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Abstract

With any permutation g of a set Ω is associated a partition of Ω into the cycles of
g. What information do we get about a group G of permutations if we know either
the set or the multiset of partitions of Ω, or of partitions of n = |Ω|, which arise
as the cycle partitions of its elements? Some partial answers to these questions are
given.
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1 Introduction

Let Ω be a finite set of cardinality n. To any permutation g of Ω, we associate
the partition CP(g) of Ω into cycles of g, and the partition cp(g) of the integer
n given by the cycle lengths.

Now let G be a group of permutations of Ω (a subgroup of the symmetric
group on Ω). We are interested in the question: What information about G
is contained in the set or multiset of cycle partitions corresponding to its
elements? We can distinguish eight questions:

(a) We can ask for a characterisation of the sets or multisets of partitions arising
from groups, or we can ask to what extent knowledge of the set or multiset
determines the group.

(b) We can consider set partitions CP(G) = {CP(g) : g ∈ G}, or number
partitions cp(G) = {cp(g) : g ∈ G}.

(c) We can consider CP(G) or cp(G) as sets, or as multisets. (In the latter case,
for each partition π of Ω or n, we know the number of permutations g ∈ G
for which CP(g) or cp(g) is equal to π.)

The recognition problem (the first question in (a)) is complicated by the fact
that, while permutation groups can be represented efficiently (a subgroup of
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Sn can be generated by O(n) elements, and hence is specified by O(n2 log n)
bits), no such short representation of sets of partitions is available. P. Kolaitis
[13] has suggested the polynomial delay model as a way round this problem:

Problem 1(a) Is there an algorithm which takes as input a subset X of Pn,
performs a polynomial-time computation after reading each partition in X,
and decides whether X = CP(G) for some subgroup G of Sn?

(b) Is there a polynomial-length ‘certificate’ S for X (for example, a generating
set for G) with the property that, given X, on performing a polynomial-
time computation after reading each partition in X, we can confirm that
X = CP(G)?

Certainly an affirmative solution to (a) would settle (b) also; these questions
are analogous to the definitions of the classes P and NP respectively. Note
that a small generating set for the group generated by an arbitrary set of
permutations can be computed with polynomial delay: see Jerrum [12].

For the remainder of the paper, I will concentrate on the question of the extent
to which cycle partitions determine the group. These will be considered for
set partitions and for number partitions in the next two sections. Then there
is a brief survey of the Parker vector of a permutation group, whose kth
component is the number of orbits of the group on the set of its k-cycles.
The last two sections discuss infinite versions of the results and some possible
further directions.

2 Set partitions

In this section, we consider the question: What information about G do we
obtain from CP(G)? In particular, if CP(G1) = CP(G2), must G1 and G2

be isomorphic, or even equal? The answers to the strongest conjectures are
negative, as the following examples show. The first example is due to Alberto
Leporati [14], who suggested this question to me; the third is due to Eamonn
O’Brien [15].

Example 2 Let n = 5, and let G1 be the cyclic group of order 5, acting
regularly. Then CP(G1) consists of the trivial partitions of Ω (into a single
part, and into parts of size 1). If CP(G1) = CP(G2), then clearly G2 is also
a cyclic group of order 5, but it could be any of the six such subgroups of S5.
Note, however, that these subgroups are all conjugate in S5, so G1 and G2 are
isomorphic as permutation groups.

Example 3 Let G be the group C7 × C7 of order 49. We embed G in the
symmetric group of degree 28 by choosing four subgroups of order 7, say
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P1, . . . , P4, and taking the union of the coset spaces G/Pi (with regular ac-
tion) for i = 1, . . . , 4. It is easy to see that the automorphism group GL(2, 7)
of G does not act transitively on the collection of 4-sets of proper subgroups
of G; choosing the set of four subgroups from different orbits gives rise to per-
mutation groups which are not isomorphic. However, CP(G) consists of the
partition with 28 parts of size 1, the four partitions with seven parts of size 1
(in one orbit) and three of size 7 (each with multiplicity 6), and the partition
into the four orbits (with multiplicity 24), in either case. So CP(G) (even as
multiset) does not determine G up to permutation isomorphism.

Example 4 Eamonn O’Brien [15] found two pairs of examples of groups
G1, G2 with CP(G1) = CP(G2) for which G1 and G2 are not isomorphic as
abstract groups. The pairs are numbers 19 and 111, and numbers 94 and 249,
in the lists of groups of order 64 contained in the computer systems GAP and
MAGMA (see [6] and [2]), acting in faithful permutation representations of
least possible degree 16.

For example, the first two groups are generated by the permutations

(1, 11, 3, 10, 2, 12, 4, 9)(5, 16, 8, 14, 6, 15, 7, 13),

(1, 8, 4, 6, 2, 7, 3, 5)(9, 13, 11, 15, 10, 14, 12, 16),

(1, 3, 2, 4)(5, 7, 6, 8)(9, 11, 10, 12)(13, 15, 14, 16),

(1, 3, 2, 4)(5, 8, 6, 7)(9, 11, 10, 12)(13, 16, 14, 15),

(1, 4, 2, 3)(5, 8, 6, 7)(9, 11, 10, 12)(13, 15, 14, 16),

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

and

(1, 12, 4, 10, 2, 11, 3, 9)(5, 16, 8, 14, 6, 15, 7, 13),

(1, 7, 3, 6, 2, 8, 4, 5)(9, 14, 12, 15, 10, 13, 11, 16),

(5, 6)(7, 8)(13, 14)(15, 16),

(1, 3, 2, 4)(5, 7, 6, 8)(9, 12, 10, 11)(13, 16, 14, 15),

(1, 4, 2, 3)(5, 8, 6, 7)(9, 12, 10, 11)(13, 16, 14, 15),

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

respectively; and CP(G1) and CP(G2) consist of the same set of twelve parti-
tions of {1, . . . , 16} (with the same multiplicities).

So CP(G) does not determine G up to isomorphism, even if G is transitive.

However, the set CP(G) does determine a lot of information about G, as the
next results show. We define OP(G) to be the set of all partitions of Ω which
are orbit partitions corresponding to subgroups of G. Thus, CP(G) is a subset
of OP(G).
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Theorem 5 Let G1 and G2 be permutation groups on Ω satisfying CP(G1) =
CP(G2). Then

(a) |G1| = |G2|;
(b) OP(G1) = OP(G2);
(c) CP(G1) and CP(G2) are identical as multisets; that is,

|{g ∈ G1 : CP(g) = π}| = |{g ∈ G2 : CP(g) = π}|

for all partitions π of Ω.

PROOF. (a) The proof is by induction on the degree n = |Ω|. Note that
CP(G) determines the orbit αG for α ∈ Ω, since

αG = {β ∈ Ω : (∃π ∈ CP(G))(α and β are in the same part of π)}.

Also, if Gα is the stabiliser of α in G, then CP(G) determines

CP(Gα) = {π ∈ CP(G) : {α} is a part of π}.

By induction, CP(Gα) determines |Gα|. Since

|αG| · |Gα| = |G|

by Lagrange’s Theorem, the result is proved.

We have incidentally shown that, if CP(G1) = CP(G2), then G1 and G2 have
the same orbits on Ω.

(b) It is clear that the orbit partition of a subgroup H is the supremum (in
the lattice of partitions of Ω) of the set of cycle partitions of the elements of
H (or, indeed, of a generating set for H).

(c) Let π be any partition of Ω, and let G1(π) be the subgroup of G1 consisting
of all permutations fixing all the parts of π (the intersection of G with the
corresponding Young subgroup of the symmetric group: see Fulton [5]). Now
CP(G1(π)) consists of those partitions in CP(G1) lying below π in the partition
lattice. Hence, if G2(π) is analogously defined in G2, we have CP(G1(π)) =
CP(G2(π)), and hence |G1(π)| = |G2(π)|, by part (a) of the theorem.

Now the conclusion follows by Möbius inversion, since an element g ∈ G1

satisfies CP(g) = π if and only if g ∈ G1(π) but g /∈ G1(σ) for any σ strictly
below π in the partition lattice. �
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The last part of the theorem shows that, in this case, the set and the multiset
of cycle partitions carry exactly the same information. From the first part, we
deduce:

Corollary 6 If H is a subgroup of G satisfying either CP(G) = CP(H) or
OP(H) = OP(G), then G = H.

PROOF. The conclusion is immediate from the theorem if CP(G) = CP(H).
A very similar argument shows that, if OP(G1) = OP(G2), then |G1| = |G2|,
and again it follows that if H ≤ G satisfies OP(H) = OP(G), then H = G. �

See [1] for an application of these results to the power of database query
languages.

Two problems which are left open between the conclusions of the theorem and
the preceding examples are the following:

Problem 7 Let G1 be a permutation group which is either (a) primitive, or
(b) regular. Let G2 be another permutation group on the same set, satisfying
CP(G1) = CP(G2). Are G1 and G2 isomorphic as permutation groups?

Note that, if G1 is regular and CP(G1) = CP(G2), then G2 is also regular,
and the subgroup lattices of G1 and G2 are isomorphic.

In some special cases, more can be said. Let us say that a group G1 is cycle-
determined if CP(G1) = CP(G2) implies G1 = G2.

Proposition 8(a) A group of order 2 is cycle-determined.
(b) A regular non-cyclic elementary abelian group is cycle-determined.

PROOF. (a) An involution is determined by its cycle partition.

(b) The parts of the partitions in CP(G), for such a group G, are the lines of
an affine space over GF(p), and G is the translation group of this space. �

In fact, if CP(G1) = CP(G2), then every involution in G1 is also in G2, and
vice versa; in particular, a group generated by involutions is cycle-determined.

More generally, we say that H is 1-closed in G if any permutation in G pre-
serving the H-orbits lies in H. Now, if H ≤ G1 and H is 1-closed in G1, then
the number of permutations preserving the orbit partition of H is the same in
G2 as in G1, and so H ≤ G2. Hence we have:
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Proposition 9 If G is generated by subgroups which are cycle-determined and
1-closed in G, then G is cycle-determined. �

3 Number partitions; cycle index

The information contained in the multiset cp(G) is precisely the (Pólya) cycle
index of G, the polynomial in indeterminates s1, . . . , sn given by

Z(G) =
1

|G|
∑
g∈G

n∏
i=1

s
ci(g)
i ,

where ci(g) is the number of i-cycles of g. So we immediately deduce from
Theorem 5(c):

Theorem 10 If CP(G1) = CP(G2), then Z(G1) = Z(G2). �

The role of the cycle index in combinatorial enumeration is well-known (see
for example, [11]). Note in particular:

Proposition 11 Z(G) determines the number of orbits of G on Ωk and on
the set of k-element subsets of Ω. In particular, it determines |G|. �

The last statement follows from the first, but is most easily seen by substituting
s1 = 1, si = 0 for i > 1, in Z(G).

The permutation character of G is the function π : G → {0, 1, . . . , n} given
by

π(g) = number of fixed points of g

for g ∈ G. A well-known Möbius inversion shows that the permutation char-
acter of G determines Z(G): for

π(gk) =
∑
i|k
ici(g),

and so

ck(g) =
1

k

∑
i|k
µ(k/i)π(gi).

Hence different actions of the same group which have the same permutation
character will have the same cycle index. The simplest example is given by
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the two actions of the Klein group V4 on six points:

G1 = {1, (1, 2)(3, 4), (1, 2)(5, 6), (3, 4)(5, 6)},
G2 = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

A more elaborate example, given by Guralnick and Saxl [9], has G1 primitive
and G2 imprimitive.

Groups with the same cycle index which are not even be abstractly isomorphic
are not difficult to find. For example, if two groups G1 and G2 have the same
numbers of elements of each order then their regular representations have the
same cycle index. Examples include

Q8 × C2 and C4 × C4 (n = 16),

C3 × C3 × C3 and P27 (n = 27),

where P27 is the nonabelian group of order 27 and exponent 3. Of course, the
groups of Example 4 also have the same cycle index.

Turning to the set cp(G) without multiplicities, clearly little can be said. This
information determines the orders of elements of G (and hence the exponent
of G) but not |G| or the number of orbits of G.

4 The Parker vector

In the preceding sections, we treat the cycles of a permutation as the parts of
a partition, ignoring the cyclic structure on each. A complementary approach
is to consider the cycles in isolation. This approach was taken by Parker [16].

Let Γi(G) be the set of all i-cycles which appear in the cycle decomposition
of some element of G, and let Γ(G) =

⋃n
i=1 Γi(G). Now G act on Γi(G) by

conjugation: let pi(G) be the number of orbits in this action. Note that Γ1(G)
is isomorphic to Ω as G-set, since each point of Ω occurs as a singleton cycle
in the identity. Parker gave the formula

pi(G) =
1

|G|
∑
g∈G

iγi(G),

and deduced that

n∑
i=1

pi(G) = n
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for any permutation group G of degree n.

For a summary of the information about G which is contained in its Parker
vector

p(G) = (p1(G), . . . , pn(G))

see Gewurz [7]. Note that p(G) does not determine |G|; for example, we have
p(G1 oG2) = p(G2 oG1) for any two permutation groups G1, G2, where o denotes
the wreath product. On the other hand, Gewurz showed that some groups are
determined by their Parker vectors, for example, the symmetric group Sn for
n 6= 6. (More precisely, if G has degree n and Parker vector (1, 1, . . . , 1), then
either G = Sn, or n = 6 and G = PGL(2, 5).)

Parker showed that, if G is the Galois group of a given polynomial of de-
gree n over the rational numbers, then there is a randomised algorithm which
computes efficiently the Parker vector of G.

Gewurz [8] pointed out that the Parker vector is determined by the cycle index
(and so a fortiori by CP(G)):

Proposition 12 pi(G) = i
∂

∂si
Z(G)|sj=1. �

We can regard Γ(G) as a set of permutations in the symmetric group Sn,
where each point outside the cycle is regarded as being fixed. In general, of
course, Γ(G) is not a subset of G. In fact, the following holds (see [3]):

Proposition 13 We have Γ(G) ⊆ G if and only if G is a direct product of
symmetric groups and cyclic groups of prime order. �

In fact, if we set C0(G) = G and Cn+1(G) = 〈Γ(Cn(G)〉 for all n ≥ 0, then
C3(G) = C4(G) for every finite permutation group G. There exist groups with
C2(G) 6= C3(G); such groups are p-groups for some odd prime p, but the
problem of determining them is unsolved.

Problem 14 Determine the finite permutation groups G with C2(G) 6= C3(G).

5 The infinite

Some of the above discussion extends to infinite groups. For the most part,
counting results fail; some other results remain true, though more ingenuity
is required for the proof.
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Recall that a permutation group G on an infinite set Ω is

• highly transitive if it is n-transitive for all natural numbers n;
• oligomorphic if it has only finitely many orbits on Ωn for all natural num-

bers n;
• finitary if all its elements move only finitely many points;
• cofinitary if all its non-identity elements fix only finitely many points.

(For further details, see [4].)

Theorem 15 If CP(G1) = CP(G2) and G1 is k-transitive (resp. highly tran-
sitive, oligomorphic, finitary, cofinitary), then so is G2.

PROOF. For ‘finitary’ and ‘cofinitary’, this is obvious.

As in the proof of Theorem 5, CP(G) determines the orbits of G and also
determines CP(Gα) for all α ∈ Ω. By induction it determines the orbits of
all n-point stabilisers. Now G is oligomorphic (resp. highly transitive) if the
stabiliser of any n-tuple has only finitely many (resp. just one) orbit on the
remaining points. The argument for k-transitivity is similar. �

If G is oligomorphic, then a modified cycle index Z̃(G) can be defined for
G as follows: take the sum of the cycle indices of the groups G∆

∆ (the per-
mutation group induced on ∆ by its setwise stabiliser), where ∆ runs over
a set of representatives of the orbits of G on finite sets. This plays a similar
role in enumeration to the cycle index of a finite permutation group. Indeed,
oligomorphic permutation groups are precisely those for which such an enu-
meration theory can be developed. To make a connection with the work of
Roland Fräıssé [10], note that if the oligomorphic group G is the automor-
phism group of a homogeneous structure M , then its modified cycle index is
obtained by summing the cycle indices of the (unlabelled) structures in the
age of M .

Does CP(G) determine the modified cycle index of the oligomorphic group G?
For each finite set ∆, it determines CP(G∆

∆), and hence Z(G∆
∆), by Theorem 10.

However, CP(G) does not determine the orbits of G on Ωn, or on the set of
finite subsets of Ω, as Example 2 shows. Nevertheless, we have:

Theorem 16 If CP(G1) = CP(G2) and G1 is oligomorphic, then Z̃(G1) =
Z̃(G2).

PROOF. Although we cannot determine the orbits, we can determine a set
of orbit representatives for G on Ωn, as follows: first determine orbit represen-
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tatives for G on Ω; then, for each such α1, determine orbit representatives for
Gα1 on the points different from α1; then for each such pair (α1, α2), determine
orbit representatives for Gα1α2 on the points different from α1 and α2; and so
on.

Now let (α1, . . . , αn) be an orbit representative, and let ∆ = {α1, . . . , αn}. We
can determine Z(G∆

∆). However, the orderings of a given set ∆ lie in n!/|G∆
∆|

different orbits on n-tuples. So we multiply Z(G∆
∆) by this factor, and we sum

these terms over all orbit representatives on n-tuples. Finally, we sum the
result for all n. �

The original question of Leporati which motivated this study is open in the
infinite case:

Problem 17 If H ≤ G and CP(H) = CP(G), does it follow that H = G?

Recall that a base for a permutation group G on Ω is a sequence B of elements
of Ω whose pointwise stabiliser is the identity. The answer to Problem 17 is
affirmative if G has a finite base. This follows easily by induction from the fact
that, if H ≤ G and, for some point α ∈ Ω we have αG = αH and Gα = Hα,
then H = G. For the statement that αG = αH means that H contains a set
of coset representatives for Gα in G.

More generally, if H ≤ G and CP(G) = CP(H), then the closures of G and H
in the symmetric group (in the topology of pointwise convergence) are equal.
For the closure of G consists of all permutations which preserve every G-orbit
on n-tuples for all n. By hypothesis, a set of H-orbit representatives on n-
tuples is also a set of G-orbit representatives; so G and H have the same
orbits on n-tuples, and hence the same closure. (This is a generalisation of
the preceding remark, since it is known that a group having a finite base is
closed.)

Since every finite permutation group is closed (and has a finite base), this
produces an alternative proof of Corollary 6.

6 Remarks and problems

I have said nothing about the problem of deciding whether a given set S of
partitions is equal to CP(G) for some group G. Clearly this could be done
by computing (as in Theorem 5(c)) the number of permutations g ∈ G with
CP(g) = π for each partition π ∈ S, choosing in all ways the correct number
of permutations, and checking whether we have a group. This algorithm will
be very inefficient!
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A subset of CP(G) may suffice to specify G. The stabiliser chain of G relative
to a base B of size k is the sequence (G0 = G,G1, . . . , Gk−1, Gk = 1) of
subgroups, where Gi is the stabiliser of the first i points of B. A set S ⊆ G is
a strong generating set (relative to B) if it contains a subset Si which generates
Gi for i = 0, 1, . . . , k. I owe the following result to Leonard Soicher [17].

Proposition 18 If S is a strong generating set for G, then CP(S) determines
|G|.

PROOF. Suppose that the subset X = CP(S) of Pn is given. If we know
B, we argue by induction exactly as in the proof of Theorem 5(a). We have
to modify the condition for two points α and β to be in the same orbit: this
holds if and only if there is a sequence

α = ω0, ω1, . . . , ωd = β

such that, for i = 1, . . . , d, there is a partition in X for which ωi−1 and ωi lie
in the same part.

If we do not know B, we test all tuples B = (α1, . . . , αk) for which the partition
of B into singletons is not contained in any non-trivial partition of X, applying
the preceding algorithm to B. If B is a base such that X comes from a strong
generating set relative to B, we obtain |G|. If not, then we obtain a smaller
number. So the largest number obtained is |G|. It suffices to test all tuples
which are minimal with respect to the specified property. �

I do not know how to recognise the set CP(S) arising from a strong generating
set S for a permutation group.

We could play the same game with subsets instead of partitions. That is, we
could assume that we know the cycles, or the supports of the cycles, or just the
cycle lengths, either with or without multiplicities, and ask what information
we can deduce about the group. Note that, with or without multiplicities, the
following implications hold between what we can learn about a group from
this information:

set partitions → number partitions

↓ ↓

cycles → cycle supports → cycle lengths

I leave to the diligent reader the task of carrying out such an investigation,
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starting with the following facts:

(a) the multiset of cycle lengths determines |G| and the Parker vector of G;
(b) the set of cycles determines the groups Cn(G) for n ≥ 1 (see Section 4);
(c) the set of cycle supports determines the orbits of G.
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