Orbits on n-tuples

Ross Applegate and Peter J. Cameron*
School of Mathematical Sciences
Queen Mary, University of London
Mile End Road, London E1 4NS, UK

Abstract

A transitive (infinite) permutation group which has m orbits on ordered pairs of distinct points has at least m^{n-1} orbits on ordered n-tuples. This is best possible, and groups attaining the bound can be characterised.

1 Introduction

A permutation group G on an (infinite) set Ω is oligomorphic if the number of orbits of G on ordered n-tuples of distinct points of Ω is finite for all n. We refer to [1] for basic terminology and facts about permutation groups, especially oligomorphic permutation groups.

Let $F_{n}(G)$ (or just F_{n}, if the group G is clear from the context) be the number of orbits of G on the set of ordered n-tuples of distinct elements. It is easy to see that the sequence $F_{n}(G)$ is non-decreasing, since each orbit on such n-tuples consists of the initial segments of elements of at least one orbit on ($n+1$)-tuples of distinct elements. In particular, $F_{n}(G)=1$ for all n if and only if G is highly transitive. This paper is a contribution to the question: how fast does the sequence $\left(F_{n}\right)$ grow?

Of course it may not grow at all. If G is the symmetric group (or, indeed, if G is highly transitive), then $F_{n}=1$ for all n. In other cases, the growth rate may be quite slow. For example, if G is the stabiliser of one point in the

[^0]symmetric group, then $F_{n}=n+1$: there is one orbit of n-tuples with the fixed point in the i th position for $1 \leq i \leq n$, and one orbit not containing the fixed point.

At the other extreme, Merola [4] showed that, if G is primitive (that is, preserves no non-trivial equivalence relation on Ω) and not highly transitive, then

$$
F_{n}(G) \geq \frac{c^{n} n!}{p(n)}
$$

for some polynomial p, where c is an absolute constant; her proof shows that $c \geq 1.324$. There are known examples with $c=2$. Results are also known about the number of orbits on unordered n-sets; see Macpherson [3].

We are concerned with the intermediate case, where G is assumed to be transitive but not necessarily primitive. Our result holds for all transitive but not 2-transitive groups G, and gives exponential growth for $F_{n}(G)$. Moreover, it is best possible.

Theorem 1 Let G be an infinite transitive permutation group with $F_{2}(G)=$ $m>1$. Then $F_{n}(G) \geq m^{n-1}$ for all natural numbers n. Moreover, if $F_{3}(G)=m^{2}$ and $F_{4}(G)=m^{3}$, then G is imprimitive, with m infinite blocks of imprimitivity; the blocks are permuted regularly by G, and the stabiliser of a block acts k-transitively on it if $F_{k}(G)=m^{k-1}$.

Remarks Let G be the wreath product of the cyclic group of order 2 and the infinite symmetric group. Then $F_{n}(G)$ is equal to the number of solutions of $g^{2}=1$ in the symmetric group S_{n}. In particular, $F_{1}(G)=1, F_{2}(G)=2$, $F_{3}(G)=4$ and $F_{4}(G)=10$. So the conditions of the theorem are best possible.

On the other hand, if G is the wreath product of a highly transitive group with a finite group of order s (acting regularly), then $F_{n}(G)=s^{n-1}$ for all $n \geq 1$.

2 Counting orbits

Let $F_{1}(x)$ and $F_{2}(x)$ be formal power series. We write $F_{1}(x) \succcurlyeq F_{2}(x)$ if the coefficients of F_{1} are not less than those for F_{2}.

Lemma 2.1 Let G be a transitive permutation group in which G_{α} has $r+s$ orbits on the remaining points, of which r are finite and s are infinite. Let
$F_{G}(x)=\sum F_{n}(G) x^{n} / n!$. Moreover, let

$$
\begin{aligned}
& f_{r}(x)=1+\frac{1}{r+1}\left((1+x)^{r+1}-1\right)=1+x+\frac{r x^{2}}{2!}+\frac{r(r-1) x^{3}}{3!}+\cdots \\
& g_{s}(x)=1+\frac{1}{s}(\exp (s x)-1)=1+x+\frac{s x^{2}}{2!}+\frac{s^{2} x^{3}}{3!}+\cdots
\end{aligned}
$$

Then
(a) if $s=0$, then $F_{G}(x) \succcurlyeq f_{r}(x)$;
(b) if $s \geq 1$, then $F_{G}(x) \succcurlyeq g_{s}\left(f_{r}(x)-1\right)$.

Proof (a) Since G is transitive, we have

$$
F_{n}(G)=F_{n-1}\left(G_{\alpha}\right) \geq r(r-1) \cdots(r-n+1) .
$$

(b) Again G is transitive, so $F_{n}(G)=F_{n-1}\left(G_{\alpha}\right)$. Moreover, the union of the finite G_{α}-orbits (including $\{\alpha\}$) is a block of imprimitivity for G.

Now we use a principle which occurs often in combinatorial enumeration, and is perhaps clearest in the context of species (Joyal [2]). Suppose that \mathcal{F} and \mathcal{G} are two species in which the exponential generating functions for labelled structures are $F(x)$ and $G(x)$ respectively. Then the exponential generating function for the species $\mathcal{G} \circ \mathcal{F}$ in which a structure consists of a set carrying a partition, with an \mathcal{F}-structure on each part and a \mathcal{G}-structure on the set of parts, is $G(F(x)-1)$.

We apply this theorem with \mathcal{F} the species of subsets of a block of imprimitivity, so that $F(x) \succcurlyeq f_{r}(x)$, and \mathcal{G} a species defined as follows: given n points x_{1}, \ldots, x_{n}, the points different from x_{1} are coloured with s colours, so that there are s^{n-1} labelled n-element structures for all n. Any orbit of G on n-tuples gives rise to a $\mathcal{G} \circ \mathcal{F}$-structure: the n-tuple is partitioned by the blocks of imprimitivity of its members, each part is a subset of a block, and the parts other than the first are coloured by the orbits of G_{α} containing the corresponding blocks, where α is the first point of the n-tuple.

So the exponential generating function for $\left(F_{n}(G)\right)$ dominates the counting series for $\mathcal{G} \circ \mathcal{F}$, and the assertion is proved.

Lemma 2.2 Let G be an infinite transitive permutation group in which the stabiliser of a point has $r+s$ orbits, of which r are finite and s are infinite. Then
(a) $F_{3}(G) \geq(r+s)^{2}$, with equality only if $r=0$ or $s=1$.
(b) $F_{4}(G) \geq(r+s)^{3}$, with equality only if $r=0$.

Proof Let $h(x)=g_{s}\left(f_{r}(x)-1\right)$. We have

$$
\begin{aligned}
h(x)=1+ & x+\frac{r x^{2}}{2}+\frac{r(r-1) x^{3}}{6}+\frac{r(r-1)(r-2) x^{4}}{24}+\cdots \\
& +\frac{s}{2!}\left(x+\frac{r x^{2}}{2}+\frac{r(r-1) x^{3}}{6}+\cdots\right)^{2} \\
& +\frac{s^{2}}{3!}\left(x+\frac{r x^{2}}{2}+\cdots\right)^{3} \\
& +\frac{s^{3}}{4!}(x+\cdots)^{4}+\cdots
\end{aligned}
$$

The coefficients of $1, x$ and $x^{2} / 2$! are 1,1 and $r+s$. The coefficient of $x^{3} / 3$! is

$$
r(r-1)+3 s r+s^{2}=(r+s)^{2}+(s-1) r ;
$$

this is at least $(r+s)^{2}$, with equality only if $r=0$ or $s=1$.
The coefficient of $x^{4} / 4$! is

$$
r(r-1)(r-2)+4 r(r-1) s+3 r^{2} s+6 r s^{2}+s^{3} \geq(r+s)^{3}
$$

the difference between the two sides being $r^{2}(4 s-3)+r\left(3 s^{2}-4 s+2\right)$. This difference is positive if and only if $r>0$.

Since $F_{G}(x) \succcurlyeq h(x)$, the lemma is proved.
In the next section, we examine $h(x)$ further and show that the coefficient of $x^{n} / n!$ is at least $(r+s)^{n}$ for all n. This will complete the proof of the inequality in the theorem.

3 The exponential of a polynomial

Lemma 3.1 Let r and s be positive integers. Let

$$
\begin{aligned}
& f_{r}(x)=1+\frac{1}{r+1}\left((1+x)^{r+1}-1\right)=1+x+\frac{r x^{2}}{2!}+\frac{r(r-1) x^{3}}{3!}+\cdots \\
& g_{s}(x)=1+\frac{1}{s}(\exp (s x)-1)=1+x+\frac{s x^{2}}{2!}+\frac{s^{2} x^{3}}{3!}+\cdots
\end{aligned}
$$

and let

$$
g_{s}\left(f_{r}(x)-1\right)=\sum_{n \geq 0} \frac{a_{n} x^{n}}{n!} .
$$

Then $g_{s}\left(f_{r}(x)-1\right) \succcurlyeq g_{r+s}(x)$ for $s>0$, so that

$$
a_{n} \geq(r+s)^{n-1}
$$

for all $n \geq 1$. Equality holds for $n=1$ and $n=2$ for all r, s; for $n=3$ if and only if either $r=0$ or $s=1$; and for $n \geq 4$ if and only if $r=0$.

Proof Our proof splits into three parts. Let

$$
F(y)=g_{s}\left(f_{r}(y-1)-1\right)-1+1 / s .
$$

We have

$$
f_{r}(y-1)-1=\frac{1}{r+1}\left(y^{r+1}-1\right)
$$

so

$$
F(y)=\frac{1}{s} \exp \left(\frac{s}{r+1}\left(y^{r+1}-1\right)\right) .
$$

Since $F(y)$ differs from $g_{s}\left(f_{r}(y-1)-1\right)$ only in the constant term, we have

$$
F(y)=-(1-1 / s)+\sum_{n \geq 1} \frac{a_{n}(y-1)^{n}}{n!},
$$

with the a_{n} as defined in the statement of the theorem. For $n \geq 1$, we have

$$
a_{n}=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} y^{n}}(F(y))\right|_{y=1} .
$$

Let

$$
b_{n}=\frac{\mathrm{d}^{n}}{\mathrm{~d} y^{n}}(F(y)) .
$$

We first claim that, for $n \geq 1$,

$$
b_{n}=s F(y) y^{r+1-n} \sum_{m=0}^{n-1} g_{n, m}(r) s^{m} y^{(r+1) m}
$$

for some polynomial $g_{n, m}(r)$ of degree $n-1-m$ in r. This is clearly true for $n=1$ as $b_{1}=F^{\prime}(y)=s y^{r} F(y)$; for $n=2$ we have $b_{2}=s y^{r-1}\left(s y^{r+1}+r\right) F(y)$. Thus, $g_{1,0}=1, g_{2,0}=r$ and $g_{2,1}=1$.

If we assume that the equation holds for some $n=k$, with $k \geq 1$, we have that

$$
\begin{aligned}
b_{k+1}= & \frac{\mathrm{d}}{\mathrm{~d} y}\left(b_{k}\right) \\
= & s^{2} y^{r} F(y) y^{r+1-k} \sum_{m=0}^{k-1} g_{k, m}(r) s^{m} y^{(r+1) m} \\
& +(r+1-k) s F(y) y^{r-k} \sum_{m=0}^{k-1} g_{k, m}(r) s^{m} y^{(r+1) m} \\
& +s F(y) y^{r+1-k} \sum_{m=0}^{k-1} g_{k, m}(r) s^{m}(r+1) m y^{(r+1) m-1} \\
= & s F(y) y^{r-k}\left(\left(s y^{r+1}+r+1-k\right) \sum_{m=0}^{k-1} g_{k, m}(r) s^{m} y^{(r+1) m}\right. \\
& \left.+\sum_{m=0}^{k-1}(r+1) m g_{k, m}(r) s^{m} y^{(r+1) m}\right) .
\end{aligned}
$$

This is of the form required, and so the claim holds for $n=k+1$. Indeed we have

$$
g_{k+1, m}=g_{k, m-1}+((r+1)(m+1)-k) g_{k, m}
$$

where the first term is absent if $m=0$.
Let $S=s y^{r+1}$. Then we see that, for $n \geq 2$,

$$
\begin{aligned}
& (S+r+1-n)(S+r)^{n-1}+(n-1) S(r+1)(S+r)^{n-2} \\
= & (S+r)^{n-2}((S+r+1-n)(S+r)+(n-1) S(r+1)) \\
= & (S+r)^{n-2}\left((S+r)^{2}+(n-1)(S-1) r\right) \\
= & (S+r)^{n}+(n-1)(S+r)^{n-2}(S-1) r .
\end{aligned}
$$

We now claim that

$$
\begin{aligned}
\frac{b_{n}}{S y^{-n} F(y)} & =(S+r)^{n-1}+(n-2)(S-1) r(S+r)^{n-3} \\
& +\sum_{i, j, l, k \geq 0} \alpha(n, i, j, k, l, \mu) S^{i}(S-1)^{j}(r+1)^{k} r^{l} \prod_{p=1}^{n-1}(S+r+1-p)^{\mu_{p}}
\end{aligned}
$$

where $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right), \mu_{i} \geq 0$ and $\alpha(n, i, j, k, l, \mu) \geq 0$ and $i+j+k+l+$ $\sum \mu_{p} \leq n-1$. (The second term is present only if $n \geq 3$.)

Now $b_{1} /\left(S y^{-1} F(y)\right)=1$, so the claim holds for $n=1$ (with the second term absent and the third term containing a single summand with $i=j=$ $\left.k=l=\mu_{p}=0\right)$. Similarly, $b_{2} /\left(S y^{-2} F(y)\right)=S+r$, so the claim holds for $n=2$. Assume that the claim holds for some $n=k$, with $k \geq 1$. Then

$$
\begin{aligned}
& \frac{b_{k+1}}{S y^{-k-1} F(y)} \\
= & (-k+(r+1)+S) \frac{b_{k}}{S y^{-k} F(y)} \\
& +(k-1) S(S+r)^{k-2}(r+1)+(k-2)(k-3)(S-1) S(S+r)^{k-4}(r+1) r \\
& +(k-2) S(S+r)^{k-3}(r+1) r \\
& +\sum_{i, j \geq 0} \alpha(n, i, j, k, l, \mu)(r+1) S^{i-1}(S-1)^{j}(r+1)^{k} r^{l} \prod_{p=1}^{n-1}(S+r+1-p)^{\mu_{p}} \\
& +\sum_{i, j \geq 0} \alpha(n, i, j, k, l, \mu) S^{i}(r+1) j(S-1)^{j-1}(r+1)^{k} r^{l} \prod_{p=1}^{n-1}(S+r+1-p)^{\mu_{p}} \\
& +\sum_{i, j \geq 0} \alpha(n, i, j, k, l, \mu) S^{i}(S-1)^{j}(r+1)^{k} r^{l} \times \\
& \times\left(S(r+1) \sum_{\substack{q=1,2, \ldots, n-1 \\
\mu_{q} \geq 1}} \frac{\mu_{q}}{(S+r+1-q)} \prod_{p=1}^{n-1}(S+r+1-p)^{\mu_{p}}\right) .
\end{aligned}
$$

We split this into two parts. The first part is

$$
\begin{aligned}
& (S+r+1-k)(S+r)^{k-1}+(k-1) S(S+r)^{k-2}(r+1) \\
= & (S+r)^{k}+(k-1)(S-1)(S+r)^{k-2} r,
\end{aligned}
$$

while the rest has the form

$$
\sum_{i, j \geq 0} \alpha(n+1, i, j, k, l, \mu) S^{i}(S-1)^{j}(r+1)^{k} r^{l} \prod_{p=1}^{n}(S+r+1-p)^{\mu_{p}}
$$

Finally, we put $y=1$. We have the required results for $n \leq 3$, so assume that $n \geq 4$ and that $r, s \geq 1$. We have

$$
\sum_{i, j \geq 0} \alpha(n, i, j, k, l, \mu) s^{i}(s-1)^{j}(r+1)^{k} r^{l} \prod_{p=1}^{n-1}(s+r+1-p)^{\mu_{p}} \geq 0
$$

Now $\left.s y^{-n} F(y)\right|_{y=1}=1,\left.S\right|_{y=1}=s$, and so

$$
\begin{aligned}
a_{n} & =\left.b_{n}\right|_{y=1} \\
& \geq(s+r)^{n-1}+(n-2) r(s-1)(s+r)^{n-3} \\
& \geq(s+r)^{n-1},
\end{aligned}
$$

with strict inequality if $n>2$ and $s>1$.
If $s=1$ and $n \geq 4$, then the second part of the expression contains a term $(k-2) S(S+r)^{k-3}(r+1) r$. On putting $n=k+1$ and $y=1$ this becomes $(n-3) s(s+r)^{n-4}(r+1) r$, which is strictly positive; so we have strict inequality.

4 Recognising imprimitive groups

Lemma 4.1 Let G be transitive on the infinite set Ω, and suppose that the point stabiliser G_{α} has s orbits (all infinite) on $\Omega \backslash\{\alpha\}$, and s^{2} orbits on ordered pairs of distinct elements from this set. Then G has s infinite blocks of imprimitivity (and so is imprimitive if $s>1$); it permutes the set of blocks regularly, and the stabiliser of a block acts 3-transitively on it.

Proof Our proof is by induction on s. It is clear that for $s=1$, the hypotheses assert that G is 3 -transitive. Suppose that $s \geq 2$, and that the lemma holds for values less than s. The hypothesis implies that an orbit of G_{α} on pairs of distinct points is uniquely determined by the G_{α}-orbits containing the two points.

First, we claim that G is imprimitive. For let $\{\alpha\}, O_{1}, \ldots, O_{s}$ be the orbits of G_{α}, and choose a point $\beta \in O_{1}$. Then the orbits of $G_{\alpha \beta}$ are $\{\alpha\}$, $\{\beta\}, O_{1} \backslash\{\beta\}, O_{2}, \ldots, O_{s}$. The $G_{\beta \text {-orbits }}$ are the same except for taking the union of $\{\alpha\}$ with one of the other orbits.

If $s>2$, at least one orbit O_{i} is fixed by both G_{α} and G_{β}. Since it is not fixed by G, we see that $\left\langle G_{\alpha}, G_{\beta}\right\rangle$ is a proper subgroup of G, whence G is imprimitive.

For $s=2$, the same argument applies unless $O_{2} \cup\{\alpha\}$ is an orbit of G_{β}. In this case we see that $\{\alpha\} \cup O_{2}$ and $\{\beta\} \cup O_{1}$ are the blocks of imprimitivity.

Choose B to be a minimal block of imprimitivity containing α. Without loss of generality, suppose that $B=\{\alpha\} \cup O_{1} \cup \cdots \cup O_{t}$, for some t with $1 \leq t<s$. Let H be the setwise stabiliser of B, acting on B. Clearly all
H_{α}-orbits are infinite, and $F_{1}\left(H_{\alpha}\right)=t$ and $F_{2}\left(H_{\alpha}\right)=t^{2}$. The same argument as before shows that, if $t>1$, then H is imprimitive, contrary to our choice of B as a minimal block. So $t=1$ and H is 3 -transitive on B.

If $i>1$ and $\beta \in O_{1}$, then G_{α} is transitive on $O_{1} \times O_{i}$, so $G_{\alpha \beta}$ is transitive on O_{i}. Thus, O_{i} is an orbit of $\left\langle G_{\alpha}, G_{\beta}\right\rangle=G_{B}$. It follows that, for $\gamma \in O_{i}$, the orbits of G_{γ} are $B, O_{i} \backslash\{\gamma\}$, and O_{j} for $j \neq 1, i$. Thus, O_{1}, \ldots, O_{2} are the translates of B, and G permutes the blocks $B=O_{1} \cup\{\alpha\}, O_{2}, \ldots, O_{s}$ regularly.

Now suppose that G has s infinite blocks of imprimitivity and permutes the blocks regularly. Then $F_{k}(G)=F_{k-1}\left(G_{\alpha}\right) \geq s^{k-1}$, since G_{α} fixes all s blocks. Equality implies, in particular, that G_{α} acts $(k-1)$-transitively on the remaining points of the block containing α. So the Theorem is proved.

References

[1] Cameron, P. J. (1990) Oligomorphic Permutation Groups, London Math. Soc Lecture Notes 152, Cambridge University Press: Cambridge.
[2] Joyal, A. (1981) Une theorie combinatoire des séries formelles, Advances in Math. 42: 1-82.
[3] Macpherson, H. D. (1983) The action of an infinite permutation group on the unordered subsets of a set, Proc. London Math. Soc. (3) 46: 471-486.
[4] Merola, F. (2001) Orbits on n-tuples for infinite permutation groups, Europ. J. Combinatorics 22: 225-241.

[^0]: *Corresponding author; email p.j.cameron@qmul.ac.uk

