Orbits on n-tuples

Ross Applegate and Peter J. Cameron^{*} School of Mathematical Sciences Queen Mary, University of London Mile End Road, London E1 4NS, UK

Abstract

A transitive (infinite) permutation group which has m orbits on ordered pairs of distinct points has at least m^{n-1} orbits on ordered *n*-tuples. This is best possible, and groups attaining the bound can be characterised.

1 Introduction

A permutation group G on an (infinite) set Ω is *oligomorphic* if the number of orbits of G on ordered *n*-tuples of distinct points of Ω is finite for all n. We refer to [1] for basic terminology and facts about permutation groups, especially oligomorphic permutation groups.

Let $F_n(G)$ (or just F_n , if the group G is clear from the context) be the number of orbits of G on the set of ordered *n*-tuples of distinct elements. It is easy to see that the sequence $F_n(G)$ is non-decreasing, since each orbit on such *n*-tuples consists of the initial segments of elements of at least one orbit on (n + 1)-tuples of distinct elements. In particular, $F_n(G) = 1$ for all *n* if and only if G is *highly transitive*. This paper is a contribution to the question: how fast does the sequence (F_n) grow?

Of course it may not grow at all. If G is the symmetric group (or, indeed, if G is highly transitive), then $F_n = 1$ for all n. In other cases, the growth rate may be quite slow. For example, if G is the stabiliser of one point in the

^{*}Corresponding author; email p.j.cameron@qmul.ac.uk

symmetric group, then $F_n = n + 1$: there is one orbit of *n*-tuples with the fixed point in the *i*th position for $1 \le i \le n$, and one orbit not containing the fixed point.

At the other extreme, Merola [4] showed that, if G is primitive (that is, preserves no non-trivial equivalence relation on Ω) and not highly transitive, then

$$F_n(G) \ge \frac{c^n n!}{p(n)}$$

for some polynomial p, where c is an absolute constant; her proof shows that $c \geq 1.324$. There are known examples with c = 2. Results are also known about the number of orbits on unordered *n*-sets; see Macpherson [3].

We are concerned with the intermediate case, where G is assumed to be transitive but not necessarily primitive. Our result holds for all transitive but not 2-transitive groups G, and gives exponential growth for $F_n(G)$. Moreover, it is best possible.

Theorem 1 Let G be an infinite transitive permutation group with $F_2(G) = m > 1$. Then $F_n(G) \ge m^{n-1}$ for all natural numbers n. Moreover, if $F_3(G) = m^2$ and $F_4(G) = m^3$, then G is imprimitive, with m infinite blocks of imprimitivity; the blocks are permuted regularly by G, and the stabiliser of a block acts k-transitively on it if $F_k(G) = m^{k-1}$.

Remarks Let G be the wreath product of the cyclic group of order 2 and the infinite symmetric group. Then $F_n(G)$ is equal to the number of solutions of $g^2 = 1$ in the symmetric group S_n . In particular, $F_1(G) = 1$, $F_2(G) = 2$, $F_3(G) = 4$ and $F_4(G) = 10$. So the conditions of the theorem are best possible.

On the other hand, if G is the wreath product of a highly transitive group with a finite group of order s (acting regularly), then $F_n(G) = s^{n-1}$ for all $n \ge 1$.

2 Counting orbits

Let $F_1(x)$ and $F_2(x)$ be formal power series. We write $F_1(x) \succeq F_2(x)$ if the coefficients of F_1 are not less than those for F_2 .

Lemma 2.1 Let G be a transitive permutation group in which G_{α} has r + s orbits on the remaining points, of which r are finite and s are infinite. Let

 $F_G(x) = \sum F_n(G) x^n / n!$. Moreover, let

$$f_r(x) = 1 + \frac{1}{r+1}((1+x)^{r+1} - 1) = 1 + x + \frac{rx^2}{2!} + \frac{r(r-1)x^3}{3!} + \cdots,$$

$$g_s(x) = 1 + \frac{1}{s}(\exp(sx) - 1) = 1 + x + \frac{sx^2}{2!} + \frac{s^2x^3}{3!} + \cdots.$$

Then

(a) if s = 0, then $F_G(x) \succeq f_r(x)$;

(b) if $s \ge 1$, then $F_G(x) \succcurlyeq g_s(f_r(x) - 1)$.

Proof (a) Since G is transitive, we have

$$F_n(G) = F_{n-1}(G_\alpha) \ge r(r-1)\cdots(r-n+1).$$

(b) Again G is transitive, so $F_n(G) = F_{n-1}(G_\alpha)$. Moreover, the union of the finite G_α -orbits (including $\{\alpha\}$) is a block of imprimitivity for G.

Now we use a principle which occurs often in combinatorial enumeration, and is perhaps clearest in the context of species (Joyal [2]). Suppose that \mathcal{F} and \mathcal{G} are two species in which the exponential generating functions for labelled structures are F(x) and G(x) respectively. Then the exponential generating function for the species $\mathcal{G} \circ \mathcal{F}$ in which a structure consists of a set carrying a partition, with an \mathcal{F} -structure on each part and a \mathcal{G} -structure on the set of parts, is G(F(x) - 1).

We apply this theorem with \mathcal{F} the species of subsets of a block of imprimitivity, so that $F(x) \geq f_r(x)$, and \mathcal{G} a species defined as follows: given n points x_1, \ldots, x_n , the points different from x_1 are coloured with s colours, so that there are s^{n-1} labelled n-element structures for all n. Any orbit of Gon n-tuples gives rise to a $\mathcal{G} \circ \mathcal{F}$ -structure: the n-tuple is partitioned by the blocks of imprimitivity of its members, each part is a subset of a block, and the parts other than the first are coloured by the orbits of G_{α} containing the corresponding blocks, where α is the first point of the n-tuple.

So the exponential generating function for $(F_n(G))$ dominates the counting series for $\mathcal{G} \circ \mathcal{F}$, and the assertion is proved.

Lemma 2.2 Let G be an infinite transitive permutation group in which the stabiliser of a point has r + s orbits, of which r are finite and s are infinite. Then

(a) F₃(G) ≥ (r + s)², with equality only if r = 0 or s = 1.
(b) F₄(G) ≥ (r + s)³, with equality only if r = 0.

Proof Let $h(x) = g_s(f_r(x) - 1)$. We have

$$\begin{split} h(x) &= 1 + x + \frac{rx^2}{2} + \frac{r(r-1)x^3}{6} + \frac{r(r-1)(r-2)x^4}{24} + \cdots \\ &+ \frac{s}{2!} \left(x + \frac{rx^2}{2} + \frac{r(r-1)x^3}{6} + \cdots \right)^2 \\ &+ \frac{s^2}{3!} \left(x + \frac{rx^2}{2} + \cdots \right)^3 \\ &+ \frac{s^3}{4!} \left(x + \cdots \right)^4 + \cdots \end{split}$$

The coefficients of 1, x and $x^2/2!$ are 1, 1 and r + s. The coefficient of $x^3/3!$ is

$$r(r-1) + 3sr + s^{2} = (r+s)^{2} + (s-1)r;$$

this is at least $(r+s)^2$, with equality only if r=0 or s=1.

The coefficient of $x^4/4!$ is

$$r(r-1)(r-2) + 4r(r-1)s + 3r^2s + 6rs^2 + s^3 \ge (r+s)^3,$$

the difference between the two sides being $r^2(4s-3) + r(3s^2-4s+2)$. This difference is positive if and only if r > 0.

Since $F_G(x) \succeq h(x)$, the lemma is proved.

In the next section, we examine h(x) further and show that the coefficient of $x^n/n!$ is at least $(r + s)^n$ for all n. This will complete the proof of the inequality in the theorem.

3 The exponential of a polynomial

Lemma 3.1 Let r and s be positive integers. Let

$$f_r(x) = 1 + \frac{1}{r+1}((1+x)^{r+1} - 1) = 1 + x + \frac{rx^2}{2!} + \frac{r(r-1)x^3}{3!} + \cdots,$$

$$g_s(x) = 1 + \frac{1}{s}(\exp(sx) - 1) = 1 + x + \frac{sx^2}{2!} + \frac{s^2x^3}{3!} + \cdots.$$

and let

$$g_s(f_r(x) - 1) = \sum_{n \ge 0} \frac{a_n x^n}{n!}.$$

Then $g_s(f_r(x) - 1) \succeq g_{r+s}(x)$ for s > 0, so that

$$a_n \ge (r+s)^{n-1}$$

for all $n \ge 1$. Equality holds for n = 1 and n = 2 for all r, s; for n = 3 if and only if either r = 0 or s = 1; and for $n \ge 4$ if and only if r = 0.

Proof Our proof splits into three parts. Let

$$F(y) = g_s(f_r(y-1) - 1) - 1 + 1/s$$

We have

$$f_r(y-1) - 1 = \frac{1}{r+1}(y^{r+1} - 1),$$

 \mathbf{SO}

$$F(y) = \frac{1}{s} \exp\left(\frac{s}{r+1}(y^{r+1}-1)\right).$$

Since F(y) differs from $g_s(f_r(y-1)-1)$ only in the constant term, we have

$$F(y) = -(1 - 1/s) + \sum_{n \ge 1} \frac{a_n (y - 1)^n}{n!},$$

with the a_n as defined in the statement of the theorem. For $n \ge 1$, we have

$$a_n = \frac{\mathrm{d}^n}{\mathrm{d}y^n} \left(F(y) \right) |_{y=1}$$

Let

$$b_n = \frac{\mathrm{d}^n}{\mathrm{d}y^n} \left(F(y) \right).$$

We first claim that, for $n \ge 1$,

$$b_n = sF(y)y^{r+1-n} \sum_{m=0}^{n-1} g_{n,m}(r)s^m y^{(r+1)m}$$

for some polynomial $g_{n,m}(r)$ of degree n-1-m in r. This is clearly true for n = 1 as $b_1 = F'(y) = sy^r F(y)$; for n = 2 we have $b_2 = sy^{r-1}(sy^{r+1}+r)F(y)$. Thus, $g_{1,0} = 1$, $g_{2,0} = r$ and $g_{2,1} = 1$.

If we assume that the equation holds for some n = k, with $k \ge 1$, we have that

$$b_{k+1} = \frac{d}{dy} (b_k)$$

= $s^2 y^r F(y) y^{r+1-k} \sum_{m=0}^{k-1} g_{k,m}(r) s^m y^{(r+1)m}$
+ $(r+1-k) s F(y) y^{r-k} \sum_{m=0}^{k-1} g_{k,m}(r) s^m y^{(r+1)m}$
+ $s F(y) y^{r+1-k} \sum_{m=0}^{k-1} g_{k,m}(r) s^m (r+1) m y^{(r+1)m-1}$
= $s F(y) y^{r-k} \left(\left(s y^{r+1} + r + 1 - k \right) \sum_{m=0}^{k-1} g_{k,m}(r) s^m y^{(r+1)m} \right)$
+ $\sum_{m=0}^{k-1} (r+1) m g_{k,m}(r) s^m y^{(r+1)m} \right).$

This is of the form required, and so the claim holds for n = k + 1. Indeed we have

$$g_{k+1,m} = g_{k,m-1} + ((r+1)(m+1) - k)g_{k,m},$$

where the first term is absent if m = 0.

Let $S = sy^{r+1}$. Then we see that, for $n \ge 2$,

$$(S+r+1-n)(S+r)^{n-1} + (n-1)S(r+1)(S+r)^{n-2}$$

= $(S+r)^{n-2}((S+r+1-n)(S+r) + (n-1)S(r+1))$
= $(S+r)^{n-2}((S+r)^2 + (n-1)(S-1)r)$
= $(S+r)^n + (n-1)(S+r)^{n-2}(S-1)r.$

We now claim that

$$\frac{b_n}{Sy^{-n}F(y)} = (S+r)^{n-1} + (n-2)(S-1)r(S+r)^{n-3} + \sum_{i,j,l,k\geq 0} \alpha(n,i,j,k,l,\mu)S^i(S-1)^j(r+1)^k r^l \prod_{p=1}^{n-1} (S+r+1-p)^{\mu_p},$$

where $\mu = (\mu_1, \ldots, \mu_{n-1}), \mu_i \ge 0$ and $\alpha(n, i, j, k, l, \mu) \ge 0$ and $i + j + k + l + \sum \mu_p \le n - 1$. (The second term is present only if $n \ge 3$.)

Now $b_1/(Sy^{-1}F(y)) = 1$, so the claim holds for n = 1 (with the second term absent and the third term containing a single summand with $i = j = k = l = \mu_p = 0$). Similarly, $b_2/(Sy^{-2}F(y)) = S + r$, so the claim holds for n = 2. Assume that the claim holds for some n = k, with $k \ge 1$. Then

$$\begin{split} \frac{b_{k+1}}{Sy^{-k-1}F(y)} &= \left(-k + (r+1) + S\right) \frac{b_k}{Sy^{-k}F(y)} \\ &+ (k-1)S(S+r)^{k-2}(r+1) + (k-2)(k-3)(S-1)S(S+r)^{k-4}(r+1)r \\ &+ (k-2)S(S+r)^{k-3}(r+1)r \\ &+ \sum_{i,j\geq 0} \alpha(n,i,j,k,l,\mu)(r+1)S^{i-1}(S-1)^j(r+1)^kr^l \prod_{p=1}^{n-1} (S+r+1-p)^{\mu_p} \\ &+ \sum_{i,j\geq 0} \alpha(n,i,j,k,l,\mu)S^i(r+1)j(S-1)^{j-1}(r+1)^kr^l \prod_{p=1}^{n-1} (S+r+1-p)^{\mu_p} \\ &+ \sum_{i,j\geq 0} \alpha(n,i,j,k,l,\mu)S^i(S-1)^j(r+1)^kr^l \times \\ &\times \left(S(r+1)\sum_{\substack{q=1,2,\dots,n-1\\ \mu_q\geq 1}} \frac{\mu_q}{(S+r+1-q)} \prod_{p=1}^{n-1} (S+r+1-p)^{\mu_p}\right). \end{split}$$

We split this into two parts. The first part is

$$(S+r+1-k)(S+r)^{k-1} + (k-1)S(S+r)^{k-2}(r+1)$$

= $(S+r)^k + (k-1)(S-1)(S+r)^{k-2}r$,

while the rest has the form

$$\sum_{i,j\geq 0} \alpha(n+1,i,j,k,l,\mu) S^i (S-1)^j (r+1)^k r^l \prod_{p=1}^n (S+r+1-p)^{\mu_p}.$$

Finally, we put y = 1. We have the required results for $n \leq 3$, so assume that $n \geq 4$ and that $r, s \geq 1$. We have

$$\sum_{i,j\geq 0} \alpha(n,i,j,k,l,\mu) s^i (s-1)^j (r+1)^k r^l \prod_{p=1}^{n-1} (s+r+1-p)^{\mu_p} \ge 0.$$

Now $sy^{-n}F(y) |_{y=1} = 1, S |_{y=1} = s$, and so

$$a_n = b_n |_{y=1}$$

$$\geq (s+r)^{n-1} + (n-2)r(s-1)(s+r)^{n-3}$$

$$\geq (s+r)^{n-1},$$

with strict inequality if n > 2 and s > 1.

If s = 1 and $n \ge 4$, then the second part of the expression contains a term $(k-2)S(S+r)^{k-3}(r+1)r$. On putting n = k+1 and y = 1 this becomes $(n-3)s(s+r)^{n-4}(r+1)r$, which is strictly positive; so we have strict inequality.

4 Recognising imprimitive groups

Lemma 4.1 Let G be transitive on the infinite set Ω , and suppose that the point stabiliser G_{α} has s orbits (all infinite) on $\Omega \setminus \{\alpha\}$, and s^2 orbits on ordered pairs of distinct elements from this set. Then G has s infinite blocks of imprimitivity (and so is imprimitive if s > 1); it permutes the set of blocks regularly, and the stabiliser of a block acts 3-transitively on it.

Proof Our proof is by induction on s. It is clear that for s = 1, the hypotheses assert that G is 3-transitive. Suppose that $s \ge 2$, and that the lemma holds for values less than s. The hypothesis implies that an orbit of G_{α} on pairs of distinct points is uniquely determined by the G_{α} -orbits containing the two points.

First, we claim that G is imprimitive. For let $\{\alpha\}, O_1, \ldots, O_s$ be the orbits of G_{α} , and choose a point $\beta \in O_1$. Then the orbits of $G_{\alpha\beta}$ are $\{\alpha\}$, $\{\beta\}, O_1 \setminus \{\beta\}, O_2, \ldots, O_s$. The G_{β} -orbits are the same except for taking the union of $\{\alpha\}$ with one of the other orbits.

If s > 2, at least one orbit O_i is fixed by both G_{α} and G_{β} . Since it is not fixed by G, we see that $\langle G_{\alpha}, G_{\beta} \rangle$ is a proper subgroup of G, whence G is imprimitive.

For s = 2, the same argument applies unless $O_2 \cup \{\alpha\}$ is an orbit of G_β . In this case we see that $\{\alpha\} \cup O_2$ and $\{\beta\} \cup O_1$ are the blocks of imprimitivity.

Choose B to be a minimal block of imprimitivity containing α . Without loss of generality, suppose that $B = \{\alpha\} \cup O_1 \cup \cdots \cup O_t$, for some t with $1 \leq t < s$. Let H be the setwise stabiliser of B, acting on B. Clearly all H_{α} -orbits are infinite, and $F_1(H_{\alpha}) = t$ and $F_2(H_{\alpha}) = t^2$. The same argument as before shows that, if t > 1, then H is imprimitive, contrary to our choice of B as a minimal block. So t = 1 and H is 3-transitive on B.

If i > 1 and $\beta \in O_1$, then G_{α} is transitive on $O_1 \times O_i$, so $G_{\alpha\beta}$ is transitive on O_i . Thus, O_i is an orbit of $\langle G_{\alpha}, G_{\beta} \rangle = G_B$. It follows that, for $\gamma \in O_i$, the orbits of G_{γ} are B, $O_i \setminus \{\gamma\}$, and O_j for $j \neq 1, i$. Thus, O_1, \ldots, O_2 are the translates of B, and G permutes the blocks $B = O_1 \cup \{\alpha\}, O_2, \ldots, O_s$ regularly. \Box

Now suppose that G has s infinite blocks of imprimitivity and permutes the blocks regularly. Then $F_k(G) = F_{k-1}(G_\alpha) \ge s^{k-1}$, since G_α fixes all s blocks. Equality implies, in particular, that G_α acts (k-1)-transitively on the remaining points of the block containing α . So the Theorem is proved.

References

- [1] Cameron, P. J. (1990) *Oligomorphic Permutation Groups*, London Math. Soc Lecture Notes 152, Cambridge University Press: Cambridge.
- Joyal, A. (1981) Une theorie combinatoire des séries formelles, Advances in Math. 42: 1–82.
- [3] Macpherson, H. D. (1983) The action of an infinite permutation group on the unordered subsets of a set, *Proc. London Math. Soc.* (3) 46: 471–486.
- [4] Merola, F. (2001) Orbits on n-tuples for infinite permutation groups, Europ. J. Combinatorics 22: 225-241.