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Abstract
To a combinatorialist, a design is usually a 2-design or balanced incomplete-

block design. However, 2-designs do not necessarily exist in all cases where a
statistician might wish to use one to design an experiment. As a result, statisti-
cians need to consider structures much more general than the combinatorialist’s
designs, and to decide which one is “best” in a given situation. This leads to
the theory of optimal design. There are several concepts of optimality, and no
general consensus about which one to use in any particular situation.

For block designs with fixed block size k, all these optimality criteria are
determined by a graph, the concurrence graph of the design, and more specifi-
cally, by the eigenvalues of the Laplacian matrix of the graph. It turns out that
the optimality criteria most used by statisticians correspond to properties of
this graph which are interesting in other contexts: D-optimality involves maxi-
mizing the number of spanning trees; A-optimality involves minimizing the sum
of resistances between all pairs of terminals (when the graph is regarded as an
electrical circuit, with each edge being a one-ohm resistor); and E-optimality
involves maximizing the smallest eigenvalue of the Laplacian (the corresponding
graphs are likely to have good expansion and random walk properties). If you
are familiar with these properties, you may expect that related “nice” proper-
ties such as regularity and large girth (or even symmetry) may tend to hold;
some of our examples may come as a surprise!

The aim of this paper is to point out that the optimal design point of view
unifies various topics in graph theory and design theory, and suggests some
interesting open problems to which combinatorialists of all kinds might turn
their expertise. We describe in some detail both the statistical background and
the mathematics of various topics such as Laplace eigenvalues of graphs.

1 Preliminaries

This first section of the paper sets the scene. We look briefly at the different ways
in which a combinatorialist and a statistician view a simple block design such as the
Fano plane, and also introduce a running example which would not be recognised as
a design under the standard combinatorial definition but is in fact the best design
for a statistician in certain circumstances.

Section 2 looks at the way that information about treatment differences is re-
covered from the results of an experiment conducted using a block design. We look
briefly at what makes a good design, and show that all criteria for this can be
expressed in terms of the concurrence graph of the design. Having thus focussed
our attention on graphs, we give a brief survey of the Laplacian matrix of a graph
and its eigenvalues, and mention the interesting question of which graphs can be
concurrence graphs of block designs with given block size.

Section 3 covers the three most important kinds of optimality, described by the
letters A (average), D (determinant) and E (extreme), and how they look when
expressed in terms of the concurrence matrix.

In section 4 we look at sparse graphs. For trees and unicyclic graphs, we identify
the A-, D- and E-optimal graphs, observing that for unicyclic graphs the different
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criteria give very different answers. We also give extensions to more general classes
of graphs. These results have applications in the design of microarray experiments
in genetics.

In section 5 we look at other kinds of design and optimality criterion, including
the case of block designs which do not have constant block size. In the final section
we look briefly at computational issues and describe how the GAP share package
DESIGN can be used for some of these computations.

We note that lack of communication between mathematicians and statisticians
has led to some duplication of effort in this area. For example, Kelmans and Chel-
nokov [62] showed in 1974 that the graph on n vertices with λn(n − 1)/2 edges
with the largest number of spanning trees is the λ-fold complete graph. Cheng [32]
pointed out that this follows from an early result on optimal designs by Kiefer in
1958 [65]. Wild [105] has attempted to bring the two communities closer together;
this paper represents another attempt.

1.1 Introduction

Combinatorialists and statisticians understand different things by the term “block
design”. To a combinatorialist, the archetypal block design is the Fano plane shown
in Figure 1.
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Figure 1: The Fano plane

The design has seven points and seven blocks, each block being a set of three
points; any two distinct points are contained in a unique block.

A statistician might introduce this design with an example like the following.
Seven different makes of fertilizer are to be tested in an experiment. Twenty-one
plots of land are available for the experiment, three plots on each of seven farms in
different parts of the country. We can apply one fertilizer to each plot, then grow a
crop on all the plots and measure the yield. How should we allocate fertilizers to the
plots? Clearly the worst thing we could do would be to put fertilizer 1 on the three
plots on Farm A, fertilizer 2 on the plots on Farm B, etc. If we did this, then any
difference in yield between these plots could be the result of the fertilizer, but could
equally be the result of differences in fertility, soil structure or climate between the
farms. It is not hard to believe that the best way to assign the fertilizers to the
farms is using a scheme like the one in Table 1.

This is the Fano plane in disguise: if we identify the seven types of fertilizer with
the points of the plane, and the seven farms with the lines, then a fertilizer is used
on a farm precisely when the corresponding point and line are incident.

There is another step in the design of the experiment, namely randomization:
we could number the fertilizers and farms in random order, and assign the three
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Farm A Farm B Farm C Farm D Farm E Farm F Farm G
Plot 1 1 1 1 2 2 3 3
Plot 2 2 4 6 4 5 4 5
Plot 3 3 5 7 6 7 7 6

Table 1: The Fano plane

fertilizers randomly to the three plots on each farm. We will not discuss further the
techniques and reasons for randomization here.

The main thing to notice is that the most important things in the experimental
design, the individual plots or experimental units on which the measurements are
made, are not immediately visible in the mathematician’s picture of the Fano plane.
A little thought shows that plots correspond to the flags (the incident point-line
pairs) in the plane.

The combinatorialist and statistician agree that in this case the best thing to do
is to use the Fano plane. But what if there are only six fertilizers and six farms?
There is no 2-design with six points and six blocks, having three points in each block;
but the statistician still has the job of designing the experiment so as to extract as
much information as possible about differences between the fertilizers. Even worse,
what should we do when there are different numbers of plots available on each farm?

1.2 Combinatorial design

A combinatorialist usually defines a block design in one of two ways:

• a set of points, with a collection of subsets called blocks, satisfying some further
conditions;

• two sets (a set of points and a set of blocks) with a binary relation of incidence
between them.

The two views are almost equivalent. Given the first definition, we define the inci-
dence relation between points and blocks to be the membership relation: point p and
block B are incident if p ∈ B. Conversely, given two sets and an incidence relation,
we can identify any block with the set of points incident with it; the difference is
that we obtain a multiset of subsets of the point set, that is, we allow repeated blocks.
However, we will freely mix the language associated with the two viewpoints.

Typical of the additional conditions imposed are those of being a t-(v, k, λ) de-
sign, where 1 ≤ t ≤ k ≤ v and λ > 0: this requires that there are v points altogether,
that any block contains k points, and that any set of t points is contained in exactly
λ blocks. Thus the Fano plane is a 2-(7, 3, 1) design.

The difference between the two viewpoints is important for the existence ques-
tion. If repeated blocks are allowed, it is easy to show that t-(v, k, λ) designs in
which not every k-set is a block exist for every t, k, v satisfying t < k < v − t (for
some λ). However, the existence of t-designs without repeated blocks is a much
more difficult question: none with t > 5 were known until the 1980s, and their
existence for all t was shown by Teirlinck [96] in 1987. A different proof was found
by Ajoodani-Namini [1] in 1996. Ajoodani-Namini’s proof is very much simpler, but
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Teirlinck’s gives designs where the value of λ (though large) is a fixed function of t,
and does not grow with v. We refer to the paper by Khosrovshahi and Tayfeh-Reziae
in this volume [64] for more information on t-designs.

In the case of 2-designs, there is a powerful existence theory due to Wilson [106].
There are two easy necessary conditions on the parameters for the existence of such
a design:

k − 1 divides (v − 1)λ,
k divides v(v − 1)λ.

(1.1)

For the number of blocks containing a point is equal to (v − 1)λ/(k − 1), while the
total number of blocks is v(v−1)λ/k(k−1). These conditions, together with Fisher’s
inequality b ≥ v, are known to be sufficient if k ≤ 4 [51]. Wilson showed that, for
any given k and λ, these conditions are sufficient for the existence of a 2-(v, k, λ)
design if v is large enough (in terms of k and λ).

We are far from having a comparable theory for t-designs with t > 2, however.
It is quite common in the combinatorial literature for the unadorned word “de-

sign” to denote a 2-design. This will not be our viewpoint; we now explain why
statisticians require a much more general concept.

1.3 Statistical design

In a fairly simple kind of comparative experiment, a number v of different treat-
ments will be applied to experimental units and the responses measured and anal-
ysed. The design is an allocation of treatments to units; because of randomization,
it is better to think of the design as a partition of the set of units into v parts,
so that one treatment can be allocated to each part. We use v for the number of
treatments to avoid conflict with the t used in the theory of t-designs; think of v
for “varieties” – in an agricultural experiment the treatments applied to the fields
might be different varieties of wheat.

If the experimental units are all alike, then it seems reasonable to partition them
into parts as nearly equal as possible; any such partition is as good as any other,
and there is nothing interesting from a combinatorial point of view. But things
are not always so simple. The next level of complication is that the units come
already partitioned into “blocks”, so that the units within a block are alike, but
differ systematically from those in a different block (such as the twenty-one fields
on seven different farms in our example). In this case, the relationship between the
two partitions gives the design a non-trivial combinatorial structure.

Accordingly, we define a block design to be a set of “units” or “plots” carrying
two partitions: a treatment partition with v parts, and a block partition with b
parts.

This looks very different from a combinatorialist’s block design, but we will see
that it can be recast into a very similar (but rather more general) form. To do this,
we follow the combinatorialist and take the set of v treatments as the basic object.
Each block now consists of a multiset of treatments, namely, the treatments applied
to the plots in that block. The block design is called binary if no treatment occurs
more than once in each block. In a binary design, a block is now identified with a set
of treatments; so a binary block design can be thought of as a multiset of subsets of
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the set of treatments (it is a multiset to allow the possibilities of repeated blocks).
In general, however, we have a multiset of multisets of treatments.

There may be good scientific reasons for allowing a treatment to occur more than
once in a block; it may have a self-interaction which is important but would not be
detected if this were not done. In the simple models we consider in this paper, such
interactions will not be relevant. But this does not mean that the best designs are
always binary.

In the discussion of Tocher’s paper [99], David Cox said

I suspect that . . . balanced ternary designs are of no practical value.

(Here a design is ternary if the maximum number of occurrences of a fixed treatment
in a block is two.) Contrary to this suspicion, it may well happen that optimal
designs are non-binary; we will see examples.

However, since we will assume that we are not interested in effects involving
repetition of a single treatment and simply want to compare the treatments, then a
block in which only one treatment occurs (an arbitrary number of times) is simply
wasted effort, since it can give no information about treatment differences. So we
will make one restriction on the designs we consider: no block can contain just a
single treatment.

Another way to represent a block design is by its Levi graph, defined as follows.
The graph is bipartite, with vertices in one class of the bipartition being the treat-
ments and those in the other being the blocks; for each experimental unit, the graph
has an edge connecting the treatment on that unit (i.e. the part of the treatment
partition containing it) with its block (the part of the block partition containing it).
This graph may have multiple edges; indeed, it is simple if and only if the design
is binary. Now we can obtain the “multiset of multisets” representation by taking
the treatments as points, and the neighbourhoods of the blocks as the multisets.
(If nij edges join point i to block j, then point i occurs nij times in the multiset
corresponding to j.)

These numbers give us another simple way of representing the design. We always
consider designs for v treatments in b blocks. Let N be the v × b incidence matrix :
the entry nij is the number of times that treatment i occurs in block j. Thus the
column sums of N are the block sizes, which we shall usually assume are all equal
to k, while the sum ri of the i-th row is the number of times which treatment i
occurs overall, which is the replication of i. Thus the design is binary if nij ∈ {0, 1}
for all i and j.

Put Λ = NN>, which is called the concurrence matrix . If the design is binary
then λij is just the number of blocks in which treatments i and j occur; in particular,
λii = ri.

For more information on design of comparative experiments, we refer to [8].

1.4 An example

Example 1.1 Here is an example of a block design which we will use as a running
example in this paper. This design was first given by Tocher [99] in the paper cited
above. There are five treatments, labelled 1, 2, 3, 4, 5, and 21 units, divided into
seven blocks of three, corresponding to the columns of Table 2. Its Levi graph is in
Figure 2.
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1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

Table 2: A block design
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Figure 2: The Levi graph of the design in Table 2

Every block has size three, though of course the first block is a multiset. The
point 1 occurs five times, including twice in the first block; the remaining points
occur four times each. Every pair of points has concurrence precisely 2: the two
concurrences of 1 and 2 are accounted for by the first block. So all off-diagonal
elements in the concurrence matrix are equal to 2. On the other hand, the diagonal
entries are (7, 4, 4, 4, 4). (The two occurrences of treatment 1 in the first block
contribute 4 to the first entry of NN>.)

1.5 Graphs

As hinted above, our graphs can have multiple edges but not loops. (In Sec-
tion 5.4, we briefly have a more general concept, edge-weighted graphs.) A simple
graph is one with no multiple edges; a regular graph is a graph where all vertices
have the same valency. Graphs will almost always be connected. The adjacency
matrix of a graph has rows and columns indexed by vertices, with (i, j) entry equal
to the number of edges connecting i and j.

A distance-regular graph is a simple connected regular graph of diameter d for
which there exist parameters cm, am, bm (for 0 ≤ m ≤ d, but c0, a0 and bd are unde-
fined) such that, if i and j are vertices at distance m, then the numbers of vertices
adjacent to j and at distance m − 1,m, m + 1 respectively from i are cm, am, bm

respectively.
There is a rich theory of distance-regular graphs, for which we refer to [16, 23, 48].

In particular, note that the eigenvalues of the adjacency matrix of a distance-regular
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graph are the same as those of a tridiagonal matrix of order d+1 having cm, am, bm

in row m + 1; their multiplicities can also be calculated from these parameters. A
strongly regular graph is a distance-regular graph with diameter 2. (Some authors
allow “strongly regular graphs” to be disconnected; such graphs are disjoint unions
of complete graphs of the same size.)

1.6 Partial balance

An association scheme of rank s + 1 on the set of v treatments is a set of
symmetric v × v matrices A0, . . . , As with entries 0 and 1 such that A0 = I,
A0 + · · · + As = J , and the product AiAj is a linear combination of A0, . . . , As for
all i and j. Here J denotes the v× v all-1 matrix. A pair of distinct treatments are
said to be i-th associates if the corresponding entry of Ai is 1. Thus if s = 1 then
the scheme is trivial with A1 = J − I.

An association scheme of rank 2 is either a complementary pair of strongly regular
graphs, or is group-divisible (one associate class being a uniform partition with
the diagonal removed)—the second alternative is unnecessary if the more general
definition of “strongly regular graph” is adopted. More generally, the distance classes
in a distance-regular graph of diameter s define an association scheme of rank s+1.

The set of all real linear combinations of A0, . . . , As is the Bose–Mesner algebra
of the association scheme. This algebra is commutative, and so has a basis of
minimal idempotents as well as the basis formed by the adjacency matrices Ai. Many
techniques for calculation in association schemes depend on transforming between
these two bases: see [5].

A binary block design is defined to be partially balanced with respect to a given
association scheme if its concurrence matrix is in the Bose–Mesner algebra of that
scheme. If the scheme has rank s + 1, the design is said to have s associate classes.
Partially balanced block designs with two associate classes were introduced by Bose
and Nair in [21] when statisticians found that they needed block designs for some
parameter sets for which no 2-design exists. Allowing two different concurrences
seemed to be the next level of complexity; and restricting to partially balanced
designs gave a simple method of calculating matrix inverses (see Section 2.1) in the
days before computers were widely available.

2 Optimality

We begin this section with the statistical background: the information matrix
of a block design, its generalized inverse, and the role of the latter in estimating
treatment differences from experimental data. We want these estimates to be as
accurate as possible: this leads to various notions of optimality. For designs with
constant block size, optimality criteria depend on the concurrence graph of the
design, specifically on the eigenvalues of its Laplacian matrix. Kiefer’s Theorem
(Theorem 2.3) asserts that 2-designs, if they exist, are optimal in any reasonable
sense. We conclude with a discussion of variance-balanced designs (with constant
block size), a generalization of 2-designs.
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2.1 The information matrix and its generalized inverse

Put
C = R− 1

k
Λ,

where R = diag(r1, . . . , rv). This is called the information matrix of the design, for
reasons that will become clear in Section 2.2. It is a v × v symmetric matrix with
zero row and column sums.

The trace of C is equal to
(∑

i6=j λij

)
/k. We will need to know when this is

maximized (for given v, b, k). If the point i has mi occurrences in a block, then the
contribution of that block to the trace is∑

i6=j

mimj = k2 −
∑

i

m2
i ;

since
∑

i mi = k, the contribution is maximized when the mi are as nearly equal as
possible. We conclude:

Proposition 2.1 A design with v points and b blocks of size k maximizes the trace
of C (among all such designs) if and only if each point occurs bk/vc or dk/ve times
in each block. In particular, if k < v, the trace of C is maximized by the binary
designs; the maximum value is b(k − 1).

In general, designs satisfying the conditions of this result are called generalized
binary ; such a design is obtained by adding a fixed number of occurrences of each
point to each block of a binary design.

Let u be the all-1 vector in Rv. (We adopt the statisticians’ convention that
vectors are column vectors.) Then u is an eigenvector of C with eigenvalue 0, which
we call the trivial eigenvalue. In general, the multiplicity of the zero eigenvalue
is equal to the number of connected components in the Levi graph (this follows
from Proposition 2.9). This is why we say “non-trivial” rather than “non-zero” to
indicate the eigenvalues on vectors orthogonal to u. Connectedness ensures that this
eigenvalue has multiplicity 1. In this case, the design too is said to be connected .
From now on, we shall assume that we are considering only connected designs.

Since it is symmetric, C can be written in spectral form as

C =
∑

θiPi,

where θi are the distinct eigenvalues and Pi are the eigenprojectors. It is convenient
to number the eigenvalues so that θ0 = 0; then, for a connected design, P0 is the
projector onto the space 〈u〉 spanned by u, so P0 = v−1J , where J is the v× v all-1
matrix.

The matrix C is singular, but we need some kind of inverse. The matrix B is
said to be a generalized inverse of C if it satisfies

BCB = B and CBC = C. (2.1)

Since C is invertible on the space 〈u〉⊥ and zero on the space 〈u〉, in some ways the
most natural generalized inverse is the one defined by

BC = CB = I − P0 and BP0 = P0B = 0.
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This one is called the Moore–Penrose generalized inverse, written C−. It is given
by

C− =
∑
i6=0

1
θi

Pi. (2.2)

It is also a symmetric matrix with zero row and column sums. If B is any other
generalized inverse, then C− = (I − P0)B(I − P0).

Statisticians who evaluate block designs have developed several methods for cal-
culating the Moore–Penrose generalized inverse of the information matrix C. Here
are some of their methods.

(a) Express C in spectral form and use Equation (2.2). This method is good when
it is easy to find the eigenspaces. Then it can work for whole families of matri-
ces of different sizes. For example, in an association scheme the eigenprojectors
are just (sums of some of) the minimal idempotents of the scheme.

(b) Use a computer (algebra) package to compute

C− = (C + P0)−1 − P0,

where P0 = v−1J . The trick is that C + P0 is invertible and is the identity on
〈u〉, so its inverse is also the identity on 〈u〉.

(c) (This is the method favoured by electrical engineers: see later.) Delete the
last row and column of C, to leave an invertible matrix C̃. Put C̃−1 in the
top left hand corner, and zeros in the last row and column, then pre- and
post-multiply by I − P0.

(d) More generally, to calculate the Moore–Penrose generalized inverse of a sym-
metric partitioned matrix, statisticians often use the formula in Lemma A.3
of [89], which uses a result of [88]. The formula in Exercise 2.7 of [84, page 33]
is similar.

(e) Start with a symmetric matrix B with zero row sums. If there is any simul-
taneous permutation of the rows and columns of C that leaves it unaltered,
reduce the number of unknowns in B so that it is also invariant under this
permutation. Then use brute (hand) force to solve Equations (2.1).

(f) Find powers of C until they, together with I−P0, are linearly dependent. This
gives an equation of the form

polynomial in C with no constant term = I − P0.

The degree of the left-hand side is equal to the number of distinct non-trivial
eigenvalues of C. Factorize the left-hand side as CB. Pre- and post-multiply
B by I−P0 to get C−. Since B has constant row and column sums, in practice
this means subtracting c/v from every entry in B, where c is the row sum. If
there are not many distinct eigenvalues, this method can be quicker than (a),
because the eigenprojectors do not need to be calculated.

A square matrix is completely symmetric if its diagonal elements are constant and
its off-diagonal elements are constant; that is, if it is a linear combination of I and
J . If an information matrix is completely symmetric, it has the form C = c(I−P0),
and so its Moore–Penrose inverse C− = c−1(I − P0) is also completely symmetric.
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2.2 Estimation and variance

In the experiment, the scientist measures a response on each experimental unit.
Suppose that experimental unit ω is in block j and is allocated treatment i. We
assume that there are numbers τ1, . . . , τv and β1, . . . , βb such that the expected
response on unit ω is τi + βj . Notice that this is the real world here, not algebra or
arithmetic: if we measure the same thing on the same treatment in the same block
on two different occasions we will not usually get the same answer. This is partly
because of errors of observation, and partly because of inherent variability in the
underlying experimental material. For a good discussion of this, see [81].

Thus, writing Yω for the response on unit ω, we have to assume that Yω is a
random variable whose expectation is τi + βj . That is,

E(Yω) = τi + βj if ω is in block j and has treatment i. (2.3)

We are not interested in the β parameters, but do want to estimate the τ parameters.
What is an estimator? It is a function of the data, but not of the unknown values

which we are trying to estimate. Because the responses are random variables, each
estimator is also a random variable. The most important property of an estimator
is that it should be unbiased , which means that the expected value of the estimator
is equal to the unknown parameter which we are trying to estimate.

In Equations (2.3), we can obviously add a constant to all the τ parameters and
subtract it from all the β parameters without changing the model, so we cannot
estimate the τi. In fact, we can adjust constants in this way separately in each
connected component of the Levi graph. However, this is the only source of ambi-
guity, as we shall show. More precisely, we shall show that if the vector x is in the
image of C (equivalently, if x is orthogonal to the null space of C), then there is a
linear combination of the responses whose expected value is equal to x>τ . When
the design is connected, the null space of C is just 〈u〉, so x is orthogonal to the null
space if and only if x>u = 0; that is, the coefficients in the vector x sum to zero.
Such a vector is called a contrast vector , and the corresponding linear combination
x>τ is called a contrast in the treatment parameters τ1, . . . , τv.

Statisticians usually rewrite Equations (2.3) in the following vector form:

E(Y ) = Xτ + Zβ. (2.4)

Here Y , τ and β are vectors in Rbk, Rv and Rb respectively. The matrix X has bk
rows and v columns: the entry in row ω and column i is equal to 1 if experimental
unit ω gets treatment i; otherwise it is zero. The bk×b matrix Z is defined similarly,
using blocks instead of treatments.

The matrix k−1ZZ> is the orthogonal projector onto the subspace B of Rbk

consisting of vectors which are constant on each block. (If the blocks have different
sizes k1, . . . , kb, then the matrix is ZK−1Z>, where K = diag(k1, . . . , kb): we
shall return to this form in Section 5.4.) Put Q = I − k−1ZZ>. To remove the β
parameters from Equation (2.4), we premultiply by Q. The expectation operator
commutes with linear transformations, so we obtain

E(QY ) = QXτ. (2.5)
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That is, the expected value of the transformed data QY lies in the column space T
of QX. It is fairly natural to use the least-squares principle to say that our estimate
of QXτ should be the vector in T which is closest to the transformed data vector
QY in the sense that the sum of the squares of the differences in coordinates is
minimized. By Pythagoras’ Theorem, we can obtain this by projecting the vector
QY orthogonally onto T .

Note that X>X = R and X>Z = N . Hence X>QX = C, where C is the
information matrix defined in the previous section. Consider the symmetric matrix
S = QXC−X>Q. Any vector in T has the form QXτ , and

SQXτ = QXC−X>QQXτ = QXC−X>QXτ = QXC−Cτ = QX(I−P0)τ = QXτ

because the columns of XP0 are constant vectors, hence in B. On the other hand,
if w is a vector in Rbk which is orthogonal to T , then X>Qw = 0 and so Sw = 0. It
follows that S is the orthogonal projector onto T .

Thus the least-squares principle gives the vector of fitted values as SQY . That
is, our estimator of QXτ is SQY , so our estimator of X>QXτ is X>SQY . We have
already shown that SQX = QX, and QS = S, so X>SQY = X>QSQY = X>QY .
Moreover, X>QX = C, so our estimator of Cτ is X>QY . If the vector x in Rv is
orthogonal to the null space of C, there is a vector z in Rv such that Cz = x. Then
x>τ = z>Cτ , whose estimator is z>X>QY .

We have used the least-squares principle to obtain an estimator for x>τ for any
vector x orthogonal to the null space of the information matrix C. In particular, if
the design is connected then this gives an estimator for every contrast. The estimator
is a linear combination of the data.

What are the properties of this estimator? If Cz = x then

E(z>X>QY ) = z>X>QE(Y ) = z>X>QXτ = z>Cτ = x>τ,

so the estimator is unbiased.
The expectation, or mean, of a random variable is its first moment; the second

moment (about the mean) is its variance. Now we consider the variance of the
estimator. The smaller the variance, the more likely it is that our estimate will be
close to the true value. For example, if the estimator of the difference τ1 − τ2 has a
normal distribution with variance V12, then the probability that the modulus of the
difference between the true value and the estimate is less than

√
V12, 2

√
V12, 3

√
V12

is 0.683, 0.954, 0.997 respectively.
We assume that the variance of each response is an unknown constant σ2, and

that different responses are independent. This information can be summarized in the
variance-covariance matrix for the vector Y , as Cov(Y ) = σ2I. Now, the variance
of the estimator z>X>QY of x>τ is given by z>X>Q(Cov(Y ))QXz. Under our
simple assumptions about Cov(Y ), this reduces to (z>Cz)σ2, which is (x>C−x)σ2.

Any other linear estimator of x>τ must have the form (z>X>+w>)QY , for some
w in Rbk. For this estimator to be unbiased, we need 0 = E(w>QY ) = w>QE(Y ) =
w>QXτ for all τ , and so w>QX = 0. Now, the variance of this estimator is

(z>X> + w>)Q(Cov(Y ))Q(w + Xz) = (z>X> + w>)Q(w + Xz)σ2

= (z>Cz + w>Qw + 2w>QXz)σ2

= (z>Cz + w>Qw)σ2.
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As Q is positive semi-definite, w>Qw cannot be negative, so this variance cannot
be smaller than the variance of the least-squares estimator.

In summary, we have proved the following classical theorem.

Theorem 2.2 Suppose that Cov(Y ) = Iσ2 and that Equation (2.4) holds. If the de-
sign is connected and x is any contrast vector in Rv, then the least-squares estimator
of x>τ is x>C−X>QY , where Q = I − k−1ZZ>. This estimator is unbiased, and
has minimum variance among all unbiased linear estimators of x>τ . The variance
is equal to (x>C−x)σ2.

In particular, to estimate the difference τi−τj we use the contrast x with xi = 1,
xj = −1 and xl = 0 for l /∈ {i, j}. To calculate the variance Vij of this estimator,
which is called a pairwise variance, we look at the 2× 2 submatrix of C− in the ith
and j-th row and column:

Vij = (C−
ii + C−

jj − C−
ij − C−

ji)σ
2. (2.6)

If C is completely symmetric, then these pairwise variances are constant. Such
a design is called variance-balanced . Note that 2-designs are variance-balanced.

2.3 Optimality criteria

A statistician designing a comparative experiment knows the number v of treat-
ments to be compared and the number of experimental units available. In our case,
the experimental units are partitioned into b blocks of size k, where b and k are
known. Let D(v, b, k) denote the class of all (not necessarily binary) block designs
with v treatments, and b blocks of size k. Which design in this class is best?

One obviously desirable feature is to minimize the average value of the pairwise
variances Vij . Since C− has zero row and column sums, Equation (2.6) shows that,
for each fixed i,∑

j 6=i

Vij = [(v − 1)C−
ii + (Tr(C−)− C−

ii ) + 2C−
ii ]σ

2 = (Tr(C−) + vC−
ii )σ

2,

where Tr(C) is the trace of C. Hence the average value V̄ of the pairwise variances
is equal to 2σ2 Tr(C−)/(v − 1).

Let θ1, . . . , θv−1 be the non-trivial eigenvalues of C, now listed with multiplicities
and in non-decreasing order. Then

Tr(C−) =
1
θ1

+ · · ·+ 1
θv−1

.

Therefore

V̄ =
2σ2

v − 1

(
1
θ1

+ · · ·+ 1
θv−1

)
= 2σ2 × 1

harmonic mean of θ1, . . . , θv−1
.

Thus a design is said to be A-optimal (in some class) if it minimizes the average
pairwise variance in that class; equivalently, if it maximizes the harmonic mean of
θ1, . . . , θv−1 in that class. Here ‘A’ stands for ‘average’.
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This is not the only kind of optimality. When statisticians present an estimate for
the difference τi−τj , they usually also present a confidence interval for the difference.
If they always present a 95% confidence interval, the true value should lie within
the confidence interval in 19 cases out of 20. The smaller the confidence interval
the better. Under the assumption that the responses are multivariate normal, the
length of this confidence interval is proportional to

√
Vij , and therefore minimizing

the variance is the same as minimizing the length of the confidence interval. However,
the volume of the confidence ellipsoid for the estimate of (τ1, . . . , τv) (in the (v− 1)-
dimensional space orthogonal to u) is proportional to the square root of the reciprocal
of Πv−1

i=1 θi (see [4, page 49]). A design is D-optimal if it minimizes this volume;
equivalently, if it maximizes the geometric mean of θ1, . . . , θv−1. Here ‘D’ stands
for ‘determinant’.

In some experiments, the treatments are combinations of different quantities
of inputs that can be measured on continuous scales. A multivariate polynomial
model may be fitted rather than the model in Equation (2.4). Since the scales for
the different variables may not be comparable, it is important to use an optimality
criterion that is invariant to reparametrization of the model. The D-criterion is the
only one of the popular criteria that is so invariant. However, for block designs with
v qualitative treatments, the A-criterion seems more natural.

Some people are concerned about worst cases. A design is said to be E-optimal
if it maximizes the minimum θ1 of the non-trivial eigenvalues of C; equivalently, it
minimizes the maximum variance of the estimator of x>τ over all contrast vectors x
with x>x = 1. Here ‘E’ stands for ‘extreme’. Somewhat similarly, a design is said
to be MV-optimal if it minimizes the maximum of the Vij . This last criterion is not
a function of the eigenvalues.

The eigenvalue optimality criteria all fall under the umbrella of Φp-optimality.
For p in (0,∞), a design is Φp-optimal if it minimizes(∑v−1

i=1 θ−p
i

v − 1

) 1
p

.

A-optimality corresponds to p = 1; the limit as p → 0 gives D-optimality; the limit
as p →∞ gives E-optimality.

All these criteria depend on the design only through its information matrix,
which is a v × v real symmetric matrix with row and column sums zero. Let Xv

denote the set of all matrices satisfying this condition. An optimality criterion is a
function Φ : Xv → R. Now a design in some class D of designs is said to be Φ-optimal
if it minimizes the value of Φ(C) over all information matrices C of designs in D.

The optimality criteria Φ that we consider all satisfy the following conditions:

(a) Φ is convex;

(b) for every C in Xv, the function α 7→ Φ(αC) is monotonic non-increasing for
non-negative α;

(c) Φ is invariant under any simultaneous permutation of rows and columns by
the same permutation—that is, re-labelling the treatments does not affect Φ.
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(Any function of the eigenvalues will satisfy condition (c).)
A design is said to be universally optimal in some class if it minimizes every Φ

satisfying the above conditions. Thus universal optimality is stronger than all of the
individual criteria, but there may not be any universally optimal design in a given
class of designs. Recall that a design in D(v, b, k) maximizes the trace of C if and
only if it is generalized binary. Kiefer [66] proved the following theorem.

Theorem 2.3 Let Φ : Xv → R be a function satisfying conditions (a)–(c) above. If
there is a design in the class for which C is completely symmetric and has maximum
trace, then it is universally optimal. In particular, if D(v, b, k) contains 2-designs
(BIBDs), then the minimum value of Φ(C) over information matrices of designs in
D(v, b, k) is attained by the 2-designs.

The A-, D- and E-criteria are all examples of functions satisfying the conditions
of Kiefer’s theorem. This justifies the assertion that the Fano plane is the best
design to choose in our introductory example. In terms of the parameters v, b, k, the
necessary conditions (1.1) for the existence of a 2-design or BIBD read

v divides bk,

v − 1 divides bk(k − 1).

We sketch the proof of Kiefer’s Theorem for functions depending on the eigen-
values, in the case k < v.

Let θ1, . . . , θv−1 be the non-trivial eigenvalues of the the information matrix of
a design in D(v, b, k). Then

∑
θi = Tr(C) ≤ b(k−1), by Proposition 2.1. Under the

given hypotheses, Φ(C) is minimized when the sum attains the upper bound b(k−1)
(which means that the design is binary) and all eigenvalues are equal (which means
that C is a linear combination of I and J , so that the design is balanced).

We say that the sequence (x0, . . . , xv−1) is upper weakly majorized by the se-
quence (y0, . . . , yv−1) if

n−1∑
i=0

xi ≥
n−1∑
i=0

yi

for n = 1, . . . , v. If the sums are equal for n = v, we say that (x0, . . . , xv−1) is
majorized by (y0, . . . , yv−1). See Marshall and Olkin [70]. Now we say that a block
design is Schur-optimal in a class if the eigenvalues of its information matrix (in
non-decreasing order) are upper weakly majorized by those of any competing design.
Clearly Schur-optimality is stronger than E-optimality. This seems to make most
sense when the sum of the eigenvalues is fixed. Since upper weak majorization is a
partial order, there may be no such optimal design within a given class. Giovagnoli
and Wynn [47] showed:

Proposition 2.4 If a design is Schur-optimal within any class then it is also Φp-
optimal for all p, in particular A-, D- and E-optimal.

Of course, this is trivial for E-optimality.
An important property of Schur-optimality is given by the following result:
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Proposition 2.5 Suppose that M1 and M2 are real, symmetric matrices, and that
M1 − M2 is positive semi-definite. Then the eigenvalues of M1 are upper weakly
majorized by those of M2.

Proof Let M be any v × v real symmetric matrix. The smallest eigenvalue µ0 of
M is equal to the minimum of x>Mx over all unit vectors x. More generally, the
nth smallest eigenvalue µn−1 of M is the minimum of x>Mx over all unit vectors x
orthogonal to the eigenvectors associated with the first n− 1 eigenvalues. It follows
immediately that

n−1∑
i=0

µi = min
x0,...,xn−1

n−1∑
i=0

x>i Mxi

for n = 1, . . . , v, where the minimum is over all n-tuples of pairwise orthogonal unit
vectors.

Now adding a positive semi-definite matrix to M certainly cannot decrease the
expression on the right-hand side. �

It follows that, if C1 and C2 are the information matrices of two designs, and
C1−C2 is positive semi-definite, then C1 beats C2 on the Schur criterion and hence
on all the Φp-optimality criteria.

Example 2.6 Let D1 be the design in Example 1.1. Since any two distinct points
have concurrence 2 in this design, the information matrix is C1 = (10I−2J)/3, with
eigenvalues 0, 10/3, 10/3, 10/3, 10/3. We will compare D1 with the binary design D2

obtained by replacing the block [1, 1, 2] by [1, 2, 3]. (We use the notation [a, . . .] to
denote a multiset.) A simple computation shows that the information matrix

C2 =
1
3


8 −1 −3 −2 −2

−1 8 −3 −2 −2
−3 −3 10 −2 −2
−2 −2 −2 8 −2
−2 −2 −2 −2 8


of D2 has eigenvalues 0, 3, 10/3, 10/3, 13/3. So D1 beats D2 on the E-criterion. (We
will see later that D1 is E-optimal.) However, a further short calculation shows that
D2 wins on the A- and D-criteria. Indeed, D1 beats D2 on the Φp-criterion if and
only if

0.9−p + 1.3−p > 2,

which holds if and only if p > 5.32652 (approximately).

For book-length treatments of optimality, see [4, 82, 91].

2.4 The concurrence graph

We have seen that many optimality criteria of block designs are functions of
the non-trivial eigenvalues of its information matrix C. We now give this a graph-
theoretic interpretation.

The concurrence graph of a block design is defined as follows. The vertices are
the points (or treatments); distinct vertices i and j are joined by λij edges, where
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λij is the concurrence of i and j, that is, the number of blocks in which both i and
j appear (counted appropriately: that is, λij is the (i, j) entry of NN>, where N is
the v×b incidence matrix of the design—see Section 1.3). Note that the concurrence
graph contains no loops, even if the design is not binary.

The Laplacian matrix L(G) of a loopless graph G on v vertices is defined as
follows: for i 6= j, its (i, j) entry is the negative of the number of edges joining
i and j; the (i, i) entry is the valency of i (the number of edges incident with i).
In other words, L(G) = D − A(G), where D is a diagonal matrix whose diagonal
entries are the valencies, and A(G) is the adjacency matrix of G. Note that L(G) is
a symmetric matrix with row and column sums zero.

Proposition 2.7 If a block design has constant block size k (but is not necessarily
binary) then its information matrix C is obtained by dividing the Laplacian matrix
of its concurrence graph by k.

Proof We know that C = R−NN>/k, where R is diagonal. Now NN> and A(G)
agree at all off-diagonal elements; hence C and L(G)/k agree in all off-diagonal
elements. But both C and L(G)/k have row and column sums zero; so C = L(G)/k,
as required. �

This result, pointed out by Cheng [32] and cited in [91, page 30], has the im-
portant consequence that the optimality properties of a design with constant block
size k are completely determined by k and its concurrence graph. Given a graph G,
there may be many designs which have G as their concurrence graph; so we have
potentially made a big simplification to the problem.

Which graphs are concurrence graphs of designs with block size k? The next
result answers this question.

Here is a non-standard definition. A weighted clique with weights w1, . . . , wm

(where w1, . . . , wm are positive integers) has m vertices, numbered 1, . . . ,m, and
has wiwj edges joining vertex i to vertex j for i 6= j. Its weight is the sum of the
numbers w1, . . . , wm. If all wi are 1, this is just a complete graph on m vertices, and
has weight m.

Proposition 2.8 Let G be a graph. Then G is the concurrence graph of a block
design with block size k if and only if the edge set of G can be partitioned into
weighted cliques of weight k. In particular, G is the concurrence graph of a binary
block design with block size k if and only if the edge set of G can be partitioned into
complete subgraphs of size k.

Proof From a weighted clique of weight k we can reconstruct a block, in which
treatment i occurs wi times; the concurrences between distinct treatments in this
block give precisely the edges of the weighted clique. The converse is clear. �

Remark A given graph may have many such partitions, or none. But even the
partition does not uniquely determine the block design. In our running example,
two edges joining the vertices 1 and 2 form a weighted clique with weights (1, 2) or
(2, 1), and so can arise from either the block [1, 1, 2] or the block [1, 2, 2]. Since all
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optimality properties are determined by the concurrence graph, switching [1, 1, 2]
into [1, 2, 2] preserves all such properties.

However, in the special case k = 2, then any graph satisfies the conditions: the
blocks are the edges of the graph. (Our assumption that there is no block containing
only a single treatment guarantees that every block is an edge of the graph rather
than a “loop”.)

2.5 Laplace eigenvalues

Proposition 2.7 draws our attention to the study of the Laplacian eigenvalues of
a graph, and their relationship to graph properties. In this section we give a brief
survey of the properties of the Laplace eigenvalues of graphs. Although we speak only
of graphs, the results have analogues for edge-weighted graphs (with non-negative
weights). For further information and proofs we refer to Mohar’s article [72].

The Laplacian matrix is so-called because of its relationship with the Laplacian
differential operator −∇2 on a manifold. If the manifold is triangulated, then the
resulting graph (with its edges weighted by a function of their lengths) is a “discrete
approximation” to the manifold, and its Laplacian matrix is an approximation to
the Laplacian operator of the manifold. Note that eigenvalues and eigenvectors
of −∇2 are the solutions of the partial differential equation ∇2f + µf = 0; the
eigenfunctions f are “vibrational modes” of the manifold, and the eigenvalues are
related the vibrational frequencies. This led to Mark Kac’s famous question, “Can
one hear the shape of a drum?” [61], which asks if it is possible for different manifolds
or graphs to have the same Laplace eigenvalues. Not surprisingly, the answer, in
both the continuous and the discrete cases, is that it is possible.

Let G be a graph with v vertices and e edges; loops are forbidden, but multiple
edges are allowed except where we say otherwise. Let d(i) be the valency of vertex i,
and let δ(G) and ∆(G) be the smallest and largest values of d(i). Recall that the
Laplacian matrix L(G) is the v×v matrix with (i, i) entry d(i) and (i, j) entry minus
the number of edges from i to j.

Note that the Laplacian matrix is the sum over edges of matrices of the following
form. Each edge between vertices i and j contributes the matrix with submatrix

i j
i
j

[
1 −1

−1 1

]
,

all other entries being zero. Thus the matrix for each edge is positive semi-definite.
This gives a rather easy proof of the following facts:

Proposition 2.9 (a) The Laplacian matrix L(G) is positive semi-definite (hence
so is any information matrix).

(b) For any vector x in Rv, we have

x>L(G)x =
∑

edges ij

(xi − xj)2.

(c) The nullity of L(G) is equal to the number of connected components of G. In
particular, if G is connected, the all-1 vector u spans the null space.



Combinatorics of optimal designs 18

(d) If the graph G2 is obtained from the graph G1 by inserting an extra edge, then
L(G2) − L(G1) is positive semi-definite: so that we can never make a design
worse on the Schur criterion (and hence any Φp criterion) by adding an edge
to the graph (Propositions 2.4 and 2.5).

Here is another popular method of proving Proposition 2.9. Choose an arbitrary
orientation of the edges of G, and (temporarily) let N be the signed vertex-edge
incidence matrix of G, the v × e matrix whose (i, k) entry is

nik =


+1 if vertex i is the head of the kth directed edge fk,
−1 if vertex i is the tail of fk,

0 otherwise.

Then we have
NN> = L(G),

for each edge containing vertex i contributes +1 to the (i, i) entry of NN>, while
each edge joining vertices i and j contributes −1 to the (i, j) entry. This shows
part (a) of Proposition 2.9. Part (b), giving the particularly simple form of the
quadratic form associated with L(G), is easily proved using the fact that

x>L(G)x = (N>x)>(N>x).

From now on we assume that G is connected. Let µ0, . . . , µv−1 be the eigenvalues
of L(G), arranged in non-decreasing order, so that µ0 = 0 and µ1 > 0. (Note that
this convention is different from Mohar’s [72], who uses µ1, . . . , µv.) We often write
µmax instead of µv−1 for the greatest eigenvalue. Thus we have

0 = µ0 < µ1 ≤ · · · ≤ µmax.

The sum of the Laplace eigenvalues is the trace of L(G), the sum of the valencies of
the vertices, which is twice the number of edges; so we have

µ1 ≤ 2e/(v − 1) ≤ µmax.

These inequalities can be refined; for example, µ1 is bounded above by (d(i)+d(j))/2,
for any two non-adjacent vertices i and j; and

µ1 ≤ vδ(G)/(v − 1) ≤ v∆(G)/(v − 1) ≤ µmax ≤ 2∆(G);

and µmax = 2∆(G) if and only if G is bipartite and regular. We will prove the first
inequality below; for the rest, see [72].

The Laplace eigenvalues of a simple graph and its complement have a simple
relation:

Proposition 2.10 Let G be a simple graph on v vertices and G its complement.
Then µ0(G) = µ0(G) = 0 and

µi(G) = v − µv−i(G)

for i = 1, . . . , v − 1.
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This is because L(G)+L(G) = vI −J , where J is the all-1 matrix, and the all-1
vector u is the zero eigenvector for both L(G) and L(G), so that any other common
eigenvector is perpendicular to u.

If G is regular of valency d, then L(G) = dI − A(G), where A(G) is the usual
adjacency matrix of G, so the Laplace eigenvalues have the form d−α, where α runs
over the eigenvalues of A(G).

One graph parameter closely connected with the Laplace eigenvalues is the
isoperimetric number. A “good” graph (for use as a network, say) will be one
without bottlenecks: any set of vertices will have many edges joining it to its com-
plement. So, for a set S of vertices, we let ∂(S) (the boundary of S) be the set of
edges which have one vertex in S and the other in its complement, and then define
the isoperimetric number i(G) by

i(G) = min
{
|∂S|
|S|

: S ⊆ V (G), 0 < |S| ≤ v/2
}

.

(We need only take the size of S up to v/2 since a set and its complement have the
same boundary.) An infinite class of simple graphs is a family of expanders if i(G)
is bounded away from zero for graphs in this class.

The following result is due to Alon and Milman [3] and Dodziuk [41].

Theorem 2.11 Let µ1 be the second Laplace eigenvalue of G, and ∆ = ∆(G). Then

µ1/2 ≤ i(G) ≤
√

(2∆− µ1)µ1.

We will prove the left-hand inequality, demonstrating that a graph with large µ1

has good expansion properties. In fact we show a slightly stronger result, which will
be used a number of times.

Proposition 2.12 Let G have an edge-cutset of size c whose removal separates the
graph into components of sizes m and n. Then µ1 ≤ c((1/m) + (1/n)).

Proof The second eigenvalue µ1 is the minimum of x>Lx/x>x over all vectors
x perpendicular to the all-1 vector u (which is the eigenvector for the smallest
eigenvalue µ0 = 0).

Now let x be the vector taking the value n on vertices on the side of the cut
with size m and the value −m on vertices on the other side. Then x has coordinate
sum zero, so is perpendicular to the all-1 vector u. By Proposition 2.9(b), we have
x>Lx = c(m+n)2, whereas x>x = mn2+nm2 = mn(m+n). So µ1 ≤ c(m+n)/mn =
c((1/m) + (1/n)). �

Now the left-hand inequality in the theorem follows: we can choose the cutset
such that c/m = i(G) and m ≤ n; then µ1 ≤ 2c/m = 2i(G).

The right-hand inequality is one of a family of results called inequalities of
Cheeger type, since they are analogues of Cheeger’s inequality in the continuous
case. The analogue of Cheeger’s inequality would be the assertion i(G) ≤

√
2∆µ1;

see [38, 72] for the proof of the stronger result quoted here and references to similar
results.
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Corollary 2.13 An infinite class of simple graphs is a family of expanders if and
only if µ1 is bounded away from zero for the graphs in the class.

The importance of expanders in computer science has resulted in a great deal of
attention being paid to the graph parameter µ1. It is also very closely connected
with the rate of convergence of a random walk on the graph.

2.6 Variance-balanced designs

Recall that a block design is variance-balanced (or VB, for short) if its informa-
tion matrix is completely symmetric. Morgan and Srivastav [74] call such a design a
completely symmetric design, or CSD; because of conflict with the term “symmetric
design”, we have avoided this. We denote by VB(v, k, λ) a variance-balanced design
with v points, block size k and all pairwise concurrences λ. (Remember that they
are not assumed to be binary!)

Note that VB designs are not always optimal:

Example 2.14 Two designs with v = b = 7, k = 6 can be constructed as follows:

(a) the design whose blocks are all 6-subsets of the set of points;

(b) the design obtained from the Fano plane by doubling each occurrence of a
point in a block (so that the first block is the multiset [1, 1, 2, 2, 3, 3]).

Both these designs are VB; the first has λ = 5, the second has λ = 4. The first,
being a 2-design, is better, according to Kiefer’s theorem.

Question 2.15 Given k and λ, for which values of v do VB(v, k, λ) designs exist,
and what are the possible numbers of blocks of such designs?

An asymptotic answer to this problem (that is, conditions which are necessary
and sufficient for large enough v) would generalize Wilson’s existence theorem for
2-designs [106] described earlier. Two surveys of this class of designs have been given
by Billington [18, 19].

Morgan and Srivastav define two new parameters of a VB design, as follows:

r =
⌊

bk

v

⌋
, p = bk − vr,

so that bk = vr + p and 0 ≤ p ≤ v − 1. Thus, in a 2-design we have p = 0. Note
that the use of r does not here imply that the design has constant replication!

Morgan and Srivastav further say that a VB design has maximum trace if its
parameters satisfy the equation

r(k − 1) = (v − 1)λ. (2.7)

The reason for the term is as follows. Since bk < v(r+1), some treatment occurs
at most r times on the bk plots. Each occurrence contributes at most k − 1 edges
to the concurrence graph, so the valency of this vertex is at most r(k − 1). But
the concurrence graph of a VB design is regular, with valency (v − 1)λ; so we have
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(v − 1)λ ≤ r(k − 1), and the trace of the information matrix, which is v(v − 1)λ, is
at most vr(k − 1); equality for the trace implies that (v − 1)λ = r(k − 1).

The maximum trace condition does imply some nice properties.
The above argument shows that, in a VB design of maximum trace, any point

lies in at least r blocks (counted with multiplicity), with equality if and only if the
point occurs at most once in each block. Since bk = vr + p, it follows that the
number of “bad” points (which occur more than once in some block) is at most p.
So if p = 0, the design is binary, and is a BIBD or 2-design.

In Example 2.14, we have r = 6, p = 0, and so the first design has maximum
trace but the second does not.

Morgan and Srivastav [74] show that a VB design with maximum trace is E-
optimal. We refer to their paper for the proof, but give here a complementary result
in which maximum trace is not assumed but we require that the effect of non-binary
blocks is not too large. A binary block (one in which no treatment is repeated) gives
rise to k(k − 1)/2 edges of the concurrence graph; define the defect of a non-binary
block to be the difference between k(k−1)/2 and the number of edges it contributes.

Proposition 2.16 If k < v, then a VB design on v points is E-optimal if the sum
of defects of non-binary blocks is less than v/2.

Proof Let x be the sum of defects. Then the number of edges (which we know to
be λv(v − 1)/2) is bk(k − 1)/2− x, so that

b =
λv(v − 1) + 2x

k(k − 1)
.

It is easily verified that the non-trivial Laplacian eigenvalues of the λ-fold com-
plete graph are all equal to λv. So, if our design is not E-optimal, then a E-better
design (with the same values of (v, b, k)) has µ1 > λv. Let δ be the minimal degree
of the concurrence graph of such a design. By Proposition 2.12,

λv < µ1 ≤ δ(1 + 1/(v − 1)) = δv/(v − 1),

so that δ > λ(v − 1), or δ ≥ λ(v − 1) + 1. Hence the concurrence graph has at
least v(λ(v − 1) + 1)/2 edges. Since each block of this design contributes at most
k(k − 1)/2 edges, we have

λv(v − 1) + 2x

k(k − 1)
= b ≥ v(λ(v − 1) + 1)

k(k − 1)
,

whence x ≥ v/2. So, if x < v/2, then no E-better design can exist. �

For k = 3, the defect of a non-binary block is 1, so a design with fewer than
v/2 non-binary blocks is E-optimal. It follows that the design of Example 1.1 is
E-optimal, as claimed earlier.

We now turn to constructions.
If we have two VB designs on the same set of v points with the same block size

k, having parameters λ1 and λ2, then the multiset union of the block multisets is
again VB, with parameter λ1 + λ2. The new design is not necessarily of maximum
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trace; but it is so if one of the VB designs we start with is a 2-design and the other
is of maximum trace, or if the sum of their p parameters is less than v.

For example, suppose that k = 3. A VB design of maximum trace satisfies
2r = (v − 1)λ, so that λ is even or v is odd. Moreover, λ = 1 is impossible (except
for 2-(v, 3, 1) designs), since a non-binary block gives concurrence at least 2. Morgan
and Srivastav [74] prove that these necessary conditions are sufficient:

Theorem 2.17 A VB(v, 3, λ) design of maximum trace exists whenever λ(v− 1) is
even and λ > 1.

Proof Since a 2-(v, 3, 6) design exists for all v [51], it is enough to settle the exis-
tence question for λ in a complete set of non-zero residues mod 6. Now 2-designs
exist in the following cases [51]:

• for λ = 1 or 5, if v ≡ 1 or 3 mod 6;

• for λ = 2 or 4, if v ≡ 0 or 1 mod 3;

• for λ = 3, if v is odd.

We give a construction of VB designs for λ = 2 and v ≡ 2 mod 3 below; they have
p = 1, so the union of two copies settles λ = 4. For λ = 5 or λ = 7, with v odd,
there is a 2-design unless v ≡ 5 mod 6; in that case we can take a 2-design with
λ = 3 and a VB design with λ = 2 or λ = 4. �

We now look further at the case k = 3, λ = 2. A block consisting of three points
is a triangle in the concurrence graph, while a block consisting of two points (one
with multiplicity 2) is a double edge. So we want to partition the edge set of doubled
Kv into triangles and double edges. Clearly if a 2-(v, 3, 2) design exists, then this
gives a VB design with the smallest number of blocks; this design exists if and only
if v 6≡ 2 mod 3. There is a “boring” design obtained by partitioning the edge set
into double edges, which has the largest number of blocks.

The smallest case for which no 2-design exists is v = 5. There are four pos-
sibilities, listed in order of increasing numbers of blocks (and perhaps decreasing
interest):

• Six triangles and one double edge: this is realised by the design in our running
example (Example 1.1).

• Four triangles and four double edges: take a 2-(4, 3, 2) design (consisting of
all the 3-subsets of a 4-set) and join its four points to the fifth point by four
double edges.

• Two triangles and seven double edges: take a triangle twice and double the
seven uncovered edges.

• Ten double edges: this is the “boring” design.

The values of (r, p) in the four cases are (4, 1), (4, 4), (5, 2) and (6, 0). So the first
two have maximum trace but the others do not.
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Here is a construction for VB(v, 3, 2) designs having just one non-binary block.
In this case, as we have seen, we must have v ≡ 2 mod 3. Our construction uses
Steiner triple systems; since there are many of these ([107]), the construction is
“prolific”, producing v(1+o(1))v2/3 non-isomorphic designs.

Suppose first that v ≡ 2 mod 6. In this case, there exist Steiner triple systems of
orders v±1. Take two such systems, on the point sets {1, . . . , v+1} and {1, . . . , v−1}
respectively; let the sets of blocks be B1 and B2. Without loss of generality, suppose
that the third point of the block B of B1 containing v and v + 1 is v − 1.

Now we take the point set of the new design to be {1, . . . , v}. For the blocks, we
first remove the block B from B1; then we replace each occurrence of v + 1 in any
other block with v; the resulting blocks together with [v − 1, v − 1, v] make up the
design.

We have to check that {v−1, v} lies only in [v−1, v−1, v], while every other pair
{i, j} lies in two blocks. For the first, note that the only other candidate, namely B,
has been removed. For the second, there are two cases:

• j = v, i 6= v−1: in B1, there is one block containing i and v, and one containing
i and v + 1 (in which v + 1 is replaced by v). No block of B2 can occur.

• v /∈ {i, j}: one block of B1 and one of B2 contain {i, j}, and these two points
are unchanged in these blocks.

There is a similar construction when v ≡ 5 mod 6. In this case, both v − 2 and
v + 2 are orders of Steiner triple systems; and, if v ≥ 17, we may assume that the
larger system contains a subsystem of order 7. Choose the numbering so that this
system uses the points a, . . . , g, with blocks abc, ade, afg, bdg, bef, cdf, ceg, and abc
is a block of the smaller system, while d, e, f, g are not in this system. Now:

• Delete these eight blocks from the two systems.

• Any block remaining contains at most one of d, e, f, g. Replace the point e by
d and the point g by f everywhere.

• Add new blocks bdf, cdf, abd, acd, abf, acf and bbc.

We leave it to the diligent reader to check that this construction works: only bbc
contains b and c, while every other pair lies in two blocks. Note that it gives
(v + 2)(v + 1)/6 + (v− 2)(v− 3)/6− 1 = (v2 − v + 1)/3 blocks, the correct number.

For v = 11, we can ask the computer to produce a design; there are plenty to
choose from (see Section 6.1).

Question 2.18 For which v, λ does a VB(v, 3, λ) design without repeated blocks
exist?

This question is of no statistical significance; but, as explained earlier, it may
be taken as a challenge by combinatorialists. More generally one could ask for the
possible numbers of distinct blocks in such a design.
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3 Optimal designs

In this section we first state some general results on optimality, and then look
more closely at the three most important optimality criteria: D, A and E. We will
see that these are related to important graph-theoretic notions for the concurrence
graph: number of spanning trees, resistance as an electrical network, and expander
properties.

3.1 General results

There are a few general results, showing that certain kinds of designs (if they
exist) are optimal for a wide variety of block designs. The first such result (The-
orem 2.3) was due to Kiefer [66], and shows that 2-designs are optimal (if they
exist).

If a 2-design with the given parameters does not exist, then this theorem gives no
information. An interesting question is: What happens if the necessary conditions
(1.1) are satisfied but there is no design? A special case of this occurs for the values
v = 15, b = 21, k = 5. (If a 2-design with these parameters existed, then by the
Hall–Connor theorem [50] it would be the block residual of a 2-(22, 7, 2) design; but
such a design does not exist, by the Bruck–Ryser–Chowla theorem [24, 36].) This
parameter set has been examined by Reck and Morgan [85, 86], and the A-, D- and
E-optimal designs determined.

Some extensions of Kiefer’s Theorem are known. In order to state them, we
require some more definitions.

A binary equireplicate design is said to be group-divisible if the treatments can
be divided into “groups”, all of the same size, such that two treatments in the
same group are contained in λ1 blocks while two treatments in different groups are
contained in λ2 blocks. Group-divisible designs are partially balanced with respect
to the group-divisible association scheme defined earlier.

A regular-graph design is a binary equireplicate design in which any pair of
vertices is contained in either λ or λ + 1 blocks, for some λ [58]. The name arises
because its concurrence graph consists of the λ-fold complete graph together with a
simple regular graph.

Now Chêng [30, 31] proved:

Theorem 3.1 Let f be any non-negative real function which is strictly decreasing
and strictly convex, such that its derivative is strictly concave and limx→0+ f(x) =
∞. For X ∈ Xv, set Φ(X) =

∑
f(µi), where the µi run over the eigenvalues of X

having eigenvector orthogonal to the all-1 vector.

(a) If D(v, b, k) contains a group-divisible design with two groups and λ2 = λ1 +1,
then the minimum of Φ(C) over information matrices C of designs in D(v, b, k)
is attained by such a design.

(b) If D(v, b, k) contains a group-divisible design with λ2 = λ1 + 1, then the
minimum of Φ(C) over information matrices C of regular-graph designs in
D(v, b, k) is attained by such a design.
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Again the result applies for A-optimality (with f(x) = 1/x) and D-optimality
(with f(x) = − log x). For E-optimality, we can take f(x) = x−p for p > 0 and let
p →∞.

Many optimality results limit the class of competing designs to be binary and
equireplicate. For example, Cheng and Bailey [34] proved the following.

Theorem 3.2 Let f and Φ be as in Theorem 3.1. If there is a regular-graph de-
sign in D(v, b, k) for which (a) the graph in question is strongly regular and (b) the
concurrence matrix Λ is singular, then this design minimizes Φ(C) over all binary
equireplicate designs in D(v, n, k).

For example, the generalized quadrangle with v = b = 15 and k = 3 is A-, D- and
E-optimal among binary equireplicate designs of this size. The points (treatments)
are all unordered pairs from a set of size six, and the blocks are all the partitions of
that set into three pairs. A pair is in a given block if it is a part of the corresponding
partition.

This result has been extended in [13].
For further general results on optimality we refer to [82, 91].

3.1.1 Equireplicate designs and their duals If design D in D(v, b, k) is equi-
replicate with replication r and incidence matrix N , then its information matrix C
is rI − k−1NN>, whose eigenvalues lie in [0, r]. Statisticians usually compare such
a design with the hypothetical one that would be possible in a single large block of
vr plots if enough similar plots were available for the experiment. The information
matrix for this design is r(I−v−1J), all of whose non-trivial eigenvalues are equal to
r. Normalizing by this, the non-trivial eigenvalues of C are divided by r to give what
are called the canonical efficiency factors, which lie in (0, 1] for connected designs.
So long as we are considering only equireplicate designs, the eigenvalues of C can be
replaced by the canonical efficiency factors in all the standard optimality criteria.

Interchanging the roles of treatments and blocks in D gives an equireplicate
design D∗ in D(b, v, r), which is called the dual design. Its incidence matrix is N>

and its information matrix C∗ is kI − r−1N>N , with eigenvalues in [0, k]. The
nonzero eigenvalues of N>N and NN> are the same, including multiplicities, so the
canonical efficiency factors of a design and its dual are the same, apart from |b− v|
occurrences of the maximum value 1. This observation gives an easy proof of the
following result [91, p. 28]:

Theorem 3.3 On all the standard optimality criteria, a given equireplicate design
is optimal among equireplicate designs if and only if its dual design is optimal among
equireplicate designs.

3.1.2 Operations on designs The following elementary lemma, whose proof we
omit, allows the non-trivial eigenvalues of various designs obtained from a given one
to be calculated.

Proposition 3.4 Let D1 and D2 be designs on the same set of v points. Suppose
that, for n = 1, 2, the design Dn has constant block size kn. Suppose further that the
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concurrences λ
(n)
ij satisfy

λ
(2)
ij = α + βλ

(1)
ij

for i 6= j. Then the non-trivial eigenvalues θ
(n)
m of the information matrices are

related by

θ(2)
m =


αv

k2
+

βk1

k2
θ(1)
m if β ≥ 0,

αv

k2
+

βk1

k2
θ
(1)
v−1−m if β < 0.

In particular, suppose designs D′
1 and D′

2 also have v points and block-sizes k1 and
k2 and their concurrences stand in the same relation, with the same values of α and
β. If β < 0, suppose also that the information matrices of D1 and D′

1 have the same
trace. Then D1 beats D′

1 on the Schur criterion if and only if D2 beats D′
2 on the

Schur criterion. If D1 is E-better than D′
1, and β > 0, then D2 is E-better than D′

2.

In general, affine transformations of the form given in this Proposition do not
preserve optimality criteria. We look at three special cases.

The complement of the block set Let D1 be a simple binary design with
constant block size k, and let D2 be the design whose blocks are all k-sets which
are not blocks of D1. (If k = 2, this is the complement of the graph D1.) Then the

conditions of Proposition 3.4 hold, with k1 = k2 = k and α =
(

v − 2
k − 2

)
, β = −1.

The complementary design, whose blocks are the complements of the
blocks of the original Suppose that D1 is binary and equireplicate, with block
size k and replication r, and let the blocks of D2 be the complements of those of D1.
A simple inclusion-exclusion argument shows that the conditions of Proposition 3.4
hold, with k1 = k, k2 = v − k, α = b− 2r, β = 1. See also [59].

The design formed by adjoining all points to a block Let D1 be as in the
preceding paragraph. Form a new design D2 with block size v + k by adding one
copy of each point to each block. Now the contributions to λ

(2)
ij from a block B are

4 if i, j ∈ B,
2 if i ∈ B, j /∈ B or vice versa,
1 if i, j /∈ B.

Hence the conditions of Proposition 3.4 hold, with k1 = k, k2 = v + k, α = b + 2r,
and β = 1.

John and Williams [59] conjectured that, if D1 is A-optimal, then so is D2.
Example 2.2 of Jacroux and Whittinghill [55] shows that this is not true in general.

Example 3.5 The Petersen graph is A-optimal among equireplicate designs in
D(10, 15, 2) but John and Mitchell [58] found by computer search that its com-
plement (the triangular graph T (5), the line graph of K5) is not A-optimal. The
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Laplace eigenvalues of T (5) are 5 (four times) and 8 (five times), see Example 3.11;
John and Mitchell found that the A-optimal equireplicate design in D(10, 30, 2) con-
sists of a the bipartite graph K4,6 into which edges have been inserted to make a
6-cycle on the larger class of the bipartition. This graph has Laplace eigenvalues 5
(twice), 6 (three times), 7 (twice), 8 and 10; so it beats T (5) on the D-criterion as
well as the A-criterion, and they are equal on the E-criterion. The two graphs are
not Schur comparable.

3.2 D-optimality: spanning trees

D-optimality is closely connected with maximizing the number of spanning trees
of the concurrence graph [31, 45]. This is a consequence of Kirchhoff’s Matrix-Tree
Theorem.

The Matrix-Tree Theorem asserts:

Theorem 3.6 Let G be a graph with v vertices. Then the following are equal:

(a) the number of spanning trees of G;

(b) any (v − 1)× (v − 1) cofactor of the Laplacian matrix L(G);

(c) the product of the Laplacian eigenvalues µ1, . . . , µv−1, divided by v.

The fact that if a matrix has row and column sums zero then all its cofactors
are equal, and the expression in terms of the non-trivial eigenvalues, are much more
general; we give the simple proof at the end of this section.

Hence a block design with block size k on v vertices is D-optimal in some class if
and only if its concurrence graph maximizes the number of spanning trees over this
class.

For example, suppose that we are considering graphs with v vertices and λv(v−
1)/2 edges. (This applies if we want a binary block design with v treatments and
blocks of size k, where bk(k − 1) = λv(v − 1), for example.) By Kiefer’s theorem,
if a 2-design exists, then it is optimal. This is certainly the case if k = 2. So,
for example, the λ-fold multiple of the complete graph has the largest number of
spanning trees of all multigraphs with v vertices and λv(v− 1)/2 edges, as we noted
in the Introduction.

The number of spanning trees of a graph is a topic with a large literature. It was
given extra impetus by a conjecture of Merino and Welsh [71], asserting that the
number of spanning trees is bounded above by the maximum of the number of acyclic
orientations and the number of totally cyclic orientations. A recent investigation [28]
suggests that, for sparse graphs, the number of acyclic orientations is larger than the
number of totally cyclic orientations, with the reverse being true for dense graphs.

In network theory, a simple graph is called t-optimal if it maximizes the number
of spanning trees among simple graphs with given number of vertices and edges.
Petingi and Rodriguez [80] extend the results in [31], but do not mention [35]. Of
course, for D-optimality there is no restriction to simple graphs.

We mention here also that the number of spanning trees of a graph G is an
evaluation of the Tutte polynomial of G; in fact, it is T (G; 1, 1). See [76, 94] for
more information about the Tutte polynomial of a graph or matroid. The other



Combinatorics of optimal designs 28

optimality criteria are not associated with evaluations of the Tutte polynomial. For
example, all trees on n vertices have Tutte polynomial xn; we will see in Section 4
that they differ on the A- and E-criteria.

In the other direction, graphs with the same Laplace eigenvalues may have differ-
ent Tutte polynomials. For example, the graph L2(4) (the line graph of the complete
bipartite graph K4,4) and the Shrikhande graph are strongly regular graphs with
the same eigenvalues, but the former has 576 proper 4-colourings (these are just the
Latin squares of order 4) while the latter has 240.

3.2.1 Matrices with row and column sums zero It may be folklore that if a
square matrix has all row and column sums zero, then all its cofactors are equal.
(This comes up in the Matrix-Tree Theorem.) Here is a simple proof of a generaliza-
tion to arbitrary square singular matrices, which works even in non-zero character-
istic with some restriction. For any (column) vector x with components x1, . . . , xv,
set ‖x‖ =

∑
x2

i .

Proposition 3.7 Let A be a square matrix over a field F . Suppose that there exist
vectors x and z satisfying

• ‖x‖ and ‖z‖ are non-zero (in F );

• x>A = 0 and Az = 0.

Then there is a constant d such that the (i, j) cofactor of A is equal to xidzj.

Proof We prove the result for the (1, 1) cofactor for convenience; the argument is
the same for any cofactor.

Consider the matrix A′ = A + x>z, with (i, j) entry aij + xizj . Perform the
following row and column operations on it:

• Let ri be the ith row of A′. Replace r1 by
∑

i xiri, leaving the other entries
unaltered. As a result, the (1, j) entry becomes∑

i

xi(aij + xizj) = ‖x‖zj ,

while elements in rows other than the first are unaltered. The determinant is
multiplied by x1.

• Let cj be the jth column of this matrix. Replace c1 by
∑

j cjzj , leaving the
other entries unaltered. As a result, the (1, 1) entry becomes∑

j

‖x‖z2
j = ‖x‖ · ‖z‖;

for i > 1, the (i, 1) entry becomes∑
j

(aij + xizj)zj = xi‖z‖,

and the other elements are unaltered. The determinant is multiplied by z1.
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• Subtract xi/‖x‖ times the first row from the ith row, for all i > 1. For i > 1,
the (i, 1) entry becomes 0, while for i, j > 1, the (i, j) entry becomes

aij + xizj − (xi/‖x‖)‖x‖zj = aij .

The determinant is unaltered by this move.

Since we have a column (the first) in which all but one entry is zero, this entry being
‖x‖ · ‖z‖, and the entries in rows and columns different from the first are identical
with those of A, we see that

x1z1 det(A′) = ‖x‖ · ‖z‖ ·A11,

where A11 is the (1, 1) cofactor. So the Proposition is proved, with

d = det(A′)/(‖x‖ · ‖z‖).

�

Now suppose that A is a real symmetric matrix with row and column sums zero,
and eigenvalues µ0 = 0, µ1, . . . , µv−1. Taking x and z to be the all-1 vector u, we
see that the determinant of A + u>u is v

∏v−1
i=1 µi, which gives the result mentioned

earlier.
Since u>u = J , this result is related to method (b) in Section 2.1 for finding a

generalized inverse of A.

3.3 A-optimality: electrical networks, random walks, thickets

Given a graph G, we can consider it as an electrical network with a 1-ohm
resistance in each edge. If we connect a battery across two of the vertices (or
otherwise apply a potential difference to them) then current will flow in the network.
Three rules are obeyed.

(a) Ohm’s Law : In every edge,
V = IR. (3.1)

Here V denotes the voltage drop across the edge, I denotes the current flowing
in the edge, and R is the resistance. Because we consider that R = 1 for every
edge, we have V = I in every edge. (When we consider designs with non-
constant block size in Section 5.4 then the resistances have to be different.)

(b) Kirchhoff’s Voltage Law : The total voltage drop from one vertex to any other
vertex is the same no matter which path we take from one to the other.

(c) Kirchoff’s Current Law : At every vertex which is not one of the two connected
to the battery, the total current coming in is equal to the total current going
out.

Given two vertices i and j, we imagine applying voltage 0 at i and voltage V
at j. We use Kirchhoff’s Laws [67] to find the total current I from i to j, then use
Equation (3.1) to define the effective resistance Rij between i and j as V/I.
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There are two further laws in electrical networks: the “series” and “parallel”
laws, which are easy consequences of the three laws above. If two networks are
connected in series at a single vertex then the effective resistance in the combined
network is the sum of the two resistances. On the other hand, if they are connected
in parallel, joining one “input” vertex to one “output” vertex, then the effective
resistance in the combined network is the reciprocal of the sum of the reciprocals of
the two resistances.

Tjur [100, 101] and Bailey [7] recognized that these two laws are precisely those
that apply to the variance when different estimators are combined. Tjur imagined
the Levi graph as an electrical network, Bailey the concurrence graph. In fact,
standard textbooks on electrical engineering, such as [14, 39], give the result that if
L is the Laplacian matrix of the graph of the (connected) electrical network, then
the effective resistance Rij between i and j is given by

Rij = L−ii + L−jj − L−ij − L−ji. (3.2)

Comparing Equations (2.6) and (3.2), and using Proposition 2.7, we see that pairwise
variance = effective resistance × kσ2.

This observation is useful as well as interesting. For sparse graphs, or poorly
connected graphs, effective resistance can be calculated by hand much faster than
the information matrix can be inverted (including data-entry time).

Example 3.8 The poorly connected graph in Figure 3 is taken from [9]. Consider
vertices C and D. If current is flowing from C to D then there will be no current
in the part of the graph to right of E, and there will be no current in the edge AB,
because we can interchange those vertices without changing the graph. This leaves
current in the three disjoint paths CAD, CBD and CED. They each have length 2,
so the laws permit a current of 1 amp in each of them. Now the total current flowing
from C to D is 3, and the voltage drop from C to D is 2, so the effective resistance
between C and D is 2/3.
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Figure 3: A poorly connected graph

For sparse graphs with a general number of vertices along a long path, such as
the one in Figure 4 (taken from [7]), numerical inversion of the information matrix
is impossible, but it is perfectly possible to calculate effective resistances in terms
of path-lengths.

Other information known to graph theorists and to electrical engineers can now
be used to simplify the calculations. For example, [20] gives a formula for the
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Figure 4: A graph with three parallel paths of lengths x, y and z

effective resistance between i and j in terms of thickets. A spanning thicket for a
graph is a subset of its edges which forms a forest with two connected components,
with every original vertex being in exactly one component. The formula states that

Rij =
number of spanning thickets with i, j in different parts

number of spanning trees
. (3.3)

This is quite easy to calculate for sparse graphs.

Example 3.9 Consider the graph in Figure 4. The only way to make a spanning
tree is to remove one edge from two of the parallel paths. To make a spanning
thicket, either remove one edge from each of the three parallel paths, or remove
two edges from one and one edge from another. For example, to make a spanning
thicket separating C and D, , remove one edge from the direct path between C and
D, and either (i) remove one edge from each of the other two long paths between
A and B, or (ii) remove one edge between A and C or one between B and D, and
remove one edge from one of the other two long paths. The number of such thickets
is d[xz + (y − d)(x + z)]. The number of spanning trees is xy + xz + yz, so the
effective resistance between C and D is [d(xy +xz + yz)−d2(x+ z)]/(xy +xz + yz).

Summing Equations (3.3) over all pairs of distinct vertices gives

∑
i<j

Rij =

∑
thickets F

|F1| |F2|

number of spanning trees
,

where the sum is over thickets F consisting a tree F1 containing i and a tree F2

containing j: see [92, 102]. This gives a relatively quick method of calculating the
A-criterion for sparse graphs.

3.3.1 Foster’s formulae and their generalization This section is based on the
work of Emil Vaughan [103]. See also [56, 15]. In this section, we consider only
simple graphs; the results can be extended to multigraphs but statements are more
elaborate.
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Let G be a simple connected graph with v vertices. Recall that we are interested
in the quantity

∑
i,j

Rij , summed over all pairs of vertices. In 1948, Foster [42] proved

the remarkable fact that summing over edges always gives v − 1. In this theorem,
the notation i ∼ j means that we are summing over all unordered pairs {i, j} of
vertices which are adjacent in the graph.

Theorem 3.10 For any graph G on v vertices,∑
i∼j

Rij = v − 1.

Thirteen years later, he proved an analogous formula for the sum of resistances
over pairs of vertices at distance at most 2. More precisely, he showed that∑

i∼h∼j

Rij

d(h)
= v − 2.

Note that, under the assumption that the graph is regular and that the numbers of
common neighbours of two vertices at distance 1 (respectively 2) are constant, this
formula gives us the sum of resistances over all pairs of vertices at distance 2. In
particular, if the graph is strongly regular, we can compute the sum of resistances
over all pairs of vertices.

Example 3.11 The Petersen graph. This graph has ten vertices, valency 3, and
diameter 2; there are no triangles, and two non-adjacent vertices have a unique
common neighbour. By Foster’s first formula, the sum of the resistances between
all pairs of adjacent vertices is 9. Also, since there are no triangles, the sum in
Foster’s second formula is over all pairs of non-adjacent vertices; for each such pair
{i, j} there is a unique h, and d(h) = 3. So the sum of resistances between all
non-adjacent pairs is 3 · 8 = 24, and the total is 33. (Note that, by symmetry, the
resistance between two adjacent vertices is 3/5 while that between two non-adjacent
vertices is 4/5.)

This can also be found by considering eigenvalues. The eigenvalues of the ad-
jacency matrix are 3, 1, −2 with multiplicities 1, 5, 4 respectively; so the Laplace
eigenvalues are 0, 2, 5 with the same multiplicities. Now v times the sum of recip-
rocals of the non-trivial eigenvalues is 10 · (5/2 + 4/5) = 33.

New proofs were found by Tetali [97, 98] using the random walk approach, and
Palacios [77] extended them to distance 3. Vaughan found a generalization for
arbitrary distance, requiring suitable assumptions on the graph; we now discuss
this.

Consider the uniform random walk on the graph G: in other words, at each time
stage, we move from our present vertex to a neighbouring vertex, all neighbours
being equiprobable. Let Pij be the probability of moving from i to j in a single
move; thus Pij = 1/d(i) if i ∼ j, and Pij = 0 otherwise. Let P

(m)
ij be the probability

of moving from i to j in exactly m steps. Note that P
(0)
ii = 1 and P

(0)
ij = 0 for i 6= j;
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and P
(1)
ij = Pij . Moreover,

P
(m+1)
ij =

∑
h

P
(m)
ih Phj .

If G is a regular graph with valency d, then P
(m)
ii = W

(m)
ii /dm, where W

(m)
ii is the

number of walks of length m starting and ending at i.
We say that the graph G is walk-regular up to length m if the numbers Wii, W

(2)
ii ,

. . . , W
(m)
ii are independent of the chosen vertex i. A graph is walk-regular if it is

walk-regular up to length m for all m. See [48, p. 190]. Note that

• all graphs are walk-regular up to length 1;

• a regular graph is walk-regular up to length 2;

• if a graph is regular, then it is walk-regular up to length m if and only if the
probability P

(p)
ii of returning to vertex i after p steps is independent of i for

p = 1, . . . ,m;

• a distance-regular graph is walk-regular.

Now Vaughan’s Theorem states the following:

Theorem 3.12 Suppose that G is walk-regular up to length m, for some positive
integer m. Then the sum of the resistances between all pairs of vertices at distance
at most m + 1 is

dm

v

1 +
m∑

p=1

P
(p)
ii

−m− 1

 .

Note that, if m = 0, then d is undefined; for m > 0, d is the (constant) valency
of the graph. In these cases we recover Foster’s two formulae.

Using this theorem, we see that if the graph G is distance-regular, then the
numbers W

(m)
ii of closed walks, and hence the sum of resistances between all pairs

of vertices of G, can be computed in terms of the parameters cp, ap, bp of the graph.
Calculation of the eigenvalues is not required to evaluate this.

3.4 E-optimality: spectral gap and root systems

A design is E-optimal if the smallest non-trivial eigenvalue of its information
matrix is as large as possible; equivalently, if the smallest non-trivial eigenvalue µ1

of the Laplacian of its concurrence graph is as large as possible.
We have noted the importance of µ1 in the theory of expanders, random walks,

etc. We see that maximizing µ1, for graphs with v vertices and e edges, is equivalent
to finding the E-optimal design with block size 2 having v points and e blocks. For
larger block size, we have to take graphs which are concurrence graphs, as described
in Section 2.4.

There is a lot of interest in graphs of fixed valency d having large second Laplace
eigenvalue. Alon and Boppana (see [2]) showed (see also [49, 90]):
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Theorem 3.13 In any infinite family of connected regular graphs of valency d, the
smallest non-trivial Laplace eigenvalue µ1 satisfies

lim supµ1 ≤ d− 2
√

d− 1.

A graph G of valency d is said to be a Ramanujan graph if µ1(G) ≥ d−2
√

d− 1.
Explicit Ramanujan graphs were constructed by Margulis [69] and by Lubotzky,
Phillips and Sarnak [68]; an accessible account with all the background material
explained appears in [38]. These graphs have good expansion properties, and also
often have small diameter and large girth.

However, more often we will not be dealing with graphs with fixed valency;
and, of course, if the block size of the designs is greater than 2, then the concurrence
graphs will not have the large girth typical of Ramanujan graphs. Indeed, the graphs
may have repeated edges!

3.4.1 Root systems As we have seen, E-optimality involves maximizing the least
non-trivial Laplace eigenvalue of the concurrence graph G. If G is simple, then
this is equivalent to minimizing the greatest Laplace eigenvalue of its complement
G. Moreover, if G is regular, then this is equivalent to maximizing the smallest
eigenvalue of its adjacency matrix.

There is another situation in which similar considerations apply, suggested to
the authors by Ching-Shui Cheng. Suppose that a design has constant block size k,
constant replication r, and has the property that all pairwise concurrences lie in
the set {λ − 1, λ, λ + 1} for some number λ. Then the concurrence matrix has the
form aI + bJ − M , where M is a symmetric matrix with entries 0 and ±1 having
zero diagonal and constant row sums. Once again, maximizing the smallest Laplace
eigenvalue is equivalent to maximizing the smallest eigenvalue of M .

Now, there is a structure theorem for such matrices with smallest eigenvalue −2
or greater, which we now describe. This approach follows [27] but is a bit different:
that paper considered only {0, 1} matrices and did not impose the constant row-sum
condition. The approach is based on the classical theory of root systems.

A root system is a finite non-empty set S of vectors in Euclidean space Rd

satisfying the following conditions:

• if x ∈ S and α ∈ R, then αx ∈ S if and only if α ∈ {±1}.

• for all x, y ∈ S, we have 2(x · y)/(x · x) ∈ Z;

• for all x ∈ S, the reflection ρx of Rd in the hyperplane perpendicular to x maps
S into itself.

We can assume (and always shall do so) that S spans Rd. The second condition is
called the crystallographic restriction. The significance of the quantity referred to
is that the reflection ρx is given by

ρx : y 7→ y − 2(x · y)
x · x

x.

A root system is indecomposable if it is not contained in the union of two per-
pendicular subspaces of Rd. There is no loss in assuming this, since an arbitrary
root system is a direct sum of indecomposable ones.
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The indecomposable root systems were classified by Cartan and Killing in the
early twentieth century in connection with the classification of simple Lie algebras
over the complex numbers. See [22, 53] for an account. An alternative proof in the
spherical case appears in [27] and [48, Chapter 12].

A root system S is called spherical if all vectors in S have the same length. If S
is spherical, we may re-scale so that x ·x = 2 for all x ∈ S; then the crystallographic
condition asserts that x ·y is an integer, and Cauchy’s inequality says that |x ·y| < 2
for y 6= ±x, so we have x · y ∈ {0,±1} for y 6= ±x. This says that any two such
vectors lie at an angle of 60◦, 90◦ or 120◦. Moreover, if two vectors x, y make an
angle of 120◦, then the vector x + y in their plane making an angle of 60◦ with each
is also in S, by the reflection condition.

According to the classification, there are two infinite families {Ad : d ≥ 1} and
{Dd : d ≥ 4}, and three exceptional examples E6, E7 and E8, of indecomposable
spherical root systems. All of these have very explicit representations. For example,
the vectors of Dd can be represented as

{±ei ± ej : 1 ≤ i < j ≤ d}

where {e1, . . . , ed} is an orthonormal basis for Rd.
Now the relevance of this to eigenvalues comes from the following two observa-

tions.

Extending to a maximal set Let T be any set of vectors in Rd at angles 60◦, 90◦

and 120◦. Assume that all the vectors in T have length
√

2. Let T ′ be the set of lines
through the origin (1-dimensional subspaces) spanned by these vectors. These lines
make angles 60◦ and 90◦ with each other. Extend T ′ to a maximal set S′ of lines at
these angles. Then S′ is star-closed , i.e. if two lines in S′ are at an angle of 60◦, then
the third line at 60◦ to both is also in S′. (This requires a short calculation, the
only calculation in the whole argument.) Now let S consist of the vectors of length√

2 on the lines of S′. Then S is a spherical root system (the reflection condition
follows from the star-closure of S′), is indecomposable if T is, and spans Rd if T
does; and S contains T . So any set T satisfying our conditions is embeddable in a
root system.

Representing matrices Now let A be a v × v symmetric matrix with entries
0,±1 with zero diagonal, and suppose that the smallest eigenvalue of A is −2 or
greater. Then 2I + A is positive semi-definite symmetric, and so is the matrix of
inner products of a set T of vectors spanning Rd, where d is the rank of 2I + A (so
that v − d is the multiplicity of the eigenvalue −2 of A, which may be zero.) Since
the diagonal entries are 2, all the vectors have length

√
2; the assumption on entries

of A shows that the vectors have inner product 0 or ±1 with one another, so make
angles 60◦, 90◦ and 120◦. So T can be embedded into a spherical root system.

This has important consequences for the structure of such matrices.

Graphs Suppose that the entry −1 does not occur in A; then A is the adjacency
matrix of a simple graph G with smallest eigenvalue −2 or greater. It is clear that
only finitely many such graphs can be “embedded” in the exceptional root systems;



Combinatorics of optimal designs 36

moreover, a graph embeddable in Ad or Dd is a generalized line graph (see definition
below). In particular, if G is regular, then it is one of the following:

• A line graph. (If H is a simple graph, then the line graph of H has one vertex
for each edge of H; two vertices of the line graph are joined if the corresponding
edges of H meet.) We denote the line graph of H by L(H).

• A cocktail party graph: this is a complete multipartite graph with parts of
size 2; that is, the vertices are paired up, two vertices are joined if and only if
they are not in the same pair.

• One of finitely many exceptions (embeddable in the exceptional root systems).
These exceptions have all been determined; there are several hundred of them,
on at most 28 vertices.

If L(H) is regular, then either H itself is regular, or H is bipartite and semiregular
(the valency of a vertex depends only on the class of the bipartition containing it)
and satisfies some additional strong restrictions (but examples for this case do exist).

Here is the definition of a generalized line graph. Let H be a graph with v
vertices, and let a1, . . . , av be non-negative integers. Then the generalized line graph
L(H; a1, . . . , av) consists of the disjoint union of L(H) and cocktail parties Ci on 2ai

vertices for i = 1, . . . , v, with an edge from each vertex of Ci to each vertex of L(H)
indexed by an edge containing vertex i of H.

Regular signed graphs In general we can regard the matrix A as the adjacency
matrix of a signed graph (a graph with a sign attached to each edge). Not much can
be said in general, but in the case where A has constant row and column sums, see
[25] for some results.

3.4.2 Discrepancy We briefly review some results of Morgan [73]. These allow
the classification of E-optimal designs for a reasonable range of parameters. This
extends the analysis of VB designs given in Section 2.6.

Given v, b, k, we define parameters r, λ, p, q by

r =
⌊

bk

v

⌋
, p = bk − vr,

λ =
⌊

r(k − 1)
v − 1

⌋
, q = r(k − 1)− λ(v − 1).

Thus, the necessary conditions (1.1) for a 2-design are satisfied if and only if p = q =
0; in this case, a 2-design is best if it exists. The necessary condition for a 1-design
(an equireplicate design) is p = 0.

Given a binary, equireplicate design in D(v, b, k), with information matrix C,
define its discrepancy matrix to be the matrix ∆ defined by

C =
vλ + q

k
I − λ

k
J − 1

k
∆.

Then ∆ has diagonal entries zero and, for i 6= j, has off-diagonal entry λij−λ, where
λij is the concurrence of i and j.
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We see that the design is a 2-design if and only if its discrepancy matrix is
zero. (This is the reason for the name: the matrix measures the “imbalance” of the
design.) Also, it is a regular-graph design if and only if all entries of ∆ are 0 or 1.
We see that E-optimality is equivalent to maximizing the largest eigenvalue of ∆.

Using this approach, the E-optimal designs with v ≤ 15 have been found. Not
all are regular-graph designs (that is, the discrepancy matrix of the optimal design
may have entries which are negative or greater than 1). The results are all available
at designtheory.org.

One striking observation to emerge from the computation is that, while the E-
optimal designs are not necessarily A-optimal, they are very close to optimality in
terms of the A-criterion.

Morgan’s extensive catalogue should form the basis for further work on E-
optimality.

4 Graphs with few edges

In this section, after looking briefly at trees, we determine the optimal unicyclic
graphs (connected graphs with equally many vertices and edges), and then turn
to sparse graphs (with average valency at most 5/2). We will see that different
optimality criteria select very different graphs.

4.1 Trees

As a warm-up, let us consider trees. Any tree has a unique spanning tree, so the
D-criterion makes no distinction between one tree and another. Now in a tree, the
resistance between two terminals is just the length of the path joining them; so A-
optimality requires that the sum of distances between pairs of vertices is minimized.
It is clear that the star K1,v−1 does this, since the distance between any two non-
adjacent vertices is 2 in the star, and no other tree can do as well or better.

Now we turn to E-optimality. A short calculation shows that the non-trivial
Laplace eigenvalues of the star are 1 (multiplicity v− 2) and v (multiplicity 1). The
fact that any other tree has µ1 < 1 follows from Proposition 2.12. For a tree with
more than four vertices which is not a star possesses an edge whose removal leaves at
least two points in one component and at least three in the other; so the Proposition
gives

µ1 ≤ (1/2 + 1/3) = 5/6.

The only other tree is the path of length 3, for which a short calculation shows that
µ1 = 2−

√
2.

So the best choice of a design in this case (v treatments, v − 1 blocks of size 2)
is to compare all the other treatments with a fixed “reference” treatment.

4.2 Unicyclic graphs

What happens for unicyclic graphs?
Such a graph has a single cycle, of length s say, with trees attached to some

vertices (possibly none) in the cycle. The only way to make a spanning tree is to
remove one of the edges in the cycle, so the number of spanning trees is maximized
when s = v; that is, when the graph is just a cycle. This proves:
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Theorem 4.1 Let v ≥ 3. Among unicyclic graphs with v vertices, the D-optimal
graph is the cycle.

For k = 2, such designs are called loop designs in the microarray literature.
Now we turn to E-optimality, where the results are rather different. We have

seen that the minimum eigenvalue for the star is 1, and Proposition 2.9(d) shows
that this is not reduced if an edge is added.

The smallest eigenvalue of the Laplacian matrix of the cycle of size v is equal to
2(1 − cos(2π/v)), which is greater than 1 when v ≤ 5, equal to 1 when v = 6 and
less than 1 when v ≥ 7.

Each effective resistance is an evaluation of x>L−x for a contrast vector x with
x>x = 2. Consequently, µ1 ≤ 2/Rij for all pairs of distinct vertices i and j. If
vertices i and j are in trees attached to vertices m and n in the cycle (where m
and n may be the same), then the effective resistance Rij is the sum of the distance
from i to m, the distance from j to n, and Rmn, which is strictly bigger than 2 (and
so µ1 < 1) unless m = n and {i,m} and {j, n} are edges. Thus a unicyclic graph
cannot be E-optimal unless all the trees are leaves and they are attached to the same
vertex of the cycle.

If there are at least two leaves attached to some vertex, then there is a Laplacian
eigenvalue equal to 1: its eigenvector is the contrast between those two leaves. For
a single leaf attached to a cycle of size 2 or 3, the least eigenvalue is 3 −

√
3, 1

respectively.
For s ≥ 3, the effective resistance between two vertices in the cycle at distance

2 is 2(s − 2)/s, which is bigger than 1 when s ≥ 5. If there is a leaf attached to a
vertex in this cycle, then there is an effective resistance bigger than 2, so the graph
cannot be E-optimal.

For v ≥ 5, consider the graph consisting of a 4-cycle with v − 4 leaves attached
to one vertex i. The Laplacian has an eigenvalue 1 with multiplicity v − 5: the
eigenvectors are the pairwise contrasts among the leaves. The contrast between
the other two neighbours of i is an eigenvector with eigenvalue 2. The remaining
three non-trivial eigenvalues must take one constant value on all the leaves, and a
(possibly different) constant value on the other two neighbours of i. Then a short
calculation shows that the remaining three non-trivial eigenvalues are the zeros of
the polynomial

f(µ) = µ3 − (v + 3)µ2 + (4v − 2)µ− 2v.

Then f(0) < 0 and f(1) = v − 4 > 0, so one of the eigenvalues lies in (0, 1).
Putting all these observations together shows:

Theorem 4.2 Let v ≥ 3. Among unicyclic graphs with v vertices, the E-optimal
graph is

• the cycle, if v ≤ 5;

• a triangle with v−3 leaves attached to a vertex, or a star with one edge doubled,
if v ≥ 7;

• either of the above if v = 6.
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Thus the E-optimal designs are very different from the D-optimal designs when
v ≥ 7.

What about A-optimality? Again, suppose that trees are attached to two or
more vertices in the cycle. If the trees are all moved to the same vertex then the
sum of the pairwise effective resistances between tree vertices and cycle vertices is
unchanged, as are the within-tree resistances, but the resistances between vertices
in different trees is reduced. Further, suppose that a tree with more than one vertex
is attached to vertex i of the cycle, in such a way that j is the only vertex of the
tree joined to i. If the edge {i, j} is contracted and vertex j is reattached to i
as a leaf, then the resistances between tree vertices and i are interchanged with the
resistances between tree vertices and j, resistances between tree vertices and the rest
of the cycle decrease, and all other resistances are unchanged. This shows that, just
as for E-optimality, the only candidates for A-optimal graphs are those consisting
of a cycle of length s with v − s leaves attached to one vertex, for some s.

A short calculation shows that the sum of the pairwise effective resistances in
such a graph is

[−s3 + 2vs2 + s(13− 12v) + 12v2 − 14v]/12.

For v ≤ 7, this polynomial in s is monotonic decreasing on [0, v]. For v = 8 it attains
its minimum on [0, 8] at 8; for higher values of v it attains its minimum on [0, v]
between 3 and 4, with the integer achieving the least value being 4 if 9 ≤ v ≤ 12
and 3 if v ≥ 12. This proves the following.

Theorem 4.3 Let v ≥ 3. Among unicyclic graphs with v vertices, the A-optimal
graph is

• the cycle, if v ≤ 8;

• a 4-cycle with v − 4 leaves attached to one vertex, if 9 ≤ v ≤ 11;

• a triangle with v − 3 leaves attached to a vertex, if v ≥ 13;

• either of the last two if v = 12.

This result was obtained for v ≤ 12 by computational search in [60, 63, 108],
and by the above analysis in [7, 100].

Together, the last three results show that, for k = 2 and v = b, not only are
the D-optimal designs very different from the A- and E-optimal designs for v ≥ 9
but also the ranking on the D-criterion is very different from those on the other two
criteria. This was generalized in [7] to show that, for any fixed value of b − v, if
k = 2 then there is a threshold v0 such that if v ≥ v0 then the D-optimal design has
no leaves but the A-optimal design does have leaves. The next two results have a
similar flavour.

4.3 Sparse graphs

Theorem 4.4 Let G be the set of connected graphs with v vertices and e edges, where
e > v. If the graph G in G has a vertex l which is either a leaf or, more generally,
has all its edges joining it to the same other vertex, then G is not D-optimal.
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Proof First suppose that l is a leaf. Since e > v, G is not a tree. Therefore it
contains at least one edge ij which is not an isthmus. So some spanning trees of G
omit the edge ij. Note that l is cannot be equal to i or j. All spanning trees for G
contain the unique edge through l. Now form the graph G′ by removing the edge
through l and the edge ij, and inserting new edges il and jl. Each spanning tree
for G which contains ij becomes a spanning tree for G′ by replacing ij and the edge
through l by il and jl. Each spanning tree for G which omits ij gives two spanning
trees in G′: each omits the old edge through l and includes one of il, jl. Therefore
G′ has more spanning trees than G, and so G is not D-optimal.

Secondly suppose that l is joined to vertex m by s edges, and to no other vertices
of G, where s ≥ 2. Let i be any other vertex of G. Form the graph G′′ by removing
one edge between l and m and inserting an edge between l and i. Each tree of G
contains one of the edges between l and m: these all give a tree in G′′, using the
replaced edge if necessary. However, the moved edge creates extra cycles, so there
are some trees in G′′ that contain two edges through l and do not correspond to any
tree in G. Therefore G′′ has more spanning trees than G, and so G is not D-optimal.

�

Theorem 4.5 Let G be the set of connected graphs with v vertices and e edges. If
20 ≤ v ≤ e < 5v/4 then the E-optimal graphs in G have leaves.

Proof We know that the star K1,v−1 has least non-trivial eigenvalue 1 and that
adding edges to the star cannot decrease this. Our technique is repeated use of
Proposition 2.12 to ban portions of a graph that would force a non-trivial eigenvalue
smaller than 1.

Let G be an E-optimal graph in G and suppose that G has no leaves. For d ≥ 2,
let nd be the number of vertices of valency d. Call the vertices of G with valency 2
dots, the remaining vertices nodes. Call a path from one node to another a side:
this may go through dots, and the two end nodes may be the same.

Suppose that there are three or more dots in one side. The edges at the end of
the side make a cutset of size two, with parts of size s and v − s, for some s ≥ 3.
Hence µ1 ≤ 2(1/s + 1/(v − s)), which is less than 1 if s ≥ 3 and v ≥ 20. So this
cannot happen.

Consider a node i of valency 3. If there is a side making a loop at i, it must
contain at least one dot, because G is loopless. The remaining edge at i now makes
a cutset of size 1 with parts of size s and v − s for 2 ≤ s ≤ 3: by Proposition 2.12,
this cannot happen. Therefore, the three sides at i are distinct. The edges at the
far ends of those sides make a cutset of size three. Since 3(1/4 + 1/16) < 1, the size
of the part containing i is at most three, so there can be no more than two dots in
total in these three sides.

Now consider a node j of valency 4. Similar arguments show that it may have
one side forming a loop with precisely one dot, in which case there are no dots on
the remaining two sides, and that otherwise the total number of dots in the four
sides at j is at most four, because 4(1/6 + 1/14) < 1.

Counting the dots according to nodes at the end of their sides counts them twice,
so the preceding arguments show that

2n2 ≤ 2n3 + 4n4 +
∑
d≥5

2dnd.
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Moreover,
v = n2 + n3 + n4 +

∑
d≥5

nd

and
2e = 2n2 + 3n3 + 4n4 +

∑
d≥5

dnd.

Hence

5v − 4e = n2 − n3 − 3n4 +
∑
d≥5

(5− 2d)nd ≤ −n4 +
∑
d≥5

(5− d)nd ≤ 0.

This contradiction shows that G must have leaves. �

5 Further directions

In this section, after looking first at statisticians’ view of the theory already
presented, allowing for additional practical considerations we have not touched on,
we give a number of open problems, and indicate some alternative optimality criteria
and what to do if the block size is not constant. Remarkably, the case of non-
constant block size leads us to consider the Laplacians of weighted graphs, for which
the mathematical theory has already been developed.

5.1 Statistical and practical considerations

When there are no blocks, the information matrix is just the diagonal matrix of
replications R. Then the optimal design on all the criteria is as equally replicate as
possible. People with even a little statistical training are used to this, and so tend to
favour equireplicate designs. One argument in favour of equal replication is that, if
the model in Equation (2.4) is fitted and it is found that the block parameters differ
little from each other, then the blocks can be ignored and the data re-analysed, at
which stage an equireplicate design is best. However, this argument is controversial,
and not accepted by all statisticians.

Many blocked experiments have so-called complete blocks: k = v and every
treatment occurs once in each block. In some areas of science, both practical exper-
imenters and regulatory authorities expect experiments to be like this.

When blocks are smaller, it may happen that blocks are naturally grouped into
larger “superblocks”. For the design in Table 1, it may be that the farms can be
grouped by soil-type; in another experiment, different superblocks may be dealt
with at different times. If each superblock contains v experimental units then it
is often advocated that a resolved block design should be used; that is, one in
which each treatment occurs once in each superblock. Since any differences between
superblocks are already accounted for in Equation (2.4), the arguments in favour of
resolved designs are that (i) if a whole superblock is lost then the remaining design is
equireplicate, which begs the question; (ii) if the first analysis suggests that blocks do
not differ within each superblock, then the data can be reanalysed with parameters
for superblocks but not blocks, which is as controversial as the previous re-analysis
strategy. Nevertheless, resolved designs are requested sufficiently often in practice
that some work has been done on optimal designs within this class: see [12].
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Because of this background, statisticians tend to be horrified at the A- and E-
optimal designs found in Section 4, where most treatments have replication 1. On
the other hand, some scientists find them completely natural, having absorbed the
dictum that all treatments should be compared with a reference, or control, treat-
ment. Even then, there is concern that if the reference treatment is very different
from the others then Equation (2.4) may not hold.

Robustness is a relevant issue here. If it is possible that one or two observations
may be lost from the experiment, and if it is important to compare all treatments,
then a design is robust if all comparisons can be made no matter which two observa-
tions are lost, so it must have every treatment replicated at least three times. On the
other hand, in an experiment to compare 300 mutants of yeast to the “wild-type”,
losing two observations from a star-like design does not compromise the information
about the remaining 298 mutants, while losing two observations from a 301-cycle
makes many comparisons impossible and gives others very large variances.

Sometimes experimenters may be forced to use given, unequal replication because
some treatments are more easily available than others, or because safer ones must be
tested before riskier ones. Usually it is still true that all comparisons are interesting,
but the search for an optimal design must be restricted to one whose replications
are feasible.

In many situations, an optimal design for the given restrictions is not known.
However, there may be little practical difference between designs which are close to
optimal, so it can be useful to have a realistic bound on the optimality criterion.

One block design may be compared with another. The efficiency factor for
contrast x in design D1 relative to D2 is the ratio x>C−

2 x/x>C−
1 x, where Ci is the

information matrix of Di. To decide which design is best, this ratio needs to be
compared with the ratio of the variances of the individual responses for the two
designs, which may be different if the block sizes differ.

Often the comparator is taken to be the unblocked design with equal replication
r̄, defined to be bk/v even if this is not an integer. However, if the replications are
forced to be unequal, then the comparator design may be taken to be the unblocked
design with the same replications, whose information matrix is just R. Then the
efficiency factor for x is x>R−1x/x>C−x. This leads to the notion of a design
being efficiency balanced if the non-trivial eigenvalues of R−1/2CR−1/2 are all equal,
where R1/2 is the diagonal matrix whose entries are the positive square roots of the
replications. This approach takes no account of the possibility of finding a design
that can get the most information in spite of being constrained in some way. On the
other hand, if the low replications are not forced but correspond to less interesting
treatments, then the appropriate approach would seem to be to incorporate weights
(on contrasts, or on treatments) into the optimality criterion. This is already done
in an extreme way (weights of zero and one) in two situations: (i) one treatment
is a control and only comparisons with it are of interest; (ii) the treatments are all
combinations of levels of several factors, and higher-order interactions are ignored.

5.2 Conjectures and refutations

It seems so obvious that balanced incomplete-block designs must be optimal on
every reasonable criterion that everyone believed Kiefer’s theorem long before it was
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proved. Other conjectures about optimality seem equally obvious, but all too often
turn out to be wrong.

Given Kiefer’s theorem, surely it must be true that, when there is no 2-design
in D(v, b, k), there must be an optimal design which is binary or generalized binary,
which is equireplicate or nearly so, and whose concurrences are as equal as possible?
Surely there will be optimal designs with a high degree of symmetry, and surely a
design which is optimal on one criterion will not be far from optimal on another? Our
running example, and the results in Section 4, show that these plausible conjectures
are all wrong.

What about the concurrence graph? Is it true that pairwise variance Vij (equiv-
alently, effective resistance Rij) increases as the concurrence λij decreases or as the
distance in the graph increases? Example 3.8 shows that this is not true. Vertices C
and D are at distance 2, with λCD = 0 and RCD = 2/3, while vertices E and F are
at distance 1, with λEF = 1 and REF = 1. Nonetheless, the vertices at the furthest
distance do have the largest resistance.

Question 5.1 In a loopless graph, is it true that the maximal value of the effective
resistance Rij is achieved for some pair of vertices {i, j} whose distance apart in the
graph is maximal?

We have already seen that distance-regular graphs can be interesting. In [9]
it is proved that, for a regular-graph design for which the graph in question is
distance-regular, pairwise variance is a monotonic increasing function of distance
in this graph. Biggs [17] proved the equivalent result for effective resistances in an
electrical network.

Some of the false conjectures came from experience with partially balanced
incomplete-block designs with two associate classes. These designs have two distinct
non-trivial eigenvalues. It is shown in [5] that if a design has two distinct non-trivial
eigenvalues then pairwise variance is a decreasing linear function of concurrence.

An association scheme is defined to be amorphic if it remains an association
scheme after any fusion of its associate classes. If a design is partially balanced
with respect to an amorphic association scheme then pairwise variance is again a
decreasing function of concurrence [9].

The graph in Figure 3 can be regarded as a design in D(10, 15, 2). It is a fruitful
source of counter-examples, but that may be because it is such a bad design. The
Petersen graph in Example 3.5 also gives a design in D(10, 15, 2): it is much better
than the previous design on the A-, D- and E-criteria. In fact, the Petersen design
is A-optimal among equireplicate designs. Perhaps the nonintuitive behaviour of
variance occurs only in designs that are far from optimal. Tjur [100] gave some
heuristic reasons for believing this.

Question 5.2 Suppose that a design is optimal in D(v, b, k), or in the equireplicate
subclass of that. Is it true that, for that design, if λij > λmn then Vij < Vmn? If the
design is a regular-graph design, is it true that, if the distance between i and j in
the graph in question is less than the distance between m and n then Vij < Vmn?

If a design is equireplicate then its information matrix is r(I−(rk)−1Λ). Paterson
[78] expanded (I − (rk)−1Λ)− by the binomial theorem to give an expression for
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Tr(C−) as a convergent sum over m ≥ 2 of the quantities Wm/rm, where Wm =∑
i W

(m)
ii is the number of closed walks of length m in the concurrence graph. He

proposed ordering designs lexicographically by their sequences (W2,W3,W4, . . .).
He argued heuristically that an A-optimal design should have the earliest sequence.
However, he showed that, among non-optimal designs, the ranking on the A-criterion
could be the reverse of that on the sequences.

Question 5.3 Is it true, that among equireplicate designs, a design with the earliest
sequence is A-optimal?

Cheng [33], building on work in [35], gave an asymptotic result, showing that
this question has a positive answer when b is sufficiently large. More precisely, he
proved the following statement. We call a design nearly balanced if its replication
numbers ri differ by at most one and, for fixed i, its concurrences λij differ by at
most one. Now, given v and k, there is a number b0 = b0(v, k) such that, if b ≥ b0,
then any nearly balanced block design in D(v, b, k) is better than any design which
is not nearly balanced on a wide range of criteria, including all Φp criteria.

The earlier result in [35] asserts this for k = 2 and D-optimality: that is, given
v, there is a number e0 = e0(v) such that, if e ≥ e0, then a graph with v vertices
and e edges which is nearly balanced has more spanning trees than one which is not.
This extends asymptotically the result of Kelmans and Chelnokov [62] cited in the
Introduction.

This approach was used in [79] to obtain lower bounds for the A-criterion in
terms of W3. The results in [6] support the idea that the concurrence graph of a
good equireplicate design should have few triangles, but it is possible that this is
true only within the range of replications that statisticians typically consider. See
also [78, 104].

To achieve the necessary conditions for Kiefer’s theorem, the number of blocks
must be a quadratic function of the number of treatments. Theorem 4.5 suggests
that if b is merely a linear function of v then the optimality criteria may conflict if
v is large enough.

Question 5.4 Let c and p be positive constants. Is it true that there is a threshold vp

such that the Φp-optimal designs in D(v, cv, k) are very different from the D-optimal
designs when v > vp? If so,

(a) are the rankings on the D-criterion and the Φp-criterion very different when
v > vp?

(b) is it true that the D-optimal designs remain (nearly) equireplicate for all v but
the Φp-optimal designs have one treatment with much larger replication than
the rest when v > vp?

(c) is vp a decreasing function of p?

5.3 Other kinds of optimality

A large number of other optimality criteria have been proposed for designs where
the treatments are combinations of amounts of quantitative variables: see [4]. These
are not related to combinatorial design, so we do consider them further.
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However, there is a refinement of E-optimality that seems worth pursuing. We
saw in Section 4 that about v/2 edges need to be added to the star K1,v−1 before
its least non-trivial eigenvalue changes: as these edges are added, it is the multiplic-
ity of the eigenvalue that changes. Among designs with the same least Laplacian
eigenvalue, it would be sensible to say that one design is better than another if the
multiplicity of that eigenvalue is lower.

Such a refinement is analogous to using minimum aberration [44] in factorial
designs. These designs are the duals of linear codes. Resolution in the factorial
design corresponds to minimum weight in the code; minimum aberration to the
smallest number of words that have that weight.

Somewhat analogously, one could modify the Schur criterion so that only the
first few partial sums

∑n−1
i=0 θi of eigenvalues are compared. For example, in the

Petersen graph, the partial sums of the Laplace eigenvalues are

2, 4, 6, 8, 10, 15, 20, 25, 30,

whereas for the graph of Figure 3 they are approximately

0.22, 2.22, 5.22, 8.22, 11.51, 15.51, 19.51, 24.51, 30;

while neither is Schur-better than the other, the Petersen graph is ahead for the first
three steps.

5.4 Non-constant block size

So far we have only considered block designs with constant block size. The
theory can in principle be extended to remove this assumption. However, there are
situations where it is not reasonable to assume that individual responses in different
blocks have the same variance if the blocks have different sizes.

Now we have to replace the matrix Q in Section 2.2 by I − ZK−1Z>, where K
is the diagonal matrix of block sizes. Then the information matrix becomes

C = R−NK−1N>,

where R is the diagonal matrix of replication numbers, and N is the point-block
incidence matrix. We define the weighted concurrence graph to be the complete
graph on the vertex set {1, . . . , v}, where the edge {i, j} is weighted by the sum of
the reciprocals of the sizes of blocks containing both i and j; the weighted adjacency
matrix of this graph has (i, j) entry equal to this weight for i 6= j, and diagonal
entries zero. Now an argument identical to that of Proposition 2.7 shows:

Proposition 5.5 Let A be the weighted adjacency matrix of a block design. Then
the information matrix is D − A, where D is a diagonal matrix whose entries are
chosen so that D −A has row and column sums zero.

In other words, the information matrix is the Laplacian matrix of the weighted
concurrence graph.

The theory of Laplacian eigenvalues extends in a fairly straightforward way to
weighted graphs [72]. So in principle the earlier results on optimal designs could
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be extended to optimality in the class D′(v; k1, . . . , kb) of designs with v points and
blocks of sizes k1, . . . , kb. Not much is known in generality about this.

There is a simple connection between pairwise balanced designs and variance-
balanced designs (without assuming the designs are binary or have constant block
size). Any pairwise balanced design (one in which all pairwise concurrences are
equal) can be converted to a variance-balanced design by repeating each block a
number of times proportional to its size; the inverse operation converts a variance-
balanced design into a pairwise balanced design. (This result is due to Hedayat and
Stufken [52].) So the existence questions for the two types of design with prescribed
number of points and set of block sizes are equivalent.

6 Computing with designs

Some commercial statistical computing packages will find optimal designs. For
example, CycDesigN [37] gives A-optimal designs while JMP [57] gives D-optimal
designs. The publicly available package R [83] includes some procedures to find A-
or D-optimal designs. The designs are usually found by iteration to improve the
criterion rather than by exhaustive search.

However, any rational symmetric function of the eigenvalues of a rational matrix
(such as the A- and D-parameters) is invariant under the Galois group of its charac-
teristic polynomial, and hence is a rational number. A mathematician will naturally
prefer to compute such parameters exactly as rationals. For this, it may be best to
turn to a computer algebra package such as GAP [46].

6.1 The DESIGN package

Apart from the fact that it is free, a great advantage of GAP is that it has been
extended by many refereed shareware packages, including the DESIGN package [93],
for computing with block designs. This package can in principle find all designs
satisfying given specifications, up to isomorphism (or perhaps up to a restricted
notion of isomorphism where a “structure group” is specified), or it can be set just
to return a single design if one exists.

Although it deals directly only with binary block designs, many other types of
design can be fitted into this framework. For example, a Latin square of order n can
be regarded as a group divisible design with three “groups” of size n, where each
block contains one point from each group, and any two points in different groups
belong to a single block.

The DESIGN package is well adapted for finding all binary designs with constant
block size k having a given concurrence graph. As input to the graph we can give the
numbers of points and blocks, the block size, and the number of blocks containing
any given pair of points. In particular, if we have computed the n × n adjacency
matrix M of the concurrence graph, then the command

BlockDesigns(rec(v:=n, t:=2, blockSizes:=[k],
tSubsetStructure:=rec(t:=2, lambdas:=l, partition:=p)));

will find all such designs, up to isomorphism; here p is the partition of the 2-element
subsets {i, j} of {1, . . . , n} according to the entry Mij of the matrix M , and l the
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list of corresponding entries. If we also put isoLevel:=0 in the record passed to the
function, then it will return just one such design (if one exists).

Example 6.1 Variance balanced designs with block size 3. We have seen that, if
v ≡ 2 mod 3, the best we can do is to take a block [1, 1, 2], and to choose the
remaining (v + 1)(v − 2)/3 blocks to have all points distinct and to cover the pairs
other than {1, 2} twice. The following DESIGN code produces a list of all such
designs (up to isomorphism).

designs:=function(pts) # argument must be congruent to 2 mod 3
local pn;
pn:=[[[1,2]]];
Add(pn, Difference(Combinations([1..pts],2),[[1,2]]));
return BlockDesigns(rec(v:=pts, blockSizes:=[3],
tSubsetStructure:=rec(t:=2, lambdas:=[0,2], partition:=pn)));

end;

The argument to the function BlockDesigns is a record, of which the compo-
nent v is the number of points, blockSizes a list of the allowed sizes of blocks,
and tSubsetStructure describes how many blocks should contain a given t-subset;
the first component t is the value of t, the second lambdas a list of the required
concurrence numbers, and the third partition a partition of the set of t-subsets
with the same number of parts as the number of components of lambdas; the designs
found will have the ith component of lambdas as the number of blocks containing
a t-set in the ith part of the partition. So the above code specifies that the blocks
should have size 3, that no block should contain {1, 2}, and that any other set of
size 2 should be contained in two blocks. We then add the block [1, 1, 2] to get the
required design.

For v = 5, there is a unique design, the one we have used as a running example.
For v = 8, there are 10 designs up to isomorphism. Of these, seven have repeated
blocks; the sizes of the automorphism groups of the ten designs are are 12, 6 (three
times), 4 (three times), 2 (twice) and 1. (The program returns a generating set for
each automorphism group.) The computation takes a couple of seconds on a desktop
PC.

There is a reason why knowledge of the automorphism group matters. To the
output of the program, we can add either [1, 1, 2] or [1, 2, 2] to form a VB design.
The resulting designs will be isomorphic if and only if the binary part has an auto-
morphism interchanging 1 and 2. Since just two of the designs on 8 points have such
an automorphism, we find altogether 18 isomorphism classes of VB(8, 3, 2) designs
with just one non-binary block. Of these 18 designs, 13 have repeated blocks.

For v = 11, the computation is much more substantial, since many designs exist.
The DESIGN package finds that, if we prescribe that the design should have an
automorphism of order 2 fixing the special points 1 and 2 and three further points,
there are 3998 choices for the binary part of the design, leading to 7814 designs
altogether. We have not computed the total number for v = 11 because of memory
limitations.

Some other examples of the use of the package include:
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• Construction and analysis of regular-graph designs [73]. This class includes
many optimal designs in cases where 2-designs do not exist.

• Construction and analysis of 2-designs with repeated blocks [40].

• An implementation of the Jacobson–Matthews Markov chain method [54] for
choosing a uniform random Latin square, and an adaptation of it to other
kinds of design such as Steiner triple systems [26].

• Analysis of small gerechte designs [10]. These are a particular type of Latin
square adapted for dealing with spatial inhomogeneities. Solutions to Sudoku
puzzles are the best-known examples.

6.2 The designtheory.org project

The DESIGN package was produced as part of a wider project, available from
designtheory.org, and described in the paper [11]. The project was restricted to
binary block designs in the first instance, though the above example shows how to
work around this restriction in some cases.

Among the aims of the project are:

• An XML specification for the external representation of block designs, in which
the design and a wide variety of its combinatorial and statistical properties are
described in a uniform computer-readable form for exchange between different
programs and databases;

• The DESIGN package for GAP, for constructing and analysing block designs,
and reading and writing them in the external representation format;

• A growing database of designs, with interfaces to make it easily usable by both
combinatorialists and statisticians;

• The Encyclopaedia of Design Theory, an on-line resource including descriptions
of several classes of design, essays on various topics in design theory and its
mathematical and statistical underpinning, and an extensive glossary, as well
as links to other resources;

• A collection of preprints on design theory.

Contributions to some or all of these components of the project are welcomed.
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