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ORBIT-HOMOGENEITY

PETER J. CAMERON and ALEXANDER W. DENT

Abstract

We introduce the concept of orbit-homogeneity of permutation groups: a group G is orbit t-
homogeneous if two sets of cardinality t lie in the same orbit of G whenever their intersections
with each G-orbit have the same cardinality. For transitive groups, this coincides with the usual
notion of t-homogeneity. This concept is also compatible with the idea of partition transitivity
introduced by Martin and Sagan.

We show that any group generated by orbit t-homogeneous subgroups is orbit t-homogeneous,
and that the condition becomes stronger as t increases up to bn/2c, where n is the degree. So any
group G has a unique maximal orbit t-homogeneous subgroup Ωt(G), and Ωt(G) ≤ Ωt−1(G).

We also give some structural results for orbit t-homogeneous groups and a number of examples.

A permutation group G acting on a set V is said to be t-homogeneous if it
acts transitively on the set of t-element subsets of V . The t-homogeneous groups
which are not t-transitive have been classified (see [4, 5, 6]); the classification of
t-transitive groups for t > 1 follows from the classification of finite simple groups [3]
(the list is given in [1]).

A permutation group G acting on a set V is said to be orbit-t-homogeneous, or
t-homogeneous with respect to its orbit decomposition, if whenever S1 and S2 are
t-subsets of V satisfying |S1 ∩ Vi| = |S2 ∩ Vi| for every G-orbit Vi, there exists
g ∈ G with S1g = S2. Thus, a group which is t-homogeneous in the usual sense is
orbit-t-homogeneous; every group is orbit-1-homogeneous; and the trivial group is
orbit-t-homogeneous for every t. It is also clear that a group of degree n is orbit-t-
homogeneous if and only if it is orbit-(n − t)-homogeneous; so, in these cases, we
may assume t ≤ n/2 without loss of generality.

If two sets S1 and S2 are subsets of V satisfying |S1 ∩ Vi| = |S2 ∩ Vi| for every
G-orbit Vi then S1 and S2 are said to have the same structure with respect to G
(or just to have the same structure if the group is obvious).

Theorem 4.3.4 of [2] is the following:

Theorem 1. If G and H are orbit-t-homogeneous on V , then so is 〈GH〉.

Young extended the concept of homogeneous groups by investigating the rela-
tionship between permutation groups and partitions [8]. A partition of V , P =
(P1, P2, . . . , Pk), is said to have shape

|P | = (|P1|, |P2|, . . . , |Pk|) .

A group element g ∈ G is said to map the partition P onto a partition Q =
(Q1, Q2, . . . , Qk) if Pig = Qi for all i. Obviously, a pre-requisite for this is that P
and Q have the same structure with respect to G, i.e. that Pi and Qi have the same
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structure for all i. The permutation group G is said to be orbit-λ-transitive if, for
any two partitions of V that have shape λ and the same structure, P and Q say,
there exists some g ∈ G that maps P to Q. A permutation group of degree n is
orbit-t-homogeneous if and only if it is orbit-λ-transitive, where λ = (n− t, t).

The following is a more generalised version of Theorem 1.

Theorem 2. If G and H are orbit-λ-transitive on V , then so is 〈GH〉.

Proof. Let P and Q be partitions of V that have the same structure with respect
to 〈GH〉 and have shape λ. It is sufficient to show that there exists σ ∈ 〈GH〉 such
that Pσ = Q when

– P1 = S1 ∪ {x1} and P2 = S2 ∪ {x2},
– Q1 = S1 ∪ {x2} and Q2 = S2 ∪ {x1},
– Pi = Qi for all i > 2,

for some S1, S2 ⊆ V . Since P and Q have the same structure with respect to
〈GH〉, x1 and x2 must lie in the same 〈GH〉-orbit and so there exists an element
σ′ = g1h1 . . . gmhm such that x1σ

′ = x2.
Suppose that m = 1 and let y = x1g1. Note that x1 and y lie in the same G-orbit

and that y and x2 lie in the same H-orbit. If y = x1 or y = x2 then result is obvious,
so assume that is not the case. There are now several cases to deal with.

Suppose that y ∈ P1, i.e. S1 = S′1 ∪ {y}, and consider the partition R =
(R1, R2, . . .) where

R1 = S′1 ∪ {x1, x2}, R2 = S2 ∪ {y}, Ri = Pi = Qi for all i > 2.

The partitions P and R have the same structure with respect to H and both have
shape λ. Hence there exists h ∈ H such that Ph = R. Similarly the partitions R
and Q have the same structure with respect to G and so there exists g ∈ G such
that Rg = Q. Hence the result holds.

Suppose that y ∈ P2, i.e. S2 = S′2 ∪ {y}, and consider the partition R =
(R1, R2, . . .) where

R1 = S1 ∪ {y}, R2 = S′2 ∪ {x1, x2}, Ri = Pi = Qi for all i > 2.

The partitions P and R have the same structure with respect to G and both have
shape λ. Hence there exists g ∈ G such that Pg = R. Similarly the partitions R
and Q have the same structure with respect to H and so there exists h ∈ H such
that Rh = Q. Hence the result holds.

If y /∈ P1 ∪P2 then, without loss of generality, it can be assumed that y ∈ P3, i.e.
P3 = S3 ∪ {y} for some S3 ⊆ V . Consider the partitions R = (R1, R2, . . .) where

R1 = S1 ∪ {y}, R2 = S2 ∪ {x2}, R3 = S3 ∪ {x1},
Ri = Pi = Qi for all i > 3,

and T = (T1, T2, . . .) where

T1 = S1 ∪ {x2}, T2 = S2 ∪ {y}, T3 = S3 ∪ {x1},
Ti = Pi = Qi for all i > 3.

Note that both partitions have shape λ. The partitions P and R have the same
structure with respect to G, hence there exists g ∈ G such that Pg = R. The
partitions R and T have the same structure with respect to H, hence there exists
h ∈ H such that Rh = T . The partitions T and Q have the same structure with
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respect to G, hence there exists g′ ∈ G such that Tg′ = Q. Hence the result holds
when m = 1.

Assume, as induction hypothesis, that the theorem holds for a given value of m
and consider the case when σ′ = g1h1 . . . gm+1hm+1. The above techniques may be
repeated, with y = x1g1h1 . . . gmhm, to show that the theorem holds for m+ 1 and
so for all values of m ≥ 1.

Hence any permutation group G on V has a unique subgroup Ωλ(G) which is
maximal with respect to being orbit-λ-transitive. Moreover, this subgroup is normal
in G.

If λ = (λ1, . . . , λk) is a shape of a partition of V then, without loss of generality,
it can be assumed that

λ1 ≥ λ2 ≥ . . . ≥ λk .

Furthermore, if µ = (µ1, . . . , µm) is the shape of another partition of V then a
partial ordering can be defined where µ dominates λ, written λE µ, if

j∑
i=1

λi ≤
j∑
i=1

µi

for all j (with the convention that λi = 0 for all i > k, and similarly for µ). Hence
the set of shapes of V forms a lattice.

The following result, a more generalised version of the result of Livingstone and
Wagner [6], is also true:

Theorem 3. Let µ dominate λ and suppose that G is orbit-λ-transitive. Then
G is orbit µ-transitive.

Proof. It is enough to prove this in the case where µ covers λ in the partition
lattice, since we can then prove the theorem by induction on the length of the chain
connecting them. This means that there exist j < k such that

µj = λj + 1, µk = λk − 1, µi = λi for i 6= j, k.

Suppose that G is orbit λ-transitive. Let (Si) and (Ti) be two orbit-equivalent
partitions with |Si| = |Ti| = µi for all i. We have to show that some element of g
carries the first partition to the second. This follows from the Martin–Sagan result
[7] if G is transitive, so we may suppose not.

Since µj > µk, there is an orbit V of G such that |V ∩ Sj | > |V ∩ Sk|. Choose
x ∈ V ∩Sj and let S∗j = Sj \{x}, S∗k = Sk ∪{x}, and S∗i = Si for i 6= j, k; construct
T ∗ similarly. Then S∗ and T ∗ are orbit-equivalent partitions of shape λ, and so
there exists g ∈ G carrying S∗ to T ∗. This element carries Si \ V to Ti \ V for all i,
so we can assume these sets are equal.

Since |V ∩ Sj | > |V ∩ Sk|, the shape of the partition λ′ of V induced by S∗ is
dominated by the shape µ′ of the partition induced by S. Now the stabiliser of all
the sets Si \ V is transitive on partitions of V of shape λ′. By Martin and Sagan
again, it is transitive on partitions of shape µ′, so there is an element h fixing all
Si \ V and mapping all Si ∩ V to Ti ∩ V . So we are finished.

Corollary 1. If G is an orbit-t-homogeneous permutation group on a set V ,
where |V | ≥ 2t− 1 and t > 1 then G is orbit-(t− 1)-homogeneous.



4 peter j. cameron and alexander w. dent

This result also shows that, with the earlier notation, an arbitrary permutation
group G of degree n induces a lattice of normal subgroups Ωλ(G) where Ωλ(G) ≤
Ωµ(G) whenever λEµ. It is clear that if λ = (n) or λ = (n− 1, 1) then Ωλ(G) = G
and that if λ = (1, 1, . . . , 1) then Ωλ(G) = 1G unless G is the symmetric group (in
which case Ωλ(G) = G for all λ).

For t ∈ {1, 2, . . . , bn/2c}, let Ωt(G) denote Ωλ(G) where λ = (n − t, t). Hence
Ωt(G) is the maximal subgroup of G that is orbit-t-homogeneous.

Theorem 4. Suppose G is a permutation group with degree n that acts on a
set V with d orbits. If (λ1, λ2, . . . , λk) is a chain of shapes of V such that λi+1Eλi
for all 1 ≤ i ≤ k − 1 then

|{Ωλi(G) : 1 ≤ i ≤ k}| ≤ d+ 2

Proof. Every shape except (n) and (n− 1, 1) is dominated by (n− 2, 2). Hence
Ωλi(G) is orbit-2-homogeneous for all 1 ≤ i ≤ k except, possibly, when i = 1 and
i = 2. Now, Ω2(G) acts primitively on its orbits; so, for each λi E (n − 2, 2), the
normal subgroup Ωλi(G) must act either transitively or trivially on each Ω2(G)-
orbit. Furthermore, if Ωλi(G) acts trivially on a Ω2(G)-orbit then it acts trivially
on all the Ω2(G)-orbits in the same G-orbit.

Therefore, either Ωλi+1(G) acts trivially on exactly the same G-orbits as Ωλi(G),
and so Ωλi+1(G) = Ωλi(G), or there exists at least one G-orbit on which Ωλi+1(G)
acts trivially and Ωλi(G) does not. If Ωλi(G) acts trivially on every G-orbit then
Ωλi(G) = 1G. Hence the result holds.

This means that in the case of orbit-t-homogeneous groups things are, in fact,
quite restricted.

Corollary 2. If G is transitive then one of the following holds:
(a) Ω1(G) = G, Ωt(G) = 1G for all 1 < t ≤ n/2.
(b) There is a non-trivial normal subgroup NEG such that Ω1(G) = G, Ωt(G) = N

for all 1 < t ≤ n/2.
(c) There is a non-trivial normal subgroup N EG and an integer m > 1 such that

Ω1(G) = G, Ωt(G) = N for 1 < t ≤ m, and Ωt(G) = 1G for all m < t ≤ n/2.

As a series of examples, consider a group H that acts on a set of n points (n ≥ 2),
and the wreath product G = Wr(H,C2) = (H ×H) ·C2 that acts on a set V of 2n
points in the natural way.

– If H ∼= Cn then Ω1(G) = G and Ωt(G) = 1 for all 1 < t ≤ n.
– If H ∼= Sn then Ω1(G) = G and Ωt(G) = H ×H for all 1 < t ≤ n.
– If H is u-homogeneous but not (u + 1)-homogeneous, for 1 < u < n, then

Ω1(G) = G, Ωt(G) = H ×H for 2 ≤ t ≤ u, and Ωt(G) = 1 for u < t ≤ n. Such
groups exist only for u ≤ 5 (by the main result of Livingstone and Wagner and
the classification of t-transitive groups).

For intransitive groups, things are not so restricted, as the examples in the fol-
lowing remarks show.

Remark 1. A permutation group G with two orbits V1 and V2 is orbit 2-
homogeneous if and only if G is 2-homogeneous on each orbit and transitive on
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V1 × V2 (equivalently, the permutation characters of G on V1 and V2 are different).
There are many examples of such groups. In particular, both, one, or neither of the
actions of G on V1 and V2 may be faithful, as the following examples show:

– PSL(2, 7), with orbits of size 7 and 8;
– PΓL(2, 8), with orbits of size 3 and 28;
– the direct product of two 2-homogeneous groups.

Remark 2. Let G be a group having all orbits of size 2 (say O1, . . . , Om). With
each g ∈ G, associate the m-tuple (e1, . . . , em), where ei = 0 or 1 according as g
fixes Oi pointwise or not. Then G is orbit t-homogeneous if and only if the set of
all these m-tuples is an orthogonal array of strength t, for any t ≤ m. (This means
that, given any t coordinates i1, . . . , it, and any t values ε1, . . . , εt ∈ {0, 1}, there is
a constant number λ of elements g ∈ G whose associated m-tuple satisfies eij = εij
for j = 1, . . . , t.)

To prove this, note that for a group the requirement of being an orthogonal array
of strength t is equivalent to the formally weaker requirement that, given i1, . . . , it
and ε1, . . . , εt, there is some element of G with the required property (since there
will then be |G|/2t such elements). Now take any two orbit-equivalent t-sets S1

and S2. Let i1, . . . , is be the indices i for which S1 and S2 meet the ith orbit in
singletons, and put εij = 0 if S1 ∩ Oij = S2 ∩ Oij , εij = 1 otherwise. Now the
element g guaranteed by the strength-s property of the orthogonal array maps S1

to S2. The converse is proved by reversing the argument.
In particular, if G consists of all even permutations fixing the orbits, then it is an

orthogonal array of strength m− 1. This shows that there are orbit t-homogeneous
groups with arbitrarily large t.

Remark 3. If G has all orbits of size 3, then G is orbit t-homogeneous if and
only if its (normal) Sylow 3-subgroup is. The criterion for this is almost identical
to that in Remark 1, using the alphabet {0, 1, 2}. Also, if G has all orbits of size 2
or 3, then G is orbit t-homogeneous if and only if the groups induced on the union
of orbits of each size are. We do not give details.

Remark 4. The situation for orbits of size 4 or more is a bit more complicated.
We can give a partial description of the orbit 4-homogeneous groups as follows.

Proposition 1. Let G be orbit 4-homogeneous of degree at least 8, and let H
be the third derived group of G. Then H is a direct product of simple groups taken
from the list An (n ≥ 5), Mn (n = 11, 12, 23, 24), and PSL(2, q) (q = 5, 8, 32), each
factor acting transitively on one G-orbit and fixing all the others pointwise.

Proof. The 4-homogeneous groups which are not 4-transitive have been classi-
fied by Kantor [4], and the list of 4-transitive groups follows from the classification
of finite simple groups. All of them have simple derived groups in the list in the
proposition. Groups of degree at most 4 have derived length at most 3. By inspec-
tion, a group on the above list cannot act non-trivially on two different orbits in an
orbit-4-homogeneous group.

There remains some subtlety in the structure of G. For example:
– The Proposition gives no information about orbits of size at most 4. In partic-
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ular, the examples described in Remarks 2 and 3 are completely invisible from
this point of view.

– Any group G lying between a direct product
∏r
i=1 Sni of symmetric groups

and its derived group
∏r
i=1Ani (with ni ≥ 5 for all i) is orbit 4-homogeneous.

We can add orbits of length 2 on which G/
∏
Ani acts as in Remark 1.

– The group PΓL(2, 8), acting with orbits of size 3 and 9, is orbit 4-homogeneous.
The transitivity on 4-sets containing one point from the orbit of length 3 follows
from the 3-homogeneity of PSL(2, 8).

Remark 5. The above Proposition fails for orbit 3-homogeneous groups. The
groups S6 (with two inequivalent orbits of size 6) and M12 (with two inequivalent
orbits of size 12) are orbit 3-homogeneous but not orbit 4-homogeneous. Other
examples include (Cr2)m ·GL(r, 2), for m, r ≥ 2, with m orbits of size 2r.

Remark 6. If G = G1 × . . .×G5, where Gt is t-homogeneous but not (t+ 1)-
homogeneous, then Ωt(G) = Ωt(G1)×Gt × . . .×G5 for 2 ≤ t ≤ 5.
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