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Abstract

Some infinite families ofsystems of linked symmetric designs(or SLSDs, for short) were
constructed by Cameron and Seidel [3] using quadratic and bilinear forms over GF(2). The
smallest of these systems was used by Preece and Cameron [9] to construct certain designs
(which they calledfully-balanced hyper-graeco-latin Youden ‘squares’). The purpose of
this paper is to construct an infinite sequence of closely related designs (here calledmulti-
letter Youden rectangles) from the SLSDs of Cameron and Seidel. These rectangles are
k×v, with v = 22n andk = 22n−1±2n−1. The paper also provides a non-trivial example of
how to translate from the combinatorial view of designs (sets with incidence relations) to
the statistical (sets with partitions).

1 Symmetric BIBDs and Youden squares

A symmetric balanced incomplete-block design (SBIBD), or symmetric 2-design,
can (like any incidence structure) be represented by a graph (itsincidence graph
or Levi graph). The vertex set of the graphΓ is the disjoint union of two setsX1

andX2, and each edge has one end inX1 and the other inX2. The graph has the
properties

• |X1|= |X2|= v;
• for {i, j}= {1,2}, any point inXi has exactlyk neighbours inXj ;
• for {i, j}= {1,2}, any two points inXi have exactlyλ neighbours inXj .

Any regular bipartite graph has a 1-factorisation, a partition of the edge set intok
parts or 1-factors ofv edges each, where the edges of each 1-factor partition the
vertices. (This is a well-known consequence of Hall’s Marriage Theorem, given
explicitly in this case by Smith and Hartley [12].) The structure given by a SBIBD
and a 1-factorisation of its incidence graph is called aYouden square. It can be
represented in various ways, for example:
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• As a set with three partitions: the setC is the set of edges of the graph (or flags in
the design); there is a partitionA into k sets of sizev given by the 1-factorisation;
and there are two partitionsB1 and B2 into v sets of sizek corresponding to
the setsX1 and X2, where parts inBi are labelled by vertices inXi , the part
labelledp consisting of all edges incident withp. Note that the partitionsA and
Bi areorthogonal(in the sense that a part ofA and a part ofBi meet in one
point). Also, parts labelled byp1 ∈ X1 and p2 ∈ X2 meet in at most one point,
the intersection being non-empty if and only ifp1 and p2 are incident. So the
original SBIBD (as incidence structure) and the 1-factorisation of its incidence
graph can be recovered from the set of partitions. This is the representation used
by Bailey [1], and is the most relevant statistically:C is the set of experimental
units, and the partitions correspond either to treatments or to “nuisance factors”
onC. See [2] for further discussion of this viewpoint.

• As a square array: number the 1-factors from 1 tok and the points ofX1 and
X2 from 1 to v. Then take thev× v matrix whose(i, j) entry is equal tol if
the ith point of X1 and the jth point of X2 are incident and the edge joining
them belongs to thel th 1-factor, and is blank otherwise. (Replacing all non-
blank entries by 1 and blanks by 0 gives theincidence matrixof the SBIBD.)
This is the representation used by Fisher [4] in presenting Youden’s concept,
and is probably the reason why they are called “squares”, whereas the following
representation would suggest “rectangles”.

• As a Latin rectangle: with the above numbering, take thek×v array whose(i, j)
entry isl if the l th point ofX2 is joined to thejth point ofX1 by an edge of the
ith 1-factor. This is the representation used by Youden [13], and is the one most
commonly used in view of its compactness, although it obscures the symmetry
betweenX1 andX2.

In the case of a SBIBD arising from a difference set in a groupA, we have an action
of A on the graphΓ so that the orbits areX1 andX2 and the action on each orbit is
regular. In this case,A permutes the edges ink orbits each of sizev; the orbits form
a 1-factorisation.

See Preece [8] for a survey of Youden squares.

2 SLSDs and MYRs

A system of linked SBIBDs, or SLSD for short, can be represented by a multipartite
graphΓ with r classesX1, . . . ,Xr , satisfying the conditions

• for any distinct indicesi, j ∈ {1, . . . , r}, the induced subgraph onXi ∪Xj is the
incidence graph of a SBIBD (with partsXi andXj ), having parameters(v,k,λ)
independent ofi and j;
• there exist integersx andy such that, for any distinct indicesi, j, l ∈ {1, . . . , r},
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and any verticespi ∈ Xi and p j ∈ Xj , the number of common neighbours ofpi

andp j in Xl is equal tox if pi andp j are adjacent, and toy otherwise.

The designs to be constructed here will be called multi-letter Youden rectangles,
or MYRs for short. Amulti-letter Youden rectangleconsists of a setC of vk cells,
together with a partitionA of C into k sets of sizev, andr partitionsB1, . . . ,Br of
C into v sets of sizek, satisfying the following conditions:

• for i = 1, . . . , r, the partitionsA andBi areorthogonal(that is, each part ofA
meets each part ofBi in one cell);

• for i, j = 1, . . . , r with i 6= j, each part ofBi meets each part ofB j in at most one
cell (and we call two such partsincidentif their intersection is non-empty);
• The setsB1, . . . ,Br , with the incidence relation just defined, form a SLSD.

We can represent the MYR by ak× v rectangle whose entries are(r −1)-tuples,
in a similar way to the representation of a Youden square as a Latin rectangle. We
number the parts of each partitionBi from 1 tov, and the parts ofA from 1 tok;
then the(i, j) entry of the rectangle is the(r−1)-tuple(x2, . . . ,xr), wherexl is the
number of the part ofBl containing the cell lying in theith part ofA and thejth
part ofB1. This is the representation used in [9], and explains the name chosen for
these designs.

If Ai j is the incidence matrix of the incidence structure(Bi ,B j), we haveA>i j =
A ji , Ai j A ji = (k− λ)I + λJ, andAi j A jl = (x− y)Ail + yJ for i, j, l distinct, where
J is the all-1 matrix. Thus our definition, forr = 3, is stronger than the definition
of a Freeman–Youden rectangleor balanced superimposition of Youden squares
(see [8,10,11]), which requires the first two matrix equations above but replaces the
third by

Ai j A jl Ali +Ail Al j A ji = f I +gJ

for somef ,g. See [1], Section 9, for further comments on this.

Theorem 1 There exists a multi-letter Youden rectangle with v= 22n, k = 22n−1 +
ε2n−1, and r= 2n, for any n≥ 2, whereε =±1.

The casen = 2 of this theorem is proved in [9]. In general, the MYRs will be
constructed from some of the SLSDs from [3] in the way that Youden squares are
constructed from SBIBDs.

In order to do this, we require an extra condition on the SLSD. Afull clique in a
SLSD is a set of vertices, containing one from each of the setsXi , whose vertices
are pairwise adjacent. (So a full clique containsr vertices.) Not all SLSDs have full
cliques, as we shall see.
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A full clique cover is a set of full cliques with the property that every edge is
contained in exactly one full clique in the set. (So the number of full cliques in a
full clique cover isvk.) A 1-factor is a set ofv full cliques covering all vertices just
once; and a 1-factorisationor resolutionis a partition of the full clique cover into
1-factors. I do not know whether 1-factorisations of full clique covers always exist.
However, if there is a groupA of automorphisms of the full clique cover whose
vertex-orbits areX1, . . . ,Xr and which acts regularly on each orbit, then the orbits
of A on full cliques form a 1-factorisation.

Now, from a resolution of a full clique cover, we construct a MYR as follows:

• the cells are thevk full cliques;
• the partitionA is the resolution of the full clique cover;
• for i = 1, . . . , r, a part of the partitionBi is the set of full cliques containing a

vertex ofXi .

3 Constructing the SBIBDs

This section and the next are based on [3].

Let V be a vector space over the fieldF . A bilinear formonV is a functionB from
V×V to F which is linear in each argument. It isnon-degenerateif no non-zero
vector is ‘orthogonal’ to the whole space, that is, ifB(x,y) = 0 for all y∈V implies
x = 0 (and similarly withx andy interchanged).

A quadratic formis a functionQ from V to F satisfying the two conditions

• Q(cx) = c2Q(x) for all c∈ F , x∈V;
• the functionB defined by

B(x,y) = Q(x+y)−Q(x)−Q(y)

for x,y∈V, is bilinear.

(We say thatB is obtained bypolarising Q.) If B is non-degenerate, we say thatQ is
non-singular. (The definition of a non-singular quadratic form is broader than this,
but the difference will not concern us.)

If the characteristic ofF is not 2, then the formB is symmetric, that is,B(x,y) =
B(y,x), and the quadratic form can be recovered fromB by the formulaQ(x) =
1
2B(x,x).

On the other hand, if the characteristic ofF is equal to 2, then we haveB(x,x) =
0 for all x ∈ V. A form with this property is calledalternating. Moreover, two
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quadratic formsQ andQ′ polarise to the same bilinear form if and only if they differ
by asemilinear form, a functionL from V to F satisfyingL(x+ y) = L(x) + L(y)
andL(cx) = c2L(x) for all c ∈ F , x,y ∈ V. (Note that, if the field is GF(2), then
semilinear forms are just linear forms, sincec2 = c for all c∈ F .)

We also note that a non-degenerate alternating bilinear form can be defined on a
vector space of dimensionn if and only if n is even.

We now restrict to the caseF = GF(2). Let B be any alternating bilinear form
on a 2n-dimensional vector space overF . The setQ (B) of quadratic forms which
polarise toB has 22n members. IfQ is one member of this set, then all others can
be obtained by adding linear forms toQ. Suppose thatB is non-degenerate. Then
any linear form can be written asL(x) = B(v,x) for some vectorv∈V. So

Q (B) = {Q(x)+B(v,x) : v∈V}= {Q(x+v)+Q(v) : v∈V}.

Let X = {x ∈ V : Q(x) = 0} be the set ofzerosof Q. Then the set of zeros of
Q(x)+B(v,x) is obtained by translatingX by v, and complementing this set inV if
Q(v) = 1. So any quadratic form inQ (B) has eitherN or 22n−N zeros, for some
N. It is a standard result (see [3]) thatN = 22n−1 + ε2n−1, whereε = ±1. We say
that the formQ hastypeε if it has 22n−1 + ε2n−1 zeros. (The type is essentially
theArf invariant of the form; more precisely, the type is(−1)α, whereα is the Arf
invariant.)

Now the setX of zeros ofQ is a difference set in the additive group of the vector
spaceV, and so gives rise to a symmetric BIBD, whose points are the vectors inV
and whose blocks are the translates ofX; as we have seen, these are the zero sets of
the quadratic forms inQ (B), complemented in the case of forms of type opposite
to that ofQ.

This design has a more symmetrical description, as follows. (The proof that this
is the same is an exercise, or is given in [3].) LetB1 and B2 be two alternating
bilinear forms onV, whose differenceB1−B2 is non-degenerate. Then the points
and blocks of the SBIBD are the setsQ (B1) andQ (B2) respectively; a pointQ1

and blockQ2 are incident in the designDε if and only if the formQ1−Q2 (which
is non-singular) has typeε.

The designDε hasv = 22n, k = 22n−1 + ε2n−1 andλ = 22n−2 + ε2n−1.

4 Constructing the SLSDs

As in the previous section, letV be a vector space of dimension 2n over the field
F = GF(2). A setB of alternating bilinear forms is said to be anon-degenerate set
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if, for any B1,B2 ∈ B, the formB1−B2 is non-degenerate. Given a non-degenerate
setB and a valueε = ±1, we define a SLSDSε(B) as follows: the elements are
the quadratic forms in the setsQ (B) for B∈ B; formsQi ∈ Q (Bi) andQ j ∈ Q (B j)
are incident ifQi−Q j has typeε. It follows from the description in the preceding
section that the first condition in the definition of a SLSD is satisfied; see [3] for a
proof that the second condition holds too.

There are two known constructions for non-degenerate sets of bilinear forms. The
second of these is essentially due to Kerdock [5], and produces sets of cardinality
v/2 = 22n−1; this is the maximum possible cardinality (see Section 7). However,
the Kerdock sets do not have full clique covers in general.

The other construction produces sets of cardinality
√

v = 2n; it is these which we
shall use. They are additively closed sets of the maximum possible size (see Sec-
tion 7).

Let K = GF(2n). There is aF-linear map fromK ontoF , thetrace map, given by

Tr(x) = x+x2 +x22
+ · · ·+x2n−1

.

(Note thatx2n
= x for all x∈ K.)

LetV be a 2-dimensional vector space overK. By restricting scalars fromK to F ,V
becomes a 2n-dimensional vector space overF . If b is an alternating bilinear form
on V asK-space, thenB = Tr(b) is an alternating bilinear form onV asF-space;
andB is non-degenerate if and only ifb is. Similarly, the traces of the quadratic
forms (on theK-spaceV) polarising tob are precisely the quadratic forms (on the
F-spaceV) polarising toB.

Now takeb to be any non-degenerate alternating bilinear form on theK-spaceV (for
example, takeb((x1,x2),(y1,y2)) = x1y2−x2y1). Thenαb is also a non-degenerate
alternating bilinear form, for any non-zeroα ∈ K. We have

Tr(α1b)−Tr(α2b) = Tr((α1−α2)b)

for α1 6= α2. So the 2n forms

{Tr(αb) : α ∈ K}

comprise a non-degenerate set of cardinality 2n, and so give rise to a SLSD with
r = 2n.
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5 Constructing the MYRs

We must now produce the full clique cover and its 1-factorisation. The argument
uses a little group theory.

The explicit form ofb given in the last section is the determinant of the matrix(
x1 x2

y1 y2

)
. It follows from this that thespecial linear groupSL(2,2n) of 2× 2

matrices of determinant 1 overK preservesb, and hence each of the forms Tr(αb).
Thus the productA·SL(2,2n), whereA is the additive group ofV, acts on the SLSD,
fixing each of the setsX1, . . . ,Xr . (In fact it acts doubly transitively on eachXi .)

The subgroup fixing a pointpi of Xi is a complement toA in this product, and so
is isomorphic to SL(2,2n); it is transitive on the remaining points ofXi and has
two orbits onXj for all j 6= i, namely, the points incident and non-incident topi .
If p j ∈ Xj is a point incident withpi , then the stabiliser ofpi and p j is a dihedral
group of order 2(2n− ε). Now all such dihedral groups in our groupA ·SL(2,2n)
are conjugate (they are the normalisers of Sylowp-subgroups, wherep is a prime
divisor of 2n− ε); so this subgroup fixes one pointpl in each setXl . Moreover,
these pointspl are pairwise incident. For, ifpl and pm were not incident, their
stabiliser would be a dihedral group of order 2(2n + ε); but this number does not
divide 2(2n− ε).

Now the set of all these pointspl is a full clique. It is the unique full clique con-
taining pi andp j which is stabilised by a dihedral group of order 2(2n− ε). So we
have constructed a full clique cover.

Now the orbits of the groupA on these full cliques form the required 1-factorisation,
as we described earlier.

6 Further remarks

(1) The obvious outstanding problem is to determine the maximum value ofr for
a MYR with givenv andk. I conjecture that the examples here are maximal in
this sense. Noda [7] showed that, for SLSDs with the parameters of those used
here, the maximum value ofr is v/2 (this value being attained by the system
derived from the Kerdock set).

(2) Preece and Vowden [11] remark that the 6×16 MYR is “fatally flawed statis-
tically”, since the fourth factor is confounded with the other three. Does this
phenomenon hold more widely?

(3) Following Bailey’s remarks in [1], Section 10, another problem is to decide
whether any of these designs are optimal, or indeed whether the combinato-
rial properties specified here imply optimality, as they do whenr = 2 ([1],
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Corollary 7.1.2).

The first two points are related. In the case of the 6× 16 MYR, the parameterx
is equal to 1. This means that, ifp1 ∈ X1 and p2 ∈ X2 are adjacent in the multi-
partite graph, then there is a uniquep3 ∈ X3 adjacent to both. Similarly there is a
uniquep4 ∈ X4 adjacent to both; andp3 and p4 must themselves be adjacent, or
the construction would not work. (Indeed, there are two non-singular sets of four
alternating bilinear forms on GF(2)4, up to translation and linear transformation;
the set we construct is of one type, and all 4-subsets of the eight-element Kerdock
set are of the other type. In the second type, the verticesp3 andp4 above fail to be
adjacent, so no full cliques exist.)

Now the pointp1 lies in six full cliques; there are 6· 5 = 30 full cliques sharing
their second vertex with one of these, and the same number sharing each of the
other vertices. Our above remarks show that there are no overlaps between these
sets. Since 6+3·30= 96, we see both that there cannot be another factor, and that
the last factor is effectively determined by the others.

This argument does not apply for any other parameter set in this series.

Finally, we remark that if we take the MYRs withε =±1 and change the numbering
of the 1-factors in one of them so that all the 1-factors are numbered from 1 tov, we
have a resolvable full clique cover of the complete multipartite graph withr parts
of sizev. This is clearly equivalent tor −1 mutually orthogonal Latin squares of
orderv. In other words, if we take the representations of the two MYRs as Latin
rectangles, and place one rectangle under the other, we obtain mutually orthogonal
Latin squares. The casev = 16 is given in this form in [9].

7 Appendix: two bounds

The two non-singular sets mentioned above are both of maximum size in some
sense. The first part of the following result is well known.

Theorem 2 Let B be a non-degenerate set of alternating bilinear forms on a2n-
dimensional vector space V overGF(2).

(a) |B| ≤ 22n−1.
(b) If B is additively closed, then|B| ≤ 2n.

PROOF. Choosing a basis{e1, . . . ,e2n} for V, a bilinear formB is represented by
a matrixM(B) = (B(ei ,ej)). If B is alternating, the matrix is skew-symmetric with
zero diagonal; ifB is nondegenerate, the matrix is non-singular.
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If B is a nondegenerate set, then all the matricesM(B) for B∈ B have distinct first
rows, since the difference of any two of them is non-singular. There are only 22n−1

possible first rows, since the first entry is necessarily zero. This proves (a).

Now suppose thatB is additively closed, so that it too is a vector space over GF(2).
Recall that the determinant of a skew-symmetric matrix is the square of a polyno-
mial in the matrix entries called thePfaffian(see [6], p. 373). Now the Pfaffian is
a form of degreen on the vector spaceB which vanishes only at the origin. By the
Chevalley–Warning theorem ([6], p. 140), we have dimB≤ n, and so|B| ≤ 2n.
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