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Abstract

A transitive (infinite) permutation group which has m orbits on
ordered pairs of distinct points has at least m™~! orbits on ordered
n-tuples. This is best possible, and groups attaining the bound can
be characterised.

1 Introduction

A permutation group G on an (infinite) set Q2 is oligomorphic if the number
of orbits of G' on ordered n-tuples of distinct points of € is finite for all n.
We refer to [1] for basic terminology and facts about permutation groups,
especially oligomorphic permutation groups.

Let F,(G) (or just F,, if the group G is clear from the context) be the
number of orbits of G on the set of ordered n-tuples of distinct elements.
It is easy to see that the sequence F,(G) is non-decreasing, since each orbit
on such n-tuples consists of the initial segments of elements of at least one
orbit on (n 4 1)-tuples of distinct elements. In particular, F,,(G) = 1 for all
n if and only if G is highly transitive. This paper is a contribution to the
question: how fast does the sequence (F},) grow?

Of course it may not grow at all. If G is the symmetric group (or, indeed,
if G is highly transitive), then F,, = 1 for all n. In other cases, the growth
rate may be quite slow. For example, if GG is the stabiliser of one point in the
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symmetric group, then F,, = n + 1: there is one orbit of n-tuples with the
fixed point in the i¢th position for 1 < ¢ < n, and one orbit not containing
the fixed point.

At the other extreme, Merola [4] showed that, if G is primitive (that is,
preserves no non-trivial equivalence relation on €2) and not highly transitive,
then

'

c'nl

p(n)

for some polynomial p, where ¢ is an absolute constant; her proof shows that
¢ > 1.324. There are known examples with ¢ = 2. Results are also known
about the number of orbits on unordered n-sets; see Macpherson [3].

We are concerned with the intermediate case, where G is assumed to be
transitive but not necessarily primitive. Our result holds for all transitive but
not 2-transitive groups G, and gives exponential growth for F,(G). Moreover,
it is best possible.

F.(G) >

Theorem 1 Let G be an infinite transitive permutation group with Fy(G) =
m > 1. Then F,(G) > m""' for all natural numbers n. Moreover, if
F3(G) = m? and Fy(G) = m?, then G is imprimitive, with m infinite blocks
of imprimitivity; the blocks are permuted reqularly by G, and the stabiliser of
a block acts k-transitively on it if Fp(G) =mF~1.

Remarks Let G be the wreath product of the cyclic group of order 2 and
the infinite symmetric group. Then F),(G) is equal to the number of solutions
of g = 1 in the symmetric group S,. In particular, F}(G) = 1, F5(G) = 2,
F3(G) = 4 and Fy(G) = 10. So the conditions of the theorem are best
possible.

On the other hand, if G is the wreath product of a highly transitive group
with a finite group of order s (acting regularly), then F,(G) = s"! for all
n>1.

2 Counting orbits

Let Fi(z) and Fy(x) be formal power series. We write Fi(x) = Fy(z) if the
coeflicients of F; are not less than those for Fs.

Lemma 2.1 Let G be a transitive permutation group in which G, hasr+ s
orbits on the remaining points, of which v are finite and s are infinite. Let
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Feo(z) =) Fo.(G)x™/n!. Moreover, let

2 3
_ 1y rat or(r—1a7
fr(x) = 1+T+1((1+w) =1+z+ TR + -
1 2 2,.3
gs(z) = 1+—(exp(sx)—1):1+x+£—|—&—l—---.
s 2! 3!
Then

(a) if s =0, then Fg(x) = fr(2);
(b) if s > 1, then Fg(x) = gs(fr(x) — 1).

Proof (a) Since G is transitive, we have
F(G)=F,1(Go) 2 r(r—1)---(r—n+1).

(b) Again G is transitive, so F,,(G) = F,,_1(G,). Moreover, the union of
the finite G,-orbits (including {a}) is a block of imprimitivity for G.

Now we use a principle which occurs often in combinatorial enumeration,
and is perhaps clearest in the context of species (Joyal [2]). Suppose that
F and G are two species in which the exponential generating functions for
labelled structures are F(z) and G(x) respectively. Then the exponential
generating function for the species G o F in which a structure consists of a
set carrying a partition, with an F-structure on each part and a G-structure
on the set of parts, is G(F(x) — 1).

We apply this theorem with F the species of subsets of a block of im-
primitivity, so that F'(x) = f.(x), and G a species defined as follows: given
n points 1, ..., x,, the points different from x; are coloured with s colours,
so that there are s"~! labelled n-element structures for all n. Any orbit of G
on n-tuples gives rise to a G o F-structure: the n-tuple is partitioned by the
blocks of imprimitivity of its members, each part is a subset of a block, and
the parts other than the first are coloured by the orbits of G, containing the
corresponding blocks, where « is the first point of the n-tuple.

So the exponential generating function for (F,,(G)) dominates the count-
ing series for G o F, and the assertion is proved. U

Lemma 2.2 Let G be an infinite transitive permutation group in which the
stabiliser of a point has r + s orbits, of which r are finite and s are infinite.
Then



(a) F3(G) > (r + s)?, with equality only if r =0 or s = 1.
(b) Fy(G) > (r+ s)3, with equality only if r = 0.

Proof Let h(z) = gs(f-(x) —1). We have

The coefficients of 1, z and x?/2! are 1, 1 and r + s. The coefficient of
x3/3! is
r(r—1)+3sr +s* = (r+s5)>+ (s — 1)r;

this is at least (r + s)?, with equality only if » = 0 or s = 1.
The coefficient of z*/4! is

r(r—1)(r —2) +4r(r — 1)s + 3r?s + 6rs* + s° > (r + 5)*,

the difference between the two sides being r2(4s — 3) + r(3s* — 4s + 2). This
difference is positive if and only if » > 0.
Since Fg(z) = h(x), the lemma is proved. O

In the next section, we examine h(z) further and show that the coefficient
of 2" /n! is at least (r + s)" for all n. This will complete the proof of the
inequality in the theorem.

3 The exponential of a polynomial

Lemma 3.1 Let r and s be positive integers. Let

re?  r(r—1)a3

; = 1 1 L _ 1)y =1 -

fr(2) +r+1(( + ) ) taot ot 30 +--
1 sr? %z

gs(r) = 1+g(eXp(8I)—1)=1+I+7+T+--~.



and let

ah() = 1) = S0

n>0

Then gs(fr(x) — 1) = gris(z) for s >0, so that
an > (r+s)" !

for all n > 1. FEquality holds forn =1 and n = 2 for all r,s; forn = 3 if
and only if either r =0 or s = 1; and for n > 4 if and only if r = 0.

Proof Our proof splits into three parts. Let

F(:U) :gs<fr<y— 1) — 1) — 1+1/3

We have )
(y—1)—1=——(y* -1
frly—1) W ),

SO 1

S
F(y) == —(y=1)).
(y) = S exp (TJF T (v ))

Since F(y) differs from g4(f.(y — 1) — 1) only in the constant term, we have

Fly) = —(1—1/5) + 3 A

n>1
with the a,, as defined in the statement of the theorem. For n > 1, we have

dn
an = qgn FW) ly=1-

Let &
=—(F )
b= 4o (F)

We first claim that, for n > 1,

n—1
b = SE)y" ™" gum(r)s™yT "
m=0

for some polynomial g, ,,,(r) of degree n —1 —m in r. This is clearly true for
n=1asb = F'(y) = sy"F(y); for n = 2 we have by = sy" (sy" ™ +r)F(y).
Thus, g10 =1, g20 =1 and go; = 1.



If we assume that the equation holds for some n = k, with k£ > 1, we
have that

d
bosr = — (b
k+1 dy( k)
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This is of the form required, and so the claim holds for n = £+ 1. Indeed we
have

Gk+1m = Grom—1 + ((r+1)(m + 1) — k) gk.m,

where the first term is absent if m = 0.
Let S = sy"*!. Then we see that, for n > 2,

S+r+1-—n)(S+r)"t+n—-1DSEr+1)(S+r)"?
S+r)"2(SH+r+1—n)(S+r)+(n—-1Sr+1))
S +r)n? ((S +7)2 4+ (n—1)(S — r)
S+r)"+(n—1(S+r)""S - 1)

(
(
(
=

We now claim that

bn = r 4 (n— —1Dr r)n3
Sy EG) (S+r)""+n=2)(S=1r(S+r)

+ Z a(n,i, k1, pw)S*(S — 1) (r 4+ 1)% H (S+7r+1—p)t,

1,5,0,k>0



where = (i1, .-, ftn—1), p; > 0 and a(n, 7,5, k,l,u) > 0and i+ j+k+1+
> i < n—1. (The second term is present only if n > 3.)

Now b1 /(Sy~'F(y)) = 1, so the claim holds for n = 1 (with the second
term absent and the third term containing a single summand with ¢ = j =
k =1= p, =0). Similarly, by/(Sy ?F(y)) = S + r, so the claim holds for
n = 2. Assume that the claim holds for some n = k, with £ > 1. Then

b+1
Sy=F1F(y)
bk
= (=k+0Fr+1)+9S)—~——
( (r+1)+.5) S F ()
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+(k —2)S(S +7)*3(r + 1)r
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We split this into two parts. The first part is
(S+r+1—-k)(S+r)" "+ (k-1)SS +7)2(r+1)
= (S+r)fF+(k—1)(S—1)(S+7r)"?r

while the rest has the form

a4 10,5,k LSS =1 (r+ )R [ (S+r+1—py»

0,50 p=1

Finally, we put y = 1. We have the required results for n < 3, so assume
that n > 4 and that r, s > 1. We have

n—1
Z a(n,i, g, k1 p)s'(s — 1) (r + 1)k H (s+r+1—p)H >0.
i,j>0 p=1



Now sy "F(y) |y=1=1, S |,=1=s, and so

an, = by, |y:1
(s+r)" T+ (n—=2)r(s—1)(s+7r)"?
(s +r)" 1

(AVARVS

with strict inequality if n > 2 and s > 1.

If s =1 and n > 4, then the second part of the expression contains a
term (k — 2)S(S + r)¥3(r + 1)r. On putting n = k + 1 and y = 1 this
becomes (n — 3)s(s + r)"~*(r + 1)r, which is strictly positive; so we have
strict inequality:. O

4 Recognising imprimitive groups

Lemma 4.1 Let G be transitive on the infinite set 2, and suppose that the
point stabiliser G, has s orbits (all infinite) on Q\ {a}, and s* orbits on
ordered pairs of distinct elements from this set. Then G has s infinite blocks
of imprimitivity (and so is imprimitive if s > 1); it permutes the set of blocks
reqularly, and the stabiliser of a block acts 3-transitively on it.

Proof Our proof is by induction on s. It is clear that for s = 1, the
hypotheses assert that G is 3-transitive. Suppose that s > 2, and that the
lemma holds for values less than s. The hypothesis implies that an orbit
of G, on pairs of distinct points is uniquely determined by the G,-orbits
containing the two points.

First, we claim that G is imprimitive. For let {a},Oq,..., O be the
orbits of G, and choose a point # € O;. Then the orbits of G,5 are {a},
{6}, O\ {B}, O, ...,0,. The Gg-orbits are the same except for taking the
union of {a} with one of the other orbits.

If s > 2, at least one orbit O; is fixed by both G, and Gpg. Since it is
not fixed by G, we see that (G,, G) is a proper subgroup of G, whence G is
imprimitive.

For s = 2, the same argument applies unless Oy U {a} is an orbit of Gg.
In this case we see that {a}UO, and {5}UO; are the blocks of imprimitivity.

Choose B to be a minimal block of imprimitivity containing ov. Without
loss of generality, suppose that B = {a} UO; U --- U O, for some t with
1 <t < s. Let H be the setwise stabiliser of B, acting on B. Clearly all



H,-orbits are infinite, and Fy(H,) =t and Fy(H,) = t>. The same argument
as before shows that, if £ > 1, then H is imprimitive, contrary to our choice
of B as a minimal block. So ¢t = 1 and H is 3-transitive on B.

If i > 1 and 8 € Oy, then G, is transitive on O; X O;, so G, is transitive
on O;. Thus, O; is an orbit of (G,,Gs) = Gp. It follows that, for v € O,
the orbits of G are B, O; \ {7}, and O, for j # 1,i. Thus, Oy,...,0; are
the translates of B, and G permutes the blocks B = O; U {a}, Os,..., O
regularly. 0

Now suppose that G has s infinite blocks of imprimitivity and permutes
the blocks regularly. Then Fi(G) = Fj_1(Gq) > s*71, since G, fixes all s
blocks. Equality implies, in particular, that G, acts (k — 1)-transitively on
the remaining points of the block containing «. So the Theorem is proved.
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