Yn =

∑∞
i=1 I[Ci > 0],

where I[Ci > 0] is the indicator variable that the ith cycle has positive size.
In this section we give asymptotics for Yn.

Define τn to be

τn =
n

e− 1
. (33)

We will show that E(Yn)k ∼ τ k
n for each fixed k ≥ 0.

Theorem 4.1 The kth factorial moment of the number of cycles of a random
alignment equals

E(Yn)k =
n! k!

q(n)
[zn]

(ln(1− z)−1)k

(1− (ln(1− z)−1))k+1
. (34)

It follows that for fixed k
E(Yn)k ∼ τ k

n (35)

and that
Yn

a.a.s.∼ τn,

where τn is defined by (33).

Proof In order to prove (34) it suffices to note that

E(Yn)k =
n∑

r=0

q(n, r)

q(n)
(r)k =

1

q(n)

n∑
r=0

q(n, r)(r)k,

and to apply Lemma 4.1 with θr = (r)k. Using (7) and (27) we get

1

q(n)

n∑
r=0

q(n, r)(r)k
(27)
=

n!

q(n)
[zn]

∞∑
r=0

(ln(1− z)−1)r(r)k

(7)
=

n! k!

q(n)
[zn]

(ln(1− z)−1)k

(1− (ln(1− z)−1))k+1
.

16



We now proceed to show (35). An analysis similar to (30) shows that

lim
z→1−e−1

(z − (1− e−1))k+1(ln(1− z)−1)k

(1− ln(1− z)−1)k+1
=
(
−e−1

)k+1

and that

(ln(1− z)−1)k

(1− (ln(1− z)−1))k+1
− (−e−1)k+1

(z − (1− e−1))k+1
(36)

is analytic on any disc of radius less than |1−e−1 +2πi|. Singularity analysis
(Section 11 of [15]) implies that

[zn]
(ln(1− z)−1)k

(1− (ln(1− z)−1))k+1

(36)∼
(
−1

e

)k+1

[zn](z − (1− e−1))−k−1

∼
(

1

e(1− e−1)

)k+1

[zn](1− z/(1− e−1))−(k+1)

(5)∼
(

1

e− 1

)k+1(
1

1− e−1

)n
nk

k!
. (37)

Therefore,

E(Yn)k
(34)
=

n!k!

q(n)
[zn]

(ln(1− z)−1)k

(1− (ln(1− z)−1))k+1

(37)∼ n!

q(n)

(
1

e− 1

)k+1
nk

(1− e−1)n

(31)∼
(

n

e− 1

)k

= τ k
n .

The proof that Yn
a.a.s.∼ τn proceeds as in the last paragraph of the proof

of Theorem 3.3.

One would expect from Theorem 4.1 that (Yn−τn)/
√

τn converges weakly
to the standard normal distribution. Indeed one can find such a result in in
Chapter IX 6 in [9].

4.3 The size of a typical cycle

Because the cycles in a random alignment are linearly ordered, we may take
C1 as the size of a typical cycle. Given an alignment (C1, C2, . . .) on Y , we
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may define a new alignment on Y \C1 by the sequence (C2, C3, . . .). This
operation can be reversed: given an alignment on Y \C1, (C2, C3, . . .), we
can insert C1 to get the original alignment on Y . The above correspondence
implies

P(C1 = k) =

(
n

k

)
(k − 1)!

q(n− k)

q(n)

and for fixed k (indeed for any k with n− k →∞) the asymptotic (31) gives

P(C1 = k) ∼
(

n

k

)
(k − 1)!

(n− k)!e(1− e−1)n+1

e(1− e−1)n−k+1n!
=

(1− e−1)k

k
. (38)

It is easily checked that the distribution defined by the right hand side of
(38) is the same as the distribution of the conditioned random variable has
the Log(1− e−1) distribution (defined in Section 2).

We will use an argument similar to the one above and the results of
Section 2 to show that the distribution of fixed cycle sizes are asymptotically
i.i.d. Log(1− e−1) distributed.

Theorem 4.2 Let a finite set of indices i1, i2, . . . , iL and a sequence of non-
negative integers a1, a2, . . . , aL be given. Then

P(Ci1 = a1, Ci2 = a2, . . . , CiL = aL) ∼
L∏

i=1

(1− e−1)ai

ai

.

That is, the distribution of the Cij converges weakly to an i.i.d. sequence of
random variables with Log(1− e−1) distribution.

Proof Given an alignment with cycles Ci1 , Ci2 , . . . , CiL on Y , we can form a
new alignment by (C1, . . . , Ci1−1, Ci1+1, . . . , Ci2−1, Ci2+1 . . .) on Y \

⋃L
l=1 Cil .

On the other hand, an alignment (C1, . . . , Ci1−1, Ci1+1, . . . , Ci2−1, Ci2+1 . . .) on
Y \
⋃L

l=1 Cil forms a valid alignment (C1, C2, . . .) on X by the insertion of the
cycles Ci1 , Ci2 , . . . , CiL if and only if (C1, . . . , Ci1−1, Ci1+1, . . . , Ci2−1, Ci2+1 . . .)
is an alignment with at least iL − L nonempty cycles. Therefore, with b
defined as b =

∑L
l=1 al,

P(Ci1 = a1, Ci2 = a2, . . . , CiL = aL)

=

(
n

a1, a2, . . . , aL, n− b

)
(a1 − 1)!(a2 − 1)! · · · (aL − 1)!

∑∞
r=iL−L q(n− b, r)

q(n)

18



=
n!

a1a2 · · · aL(n− b)!

q(n− b)

q(n)
P(Yn−b ≥ aL − L)

(31)∼ (1− e−1)b

a1a2 · · · aL

P(Yn−b ≥ aL − L)

=
L∏

i=1

(1− e−1)ai

ai

P(Yn−b ≥ aL − L). (39)

The probability in (39) approaches 1 because of Theorem 4.1.

4.4 The number of cycles of fixed size

Define Y
(s)
n to be the number of cycles of size s = s(n) in a random alignment

on n elements. Define τ
(s)
n to be

τ (s)
n =

(1− e−1)s−1n

es
. (40)

Theorem 4.3 The kth factorial moment of the number of s-cycles of a ran-
dom alignment equals

E(Y (s)
n )k =

n!k!

q(n)sk
[zn−ks]

k∑
j=0

(k)j(ln(1− z)−1)k−j

j!(1− ln(1− z)−1)k−j+1
. (41)

It follows that for fixed k and s = o(n) such that τ
(s)
n →∞,

E(Y (s)
n )k ∼ (τ (s)

n )k

and that
Y (s)

n
a.a.s.∼ τ (s)

n , (42)

where τ
(s)
n is defined by (40).

Proof Let qs(n, r) be the number of alignments on n elements with exactly

r cycles of size s. The kth factorial moment of Y
(s)
n is

E(Y (s)
n )k =

1

q(n)

∞∑
r=0

(r)kqs(n, r).
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The quantity
∑∞

r=0(r)kqs(n, r) =
∑∞

r=k(r)kqs(n, r) counts the number of
alignments with k labelled s-cycles, where each of the labelled s-cycles is
given a unique label from the set {1, 2, . . . , k}. This number is also counted
by: first, choosing k s-cycles to be the ones marked; second, forming an
alignment on the n− ks remaining elements (with r cycles); third, inserting
the s-cycles into the alignment in the order they were chosen in one of

(
k+r

k

)
ways; fourth, marking the inserted s-cycles in one of k! ways. We therefore
have

E(Y (s)
n )k =

1

q(n)

n−ks∑
r=0

(
n

s

)(
n− s

s

)
· · ·
(

n− (k − 1)s

s

)
((s− 1)!)k ·

q(n− ks, r) ·
(

k + r

k

)
· k!

=
n!((s− 1)!)k

q(n)(s!)k(n− ks)!

n−ks∑
r=0

q(n− ks, r)(k + r)k

(27)
=

n!

q(n)sk
[zn−ks]

∞∑
r=0

(k + r)k(ln(1− z)−1)r

(43)

where we have made use of Lemma 4.1 with θr = (k + r)k at (43). We use
the identity (8) in (43) and obtain

E(Y (s)
n )k =

n!

q(n)sk
[zn−ks]

k∑
j=0

(
k

j

)
(k − j)!(k)j(ln(1− z)−1)k−j

(1− ln(1− z)−1)k−j+1

=
n!k!

q(n)sk
[zn−ks]

k∑
j=0

(k)j(ln(1− z)−1)k−j

j!(1− ln(1− z)−1)k−j+1
.

In (41), the singularity of largest degree occurs at z = 1−e−1 when j = 0.

The asymptotics of E(Y
(s)
n )k are given by

E(Y (s)
n )k ∼ n!k!

q(n)sk
[zn−ks]

(ln(1− z)−1)k

(1− ln(1− z)−1)k+1

(37)∼ n!k!

q(n)sk

(
1

e− 1

)k+1(
1

1− e−1

)n−ks
(n− ks)k

k!

(31)∼
(

(1− e−1)s−1n

es

)k

.
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where we have used the assumption s = o(n). The almost sure convergence
result (42) is an application of Chebyshev’s inequality as in the proof of The-
orem 4.1.

Observe that
∑∞

s=1 sτ
(s)
n = n and

∑∞
s=1 τ

(s)
n = τn, showing that Theo-

rem 41 agrees with (32) and Theorem 4.1, respectively, and indicating that
Theorem 4.3 gives a good picture of the cycle structure of a random align-
ment.

4.5 Maximal cycle size

In this subsection we get an estimate on the maximum size of a cycle in a
random alignment.

Theorem 4.4 Let Nn = maxi≥1 Ci be the maximal size of a cycle in a ran-
dom alignment. Then for any constant K > 1/ ln((1− e−1)−1)

P
(

ln n

ln(1− e−1)−1
−K ln ln n ≤ Nn ≤

ln n

ln(1− e−1)−1

)
→ 1.

Proof Clearly, τ
(s)
n is monotone decreasing in s for s ≥ 2. Define

sK =
ln n

ln(1− e−1)−1
−K ln ln n.

We have

τ (sK)
n =

n(1− e−1)
ln n

ln(1−e−1)−1−K ln ln n−1

e
(

ln n
ln(1−e−1)−1 −K ln ln n

) = Θ

(
(1− e−1)−K ln ln n

ln n

)
→∞

and therefore because of Theorem 4.3 it follows that P(Nn ≥ sK) → 1.
Furthermore, with s0 defined to be

s0 =
ln n

ln(1− e−1)−1
,

we have

P(Nn > s0) ≤
∑
s>s0

E(Y (s)
n )
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(41)
=

∑
s≥sK

n!

q(n)s
[zn−s]

1

(1− ln(1− z)−1)2

= O

(∑
s>s0

n!(n− s)

q(n)s(1− e−1)n−s

)
(44)

(31)
= O

(
n
∑
s>s0

(1− e−1)s

s

)

= O

(
n

(1− e−1)s0

s0

)
= o(1),

where we have used the O(·) version of singularity analysis to give the upper
bound indicated by (37) at (44).

5 Concluding remarks

Preorders and alignments are examples of structures which are linearly or-
dered sets of structures of a simpler type (sets and cycles, respectively). The
problems studied here could be generalized simply by taking linearly ordered
sets of other types of structures. However, there is a context in which these
objects arise naturally, and which suggests further problems to study.

The right context is probably the notion of a species [13, 4]. To quote
from the preface of [4],

. . . a species of structures is a rule, F , associating with each finite
set U a set F [U ] which is “independent of the nature” of the
elements of U . The members of the set F [U ], called F -structures,
are interpreted as combinatorial structures on the set U given by
the rule F . The fact that the rule is independent of the nature of
the elements of U is expressed by an invariance under relabelling.

Examples of species include S (sets), L (linear orders), C (cycles), T
(trees), G (graphs). So, for example, G[U ] is the set of all graphs on the
vertex set U , while S[U ] = {U}.

The notion of substitution on species is defined as follows: if F and G are
species such that G[∅] = ∅, then (F ◦G)[U ] is the set of structures consisting
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of a partition π of U , a G-structure on each part of π, and an F -structure on
the set of parts. Thus, preorders and alignments are respectively the species
L ◦ S and L ◦ C respectively.

An important source of species is the theory of infinite permutation
groups [6]. A permutation group G on an infinite set Ω is said to be oligo-
morphic if it has only finitely many orbits on Ωn for all positive integers n.
Given an oligomorphic permutation group G on Ω, the structures on U in
the associated species are essentially the orbits of G on |U |-tuples of elements
of Ω. A notable special case is that where G is the automorphism group of
a homogeneous relational structure M (one in which every isomorphism be-
tween finite substructures is induced by an automorphism). In this case, the
associated species can be thought of as the age of M [10], the class of finite
structures embeddable in M . (In fact, this is not really special, since any
permutation group is associated with a canonical relational structure which
is homogeneous, but this structure in general will involve infinitely many
relations.)

Note that all our above examples of species except trees come from oligo-
morphic groups in this way. (For example, L is associated with the group of
order-preserving permutations of the rational numbers, and G with the auto-
morphism group of the “random graph”.) Moreover, substitution of species
corresponds to the wreath product of permutation groups. See [6] for more
details.

Our general philosophy is that species arising from oligomorphic per-
mutation groups should be better-behaved combinatorially than arbitrary
species. This behavior could show itself in several ways: restrictions on the
possible growth rate of the counting function (including “smooth growth”)
is an obvious one. Another, which has not been investigated, concerns cases
where there is a natural notion of “connected components” in the species, in
which case one can ask the questions we have considered for preorders and
alignments in this paper.

Now the obvious case in which such a notion of connected components
exists is a substitution species F ◦G, where the connected components of a
(F ◦G)-species are the G-structures on the parts of the partition π.

If the number of G-structures grows too rapidly, then almost all (F ◦G)-
structures will be connected, and so will be simply G-structures. If the num-
ber of F -structures grows too rapidly, then in almost all (F ◦G)-structures the
partition π will have all its parts singletons; if there is just one G-structure
on one element, then these structures are essentially just F -structures. So
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interesting problems arise when there is not too much imbalance between the
numbers of F - and G-structures. We propose that the cases S, L, C, and
their close relations B (betweenness in a linear order) and D (separation in
a circular order), are good candidates.

As we have observed, the cases S ◦ S (partitions) and S ◦ C (permuta-
tions) have well-developed theories, and we have considered the cases L ◦ S
(preorders) and L ◦ C (alignments) in this paper. Several cases remain to be
considered!

In addition, we mention the problem of deriving general results about
the sizes of the components of F ◦ G in terms of the counting functions for
F and G, and also related problems associated with other species or group
constructions such as the product action of the direct product [8].
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