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Abstract

Some infinite families obystems of linked symmetric desigos SLSDs, for short) were
constructed by Cameron and Seidel [3] using quadratic and bilinear forms oy2). GRe

smallest of these systems was used by Preece and Cameron [9] to construct certain designs
(which they calledfully-balanced hyper-graeco-latin Youden ‘squajeShe purpose of

this paper is to construct an infinite sequence of closely related designs (hereuallied

letter Youden rectangl@drom the SLSDs of Cameron and Seidel. These rectangles are

k x v, with v = 22" andk = 2214 2"-1, The paper also provides a non-trivial example of

how to translate from the combinatorial view of designs (sets with incidence relations) to
the statistical (sets with partitions).

1 Symmetric BIBDs and Youden squares

A symmetric balanced incomplete-block design (SBIBD), or symmetric 2-design,
can (like any incidence structure) be represented by a grapim¢ittence graph

or Levi graph. The vertex set of the graghis the disjoint union of two setX;

and X, and each edge has one endXnand the other irX,. The graph has the
properties

o X =[Xe[=V;
o for {i,j} = {1,2}, any point inX; has exactlk neighbours irX;;
e for {i,j} = {1,2}, any two points inX; have exactly\ neighbours irX;.

Any regular bipartite graph has afactorisation a partition of the edge set into
parts or 1-factors o¥ edges each, where the edges of each 1-factor partition the
vertices. (This is a well-known consequence of Hall's Marriage Theorem, given
explicitly in this case by Smith and Hartley [12].) The structure given by a SBIBD
and a l-factorisation of its incidence graph is calledoaiden squatelt can be
represented in various ways, for example:
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As a set with three partitions: the €&ts the set of edges of the graph (or flags in
the design); there is a partitiominto k sets of sizer given by the 1-factorisation;

and there are two partition8; and B, into v sets of sizek corresponding to

the setsX; and Xy, where parts inB; are labelled by vertices i, the part
labelledp consisting of all edges incident wiihh Note that the partitiongl and

B areorthogonal(in the sense that a part &f and a part ofB meet in one
point). Also, parts labelled bp; € X; and p; € X2 meet in at most one point,

the intersection being non-empty if and onlypf and p, are incident. So the
original SBIBD (as incidence structure) and the 1-factorisation of its incidence
graph can be recovered from the set of partitions. This is the representation used
by Bailey [1], and is the most relevant statisticallyis the set of experimental
units, and the partitions correspond either to treatments or to “nuisance factors”
onC. See [2] for further discussion of this viewpoint.

As a square array: number the 1-factors from ktand the points oX; and

X from 1 tov. Then take thes x v matrix whose(i, j) entry is equal td if

the ith point of X; and thejth point of X, are incident and the edge joining
them belongs to théth 1-factor, and is blank otherwise. (Replacing all non-
blank entries by 1 and blanks by O gives theidence matrixof the SBIBD.)

This is the representation used by Fisher [4] in presenting Youden’s concept,
and is probably the reason why they are called “squares”, whereas the following
representation would suggest “rectangles”.

As a Latin rectangle: with the above numbering, takeltker array whoséi, j)

entry isl if the Ith point of X5 is joined to thejth point of X; by an edge of the

ith 1-factor. This is the representation used by Youden [13], and is the one most
commonly used in view of its compactness, although it obscures the symmetry
betweenX; andXo.

In the case of a SBIBD arising from a difference set in a grAupe have an action
of A on the graph so that the orbits ar¥; andX, and the action on each orbit is
regular. In this casé permutes the edges korbits each of sizg; the orbits form
a l-factorisation.

See Preece [8] for a survey of Youden squares.

2 SLSDs and MYRs

A system of linked SBIBDsr SLSD for short, can be represented by a multipartite
graphl” with r classes{y, ..., X, satisfying the conditions

for any distinct indices, j € {1,...,r}, the induced subgraph of UX; is the
incidence graph of a SBIBD (with park§ andX;), having parameterg, k,A)
independent of and j;

there exist integers andy such that, for any distinct indicesj,l € {1,...,r},



and any verticep; € X; andp; € Xj, the number of common neighbours of
andpj in X is equal tox if pj andp; are adjacent, and tpotherwise.

The designs to be constructed here will be called multi-letter Youden rectangles,
or MYRs for short. Amulti-letter Youden rectangleonsists of a sef of vk cells
together with a partitiord of C into k sets of sizev, andr partitionsB;, ..., B, of

C into v sets of siz&, satisfying the following conditions:

e fori=1,...,r, the partitions4 and B; areorthogonal(that is, each part off
meets each part @ in one cell);

e fori,j=1,...,r withi # j, each part of5; meets each part @; in at most one
cell (and we call two such pariscidentif their intersection is non-empty);

e The setdB,...,B;, with the incidence relation just defined, form a SLSD.

We can represent the MYR bylkax v rectangle whose entries afe— 1)-tuples,

in a similar way to the representation of a Youden square as a Latin rectangle. We
number the parts of each partitidh from 1 tov, and the parts of from 1 tok;

then the(i, j) entry of the rectangle is theg — 1)-tuple (x, ..., X% ), wherex is the
number of the part of3; containing the cell lying in thé&h part of 4 and thejth

part of B;. This is the representation used in [9], and explains the name chosen for
these designs.

If Ajj is the incidence matrix of the incidence structyt&, B;), we haveAﬁ =

Aji, AijAji = (k= N)I +AJ, andAjjA) = (x—Y)Ay +yJd for i, j,I distinct, where

J is the all-1 matrix. Thus our definition, for= 3, is stronger than the definition

of a Freeman-Youden rectangte balanced superimposition of Youden squares
(see [8,10,11]), which requires the first two matrix equations above but replaces the
third by

AijAj A +AIA A = Tl 4+-gd

for somef,g. See [1], Section 9, for further comments on this.

Theorem 1 There exists a multi-letter Youden rectangle with 22", k= 22"-1 4
g2"~1 and r= 2", for any n> 2, wheres = +1.

The casen = 2 of this theorem is proved in [9]. In general, the MYRs will be
constructed from some of the SLSDs from [3] in the way that Youden squares are
constructed from SBIBDs.

In order to do this, we require an extra condition on the SLSDBulAclique in a
SLSD is a set of vertices, containing one from each of the)§etshose vertices
are pairwise adjacent. (So a full clique containgrtices.) Not all SLSDs have full
cliques, as we shall see.



A full cligue coveris a set of full cliques with the property that every edge is
contained in exactly one full clique in the set. (So the number of full cliques in a
full clique cover isvk.) A 1-factoris a set ol full cliques covering all vertices just
once; and a -factorisationor resolutionis a partition of the full clique cover into
1-factors. | do not know whether 1-factorisations of full clique covers always exist.
However, if there is a group of automorphisms of the full clique cover whose
vertex-orbits areXy, ..., X, and which acts regularly on each orbit, then the orbits
of A on full cliques form a 1-factorisation.

Now, from a resolution of a full clique cover, we construct a MYR as follows:

¢ the cells are thek full cliques;

e the partition4 is the resolution of the full clique cover;

e fori=1,...,r, a part of the partitior; is the set of full cliques containing a
vertex ofX;.

3 Constructing the SBIBDs

This section and the next are based on [3].

LetV be a vector space over the fidgtd A bilinear formonV is a functionB from

V xV to F which is linear in each argument. It i©n-degeneratd no non-zero
vector is ‘orthogonal’ to the whole space, that iB{k,y) = 0 for ally € V implies
x = 0 (and similarly withx andy interchanged).

A quadratic formis a functionQ fromV to F satisfying the two conditions

e Q(cx) =c?Q(x) forallce F,x € V;
¢ the functionB defined by

B(x,y) = Q(x+Yy) — Q(x) — Q(y)
for x,y € V, is bilinear.

(We say thaB is obtained bypolarising Q) If B is non-degenerate, we say tiGais
non-singular (The definition of a non-singular quadratic form is broader than this,
but the difference will not concern us.)

If the characteristic oF is not 2, then the fornB is symmetri¢cthat is,B(x,y) =
B(y,x), and the quadratic form can be recovered frBriy the formulaQ(x) =
1B(x,x).

2 )

On the other hand, if the characteristickofis equal to 2, then we hau&x, x) =
0 for all x € V. A form with this property is calledlternating Moreover, two



guadratic form€) andQ’ polarise to the same bilinear form if and only if they differ
by asemilinear forma functionL fromV to F satisfyingL(x+Y) = L(x) + L(y)
andL(cx) = c2L(x) for all c € F, x,y € V. (Note that, if the field is GR), then
semilinear forms are just linear forms, sine= c for allc € F.)

We also note that a non-degenerate alternating bilinear form can be defined on a
vector space of dimensianif and only if nis even.

We now restrict to the case = GF(2). Let B be any alternating bilinear form
on a A-dimensional vector space over The setQ (B) of quadratic forms which
polarise toB has Z" members. IfQ is one member of this set, then all others can
be obtained by adding linear forms @ Suppose thaB is non-degenerate. Then
any linear form can be written a$x) = B(v, x) for some vectov € V. So

Q(B) = {Q(X) +B1X) :vE V) = {Q(x+V) +Q(v) :vE V).

Let X = {x € V : Q(x) = O} be the set okzerosof Q. Then the set of zeros of
Q(x) + B(v,X) is obtained by translating by v, and complementing this set\hif
Q(v) = 1. So any quadratic form i@ (B) has eitheN or 22" — N zeros, for some
N. It is a standard result (see [3]) thdt= 22"~1 + £2"~1 wheres = +1. We say
that the formQ hastypece if it has 2"~ 4 £2"-1 zeros. (The type is essentially
the Arf invariant of the form; more precisely, the type(is-1)%, wherea is the Arf
invariant.)

Now the setX of zeros ofQ is a difference set in the additive group of the vector
spaceV/, and so gives rise to a symmetric BIBD, whose points are the vectdfs in
and whose blocks are the translateXphs we have seen, these are the zero sets of
the quadratic forms i@ (B), complemented in the case of forms of type opposite
to that of Q.

This design has a more symmetrical description, as follows. (The proof that this
is the same is an exercise, or is given in [3].) Batand B, be two alternating
bilinear forms orvV, whose differenc®; — B, is non-degenerate. Then the points
and blocks of the SBIBD are the safgB1) and Q(By) respectively; a poinQy

and blockQ; are incident in the desigDg if and only if the formQ1 — Q> (which

is non-singular) has type

The desigrDe hasv = 22", k = 22714 e2"-1 gnd\ = 222 21,

4 Constructing the SLSDs

As in the previous section, I& be a vector space of dimension @ver the field
F = GF(2). A setB of alternating bilinear forms is said to banan-degenerate set



if, for any By, B> € B, the formB; — B, is non-degenerate. Given a non-degenerate
setB and a valug = +1, we define a SLS%:(B) as follows: the elements are
the quadratic forms in the se@¥(B) for B € B; formsQ; € Q(Bj) andQ; € Q(B;j)

are incident ifQ; — Q; has typee. It follows from the description in the preceding
section that the first condition in the definition of a SLSD is satisfied; see [3] for a
proof that the second condition holds too.

There are two known constructions for non-degenerate sets of bilinear forms. The
second of these is essentially due to Kerdock [5], and produces sets of cardinality
v/2 = 22"~1: this is the maximum possible cardinality (see Section 7). However,
the Kerdock sets do not have full clique covers in general.

The other construction produces sets of carding)ity= 2"; it is these which we
shall use. They are additively closed sets of the maximum possible size (see Sec-
tion 7).

LetK = GF(2"). There is & -linear map fronK ontoF, thetrace map given by

2n—l

Tr(X) = X+ X2+ X2+ +X

(Note thatx®” = x for all x € K.)

LetV be a 2-dimensional vector space okeBYy restricting scalars frol{ toF,V
becomes ar2dimensional vector space over If b is an alternating bilinear form
onV asK-space, thef = Tr(b) is an alternating bilinear form ovi asF-space;
andB is non-degenerate if and only lifis. Similarly, the traces of the quadratic
forms (on theK-spaceV) polarising tob are precisely the quadratic forms (on the
F-spaceV) polarising toB.

Now takeb to be any non-degenerate alternating bilinear form oiktspace/ (for

example, také((x1,%2), (Y1,Y¥2)) = X1y2 — X2y1). Thenab is also a non-degenerate
alternating bilinear form, for any non-zeeoc K. We have

Tr(a1b) — Tr(azb) = Tr((ay —az)b)

for a1 # a». So the 2 forms

{Tr(ab) : a € K}

comprise a non-degenerate set of cardinalityahd so give rise to a SLSD with
r=2n



5 Constructing the MYRs

We must now produce the full clique cover and its 1-factorisation. The argument
uses a little group theory.

The explicit form ofb given in the last section is the determinant of the matrix

(;(/1 ;2) It follows from this that thespecial linear groupSL(2,2") of 2 x 2
1 Y2

matrices of determinant 1 ovérpreserve$, and hence each of the forms(db).
Thus the producA-SL(2,2"), whereA s the additive group o, acts on the SLSD,
fixing each of the setXj,..., X . (In fact it acts doubly transitively on eaéf).)

The subgroup fixing a point; of X; is a complement t@\ in this product, and so
is isomorphic to SK2,2"); it is transitive on the remaining points of and has
two orbits onX; for all j # i, namely, the points incident and non-incidentgo
If p; € X is a point incident withp;, then the stabiliser g and p; is a dihedral
group of order 22" —¢). Now all such dihedral groups in our groép SL(2,2")
are conjugate (they are the normalisers of Syfmaubgroups, where is a prime
divisor of 2" —€); so this subgroup fixes one poipt in each sefX;. Moreover,
these pointgy are pairwise incident. For, ipy and py, were not incident, their
stabiliser would be a dihedral group of orddP?2+ ¢€); but this number does not
divide 22" —¢).

Now the set of all these pointg is a full clique. It is the unique full clique con-
taining p; andp; which is stabilised by a dihedral group of ord¢e2—¢€). So we
have constructed a full clique cover.

Now the orbits of the group on these full cliques form the required 1-factorisation,
as we described earlier.

6 Further remarks

(1) The obvious outstanding problem is to determine the maximum valué&of
a MYR with givenv andk. | conjecture that the examples here are maximal in
this sense. Noda [7] showed that, for SLSDs with the parameters of those used
here, the maximum value ofis v/2 (this value being attained by the system
derived from the Kerdock set).

(2) Preece and Vowden [11] remark that the 56 MYR is “fatally flawed statis-
tically”, since the fourth factor is confounded with the other three. Does this
phenomenon hold more widely?

(3) Following Bailey’s remarks in [1], Section 10, another problem is to decide
whether any of these designs are optimal, or indeed whether the combinato-
rial properties specified here imply optimality, as they do whea?2 ([1],



Corollary 7.1.2).

The first two points are related. In the case of the B MYR, the parametex

is equal to 1. This means that, pi € X; and pz € X, are adjacent in the multi-
partite graph, then there is a unigpg € X3 adjacent to both. Similarly there is a
unique pg € X4 adjacent to both; angs and p; must themselves be adjacent, or
the construction would not work. (Indeed, there are two non-singular sets of four
alternating bilinear forms on GB)#, up to translation and linear transformation;
the set we construct is of one type, and all 4-subsets of the eight-element Kerdock
set are of the other type. In the second type, the verpgesd p, above fail to be
adjacent, so no full cliques exist.)

Now the pointp; lies in six full cliques; there are & = 30 full cliques sharing

their second vertex with one of these, and the same number sharing each of the
other vertices. Our above remarks show that there are no overlaps between these
sets. Since 6 3-30= 96, we see both that there cannot be another factor, and that
the last factor is effectively determined by the others.

This argument does not apply for any other parameter set in this series.

Finally, we remark that if we take the MYRs with= +1 and change the numbering

of the 1-factors in one of them so that all the 1-factors are numbered from W&o

have a resolvable full clique cover of the complete multipartite graph mgéarts

of sizev. This is clearly equivalent to— 1 mutually orthogonal Latin squares of
orderv. In other words, if we take the representations of the two MYRs as Latin
rectangles, and place one rectangle under the other, we obtain mutually orthogonal
Latin squares. The case= 16 is given in this form in [9].

7 Appendix: two bounds

The two non-singular sets mentioned above are both of maximum size in some
sense. The first part of the following result is well known.

Theorem 2 Let B be a non-degenerate set of alternating bilinear forms dna
dimensional vector space V ov8F(2).

(a) |B| < 221,
(b) If B is additively closed, thejB| < 2".

PROOF. Choosing a basiey, ... e} for V, a bilinear formB is represented by
a matrixM(B) = (B(e;, €j)). If Bis alternating, the matrix is skew-symmetric with
zero diagonal; iB is nondegenerate, the matrix is non-singular.



If B is a nondegenerate set, then all the matrid¢B) for B € B have distinct first
rows, since the difference of any two of them is non-singular. There are &hly 2
possible first rows, since the first entry is necessarily zero. This proves (a).

Now suppose thas is additively closed, so that it too is a vector space ove{ahF
Recall that the determinant of a skew-symmetric matrix is the square of a polyno-
mial in the matrix entries called thefaffian(see [6], p. 373). Now the Pfaffian is

a form of degree on the vector spac8 which vanishes only at the origin. By the
Chevalley—Warning theorem ([6], p. 140), we have 8ira n, and sgB| < 2".
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