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Abstract

A transitive (infinite) permutation group which has m orbits on
ordered pairs of distinct points has at least mn−1 orbits on ordered
n-tuples. This is best possible, and groups attaining the bound can
be characterised.

1 Introduction

A permutation group G on an (infinite) set Ω is oligomorphic if the number
of orbits of G on ordered n-tuples of distinct points of Ω is finite for all n.
We refer to [1] for basic terminology and facts about permutation groups,
especially oligomorphic permutation groups.

Let Fn(G) (or just Fn, if the group G is clear from the context) be the
number of orbits of G on the set of ordered n-tuples of distinct elements.
It is easy to see that the sequence Fn(G) is non-decreasing, since each orbit
on such n-tuples consists of the initial segments of elements of at least one
orbit on (n + 1)-tuples of distinct elements. In particular, Fn(G) = 1 for all
n if and only if G is highly transitive. This paper is a contribution to the
question: how fast does the sequence (Fn) grow?

Of course it may not grow at all. If G is the symmetric group (or, indeed,
if G is highly transitive), then Fn = 1 for all n. In other cases, the growth
rate may be quite slow. For example, if G is the stabiliser of one point in the
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symmetric group, then Fn = n + 1: there is one orbit of n-tuples with the
fixed point in the ith position for 1 ≤ i ≤ n, and one orbit not containing
the fixed point.

At the other extreme, Merola [4] showed that, if G is primitive (that is,
preserves no non-trivial equivalence relation on Ω) and not highly transitive,
then

Fn(G) ≥ cnn!

p(n)

for some polynomial p, where c is an absolute constant; her proof shows that
c ≥ 1.324. There are known examples with c = 2. Results are also known
about the number of orbits on unordered n-sets; see Macpherson [3].

We are concerned with the intermediate case, where G is assumed to be
transitive but not necessarily primitive. Our result holds for all transitive but
not 2-transitive groups G, and gives exponential growth for Fn(G). Moreover,
it is best possible.

Theorem 1 Let G be an infinite transitive permutation group with F2(G) =
m > 1. Then Fn(G) ≥ mn−1 for all natural numbers n. Moreover, if
F3(G) = m2 and F4(G) = m3, then G is imprimitive, with m infinite blocks
of imprimitivity; the blocks are permuted regularly by G, and the stabiliser of
a block acts k-transitively on it if Fk(G) = mk−1.

Remarks Let G be the wreath product of the cyclic group of order 2 and
the infinite symmetric group. Then Fn(G) is equal to the number of solutions
of g2 = 1 in the symmetric group Sn. In particular, F1(G) = 1, F2(G) = 2,
F3(G) = 4 and F4(G) = 10. So the conditions of the theorem are best
possible.

On the other hand, if G is the wreath product of a highly transitive group
with a finite group of order s (acting regularly), then Fn(G) = sn−1 for all
n ≥ 1.

2 Counting orbits

Let F1(x) and F2(x) be formal power series. We write F1(x) < F2(x) if the
coefficients of F1 are not less than those for F2.

Lemma 2.1 Let G be a transitive permutation group in which Gα has r + s
orbits on the remaining points, of which r are finite and s are infinite. Let
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FG(x) =
∑

Fn(G)xn/n!. Moreover, let

fr(x) = 1 +
1

r + 1
((1 + x)r+1 − 1) = 1 + x +

rx2

2!
+

r(r − 1)x3

3!
+ · · · ,

gs(x) = 1 +
1

s
(exp(sx)− 1) = 1 + x +

sx2

2!
+

s2x3

3!
+ · · · .

Then

(a) if s = 0, then FG(x) < fr(x);

(b) if s ≥ 1, then FG(x) < gs(fr(x)− 1).

Proof (a) Since G is transitive, we have

Fn(G) = Fn−1(Gα) ≥ r(r − 1) · · · (r − n + 1).

(b) Again G is transitive, so Fn(G) = Fn−1(Gα). Moreover, the union of
the finite Gα-orbits (including {α}) is a block of imprimitivity for G.

Now we use a principle which occurs often in combinatorial enumeration,
and is perhaps clearest in the context of species (Joyal [2]). Suppose that
F and G are two species in which the exponential generating functions for
labelled structures are F (x) and G(x) respectively. Then the exponential
generating function for the species G ◦ F in which a structure consists of a
set carrying a partition, with an F -structure on each part and a G-structure
on the set of parts, is G(F (x)− 1).

We apply this theorem with F the species of subsets of a block of im-
primitivity, so that F (x) < fr(x), and G a species defined as follows: given
n points x1, . . . , xn, the points different from x1 are coloured with s colours,
so that there are sn−1 labelled n-element structures for all n. Any orbit of G
on n-tuples gives rise to a G ◦ F -structure: the n-tuple is partitioned by the
blocks of imprimitivity of its members, each part is a subset of a block, and
the parts other than the first are coloured by the orbits of Gα containing the
corresponding blocks, where α is the first point of the n-tuple.

So the exponential generating function for (Fn(G)) dominates the count-
ing series for G ◦ F , and the assertion is proved. �

Lemma 2.2 Let G be an infinite transitive permutation group in which the
stabiliser of a point has r + s orbits, of which r are finite and s are infinite.
Then
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(a) F3(G) ≥ (r + s)2, with equality only if r = 0 or s = 1.

(b) F4(G) ≥ (r + s)3, with equality only if r = 0.

Proof Let h(x) = gs(fr(x)− 1). We have

h(x) = 1 + x +
rx2

2
+

r(r − 1)x3

6
+

r(r − 1)(r − 2)x4

24
+ · · ·

+
s

2!

(
x +

rx2

2
+

r(r − 1)x3

6
+ · · ·

)2

+
s2

3!

(
x +

rx2

2
+ · · ·

)3

+
s3

4!
(x + · · ·)4 + · · ·

The coefficients of 1, x and x2/2! are 1, 1 and r + s. The coefficient of
x3/3! is

r(r − 1) + 3sr + s2 = (r + s)2 + (s− 1)r;

this is at least (r + s)2, with equality only if r = 0 or s = 1.
The coefficient of x4/4! is

r(r − 1)(r − 2) + 4r(r − 1)s + 3r2s + 6rs2 + s3 ≥ (r + s)3,

the difference between the two sides being r2(4s− 3) + r(3s2 − 4s + 2). This
difference is positive if and only if r > 0.

Since FG(x) < h(x), the lemma is proved. �

In the next section, we examine h(x) further and show that the coefficient
of xn/n! is at least (r + s)n for all n. This will complete the proof of the
inequality in the theorem.

3 The exponential of a polynomial

Lemma 3.1 Let r and s be positive integers. Let

fr(x) = 1 +
1

r + 1
((1 + x)r+1 − 1) = 1 + x +

rx2

2!
+

r(r − 1)x3

3!
+ · · · ,

gs(x) = 1 +
1

s
(exp(sx)− 1) = 1 + x +

sx2

2!
+

s2x3

3!
+ · · · .
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and let

gs(fr(x)− 1) =
∑
n≥0

anx
n

n!
.

Then gs(fr(x)− 1) < gr+s(x) for s > 0, so that

an ≥ (r + s)n−1

for all n ≥ 1. Equality holds for n = 1 and n = 2 for all r, s; for n = 3 if
and only if either r = 0 or s = 1; and for n ≥ 4 if and only if r = 0.

Proof Our proof splits into three parts. Let

F (y) = gs(fr(y − 1)− 1)− 1 + 1/s.

We have

fr(y − 1)− 1 =
1

r + 1
(yr+1 − 1),

so

F (y) =
1

s
exp

(
s

r + 1

(
yr+1 − 1

))
.

Since F (y) differs from gs(fr(y − 1)− 1) only in the constant term, we have

F (y) = −(1− 1/s) +
∑
n≥1

an(y − 1)n

n!
,

with the an as defined in the statement of the theorem. For n ≥ 1, we have

an =
dn

dyn
(F (y)) |y=1 .

Let

bn =
dn

dyn
(F (y)) .

We first claim that, for n ≥ 1,

bn = sF (y)yr+1−n

n−1∑
m=0

gn,m(r)smy(r+1)m

for some polynomial gn,m(r) of degree n− 1−m in r. This is clearly true for
n = 1 as b1 = F ′(y) = syrF (y); for n = 2 we have b2 = syr−1(syr+1 + r)F (y).
Thus, g1,0 = 1, g2,0 = r and g2,1 = 1.
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If we assume that the equation holds for some n = k, with k ≥ 1, we
have that

bk+1 =
d

dy
(bk)

= s2yrF (y)yr+1−k

k−1∑
m=0

gk,m(r)smy(r+1)m

+(r + 1− k)sF (y)yr−k

k−1∑
m=0

gk,m(r)smy(r+1)m

+sF (y)yr+1−k

k−1∑
m=0

gk,m(r)sm(r + 1)my(r+1)m−1

= sF (y)yr−k

((
syr+1 + r + 1− k

) k−1∑
m=0

gk,m(r)smy(r+1)m

+
k−1∑
m=0

(r + 1)mgk,m(r)smy(r+1)m

)
.

This is of the form required, and so the claim holds for n = k +1. Indeed we
have

gk+1,m = gk,m−1 + ((r + 1)(m + 1)− k)gk,m,

where the first term is absent if m = 0.
Let S = syr+1. Then we see that, for n ≥ 2,

(S + r + 1− n)(S + r)n−1 + (n− 1)S(r + 1)(S + r)n−2

= (S + r)n−2 ((S + r + 1− n)(S + r) + (n− 1)S(r + 1))

= (S + r)n−2
(
(S + r)2 + (n− 1)(S − 1)r

)
= (S + r)n + (n− 1)(S + r)n−2(S − 1)r.

We now claim that

bn

Sy−nF (y)
= (S + r)n−1 + (n− 2)(S − 1)r(S + r)n−3

+
∑

i,j,l,k≥0

α(n, i, j, k, l, µ)Si(S − 1)j(r + 1)krl

n−1∏
p=1

(S + r + 1− p)µp ,
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where µ = (µ1, . . . , µn−1), µi ≥ 0 and α(n, i, j, k, l, µ) ≥ 0 and i + j + k + l +∑
µp ≤ n− 1. (The second term is present only if n ≥ 3.)
Now b1/(Sy−1F (y)) = 1, so the claim holds for n = 1 (with the second

term absent and the third term containing a single summand with i = j =
k = l = µp = 0). Similarly, b2/(Sy−2F (y)) = S + r, so the claim holds for
n = 2. Assume that the claim holds for some n = k, with k ≥ 1. Then

bk+1

Sy−k−1F (y)

= (−k + (r + 1) + S)
bk

Sy−kF (y)

+(k − 1)S(S + r)k−2(r + 1) + (k − 2)(k − 3)(S − 1)S(S + r)k−4(r + 1)r

+(k − 2)S(S + r)k−3(r + 1)r

+
∑
i,j≥0

α(n, i, j, k, l, µ)(r + 1)Si−1(S − 1)j(r + 1)krl

n−1∏
p=1

(S + r + 1− p)µp

+
∑
i,j≥0

α(n, i, j, k, l, µ)Si(r + 1)j(S − 1)j−1(r + 1)krl

n−1∏
p=1

(S + r + 1− p)µp

+
∑
i,j≥0

α(n, i, j, k, l, µ)Si(S − 1)j(r + 1)krl ×

×

S(r + 1)
∑

q=1,2,...,n−1
µq≥1

µq

(S + r + 1− q)

n−1∏
p=1

(S + r + 1− p)µp

 .

We split this into two parts. The first part is

(S + r + 1− k)(S + r)k−1 + (k − 1)S(S + r)k−2(r + 1)

= (S + r)k + (k − 1)(S − 1)(S + r)k−2r,

while the rest has the form∑
i,j≥0

α(n + 1, i, j, k, l, µ)Si(S − 1)j(r + 1)krl

n∏
p=1

(S + r + 1− p)µp .

Finally, we put y = 1. We have the required results for n ≤ 3, so assume
that n ≥ 4 and that r, s ≥ 1. We have∑

i,j≥0

α(n, i, j, k, l, µ)si(s− 1)j(r + 1)krl

n−1∏
p=1

(s + r + 1− p)µp ≥ 0.
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Now sy−nF (y) |y=1= 1, S |y=1= s, and so

an = bn |y=1

≥ (s + r)n−1 + (n− 2)r(s− 1)(s + r)n−3

≥ (s + r)n−1,

with strict inequality if n > 2 and s > 1.
If s = 1 and n ≥ 4, then the second part of the expression contains a

term (k − 2)S(S + r)k−3(r + 1)r. On putting n = k + 1 and y = 1 this
becomes (n − 3)s(s + r)n−4(r + 1)r, which is strictly positive; so we have
strict inequality. �

4 Recognising imprimitive groups

Lemma 4.1 Let G be transitive on the infinite set Ω, and suppose that the
point stabiliser Gα has s orbits (all infinite) on Ω \ {α}, and s2 orbits on
ordered pairs of distinct elements from this set. Then G has s infinite blocks
of imprimitivity (and so is imprimitive if s > 1); it permutes the set of blocks
regularly, and the stabiliser of a block acts 3-transitively on it.

Proof Our proof is by induction on s. It is clear that for s = 1, the
hypotheses assert that G is 3-transitive. Suppose that s ≥ 2, and that the
lemma holds for values less than s. The hypothesis implies that an orbit
of Gα on pairs of distinct points is uniquely determined by the Gα-orbits
containing the two points.

First, we claim that G is imprimitive. For let {α}, O1, . . . , Os be the
orbits of Gα, and choose a point β ∈ O1. Then the orbits of Gαβ are {α},
{β}, O1 \ {β}, O2, . . . , Os. The Gβ-orbits are the same except for taking the
union of {α} with one of the other orbits.

If s > 2, at least one orbit Oi is fixed by both Gα and Gβ. Since it is
not fixed by G, we see that 〈Gα, Gβ〉 is a proper subgroup of G, whence G is
imprimitive.

For s = 2, the same argument applies unless O2 ∪ {α} is an orbit of Gβ.
In this case we see that {α}∪O2 and {β}∪O1 are the blocks of imprimitivity.

Choose B to be a minimal block of imprimitivity containing α. Without
loss of generality, suppose that B = {α} ∪ O1 ∪ · · · ∪ Ot, for some t with
1 ≤ t < s. Let H be the setwise stabiliser of B, acting on B. Clearly all
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Hα-orbits are infinite, and F1(Hα) = t and F2(Hα) = t2. The same argument
as before shows that, if t > 1, then H is imprimitive, contrary to our choice
of B as a minimal block. So t = 1 and H is 3-transitive on B.

If i > 1 and β ∈ O1, then Gα is transitive on O1×Oi, so Gαβ is transitive
on Oi. Thus, Oi is an orbit of 〈Gα, Gβ〉 = GB. It follows that, for γ ∈ Oi,
the orbits of Gγ are B, Oi \ {γ}, and Oj for j 6= 1, i. Thus, O1, . . . , O2 are
the translates of B, and G permutes the blocks B = O1 ∪ {α}, O2, . . . , Os

regularly. �

Now suppose that G has s infinite blocks of imprimitivity and permutes
the blocks regularly. Then Fk(G) = Fk−1(Gα) ≥ sk−1, since Gα fixes all s
blocks. Equality implies, in particular, that Gα acts (k − 1)-transitively on
the remaining points of the block containing α. So the Theorem is proved.
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