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Abstract

The operation of switching a finite graph was introduced by Seidel, in
the study of strongly regular graphs. We may conveniently regard a graph
as being a 2-colouring of a complete graph; then the extension to switching
of anm-coloured complete graph is easy to define. However, the situation is
very different. Form > 2, all m-coloured graphs lie in the same switching
class. However, there are still interesting things to say, especially in the
infinite case.

This paper presents the basic theory of switching with more than two
colours. In the finite case, all graphs on a given set of vertices are equivalent
under switching, and we determine the structure of the switching group and
show that its extension by the symmetric group on the vertex set is primitive.

In the infinite case, there is more than one switching class; we deter-
mine all those for which the group of switching automorphisms is the sym-
metric group. We also exhibit some other cases (including the ramdom
coloured complete graph) where the group of switching-automorphisms is
highly transitive.

Finally we consider briefly the case where not all switchings are allowed.
For convenience, we suppose that there are three colours of which two may
be switched. We show that, in the case of almost all finite random graphs, the
analogue of the bijection between switching classes and two-graphs holds.



1 Two colours; finitely many vertices

The operation of switching a gragh with respect to a seX of vertices was
introduced by Seidel [8]; it is often callegkeidel switchingr Seidel equivalence

The operation consists of exchanging adjacency and non-adjacency between
and its complement, while keeping adjacencies within or outXidenaltered.
Seidel used an adjacency matrix with O on the diagordl,for adjacency, and

+1 for non-adjacency; then switching corresponds to conjugating this matrix by a
diagonal matrix with entries-1. This representation arises in a geometric context
as follows (see [9]).

Suppose that we have a set of lines through the origin in Euclidean space,
such that the acute angtebetween any pair is the same. Choose a unit vector
on each line. Then the Gram matrix of inner products of these vectors has the
form | + (cosa)A, whereA is the adjacency matrix of a graph (of the form just
described). Replacing some of the unit vectors by their negatives corresponds to
switching the graph.

For our purposes, itis more convenient to think of a complete graph with edges
coloured red and blue; the switching operat@mnwith respect to a subst of V
involves interchanging colours of edges frofnto its complement, leaving all
other edges unaltered. For brevity, in what follows, the word “graph” will mean
“edge-coloured complete graph” (with the appropriate number of colours).

We now give a very brief summary of the properties of switching. We consider
graphs on a fixed s&t of n vertices.

¢ The switching operations form a group of ord&r, the switching group
whose orbits on graphs are calleditching classesEach switching class
has size 271,

e Two graphs belong to the same switching class if and only if the parity of
the number of red edges in any 3-subse¥ a the same in both graphs.

e A set7 of 3-subsets oY is realised as the set of triples containing an odd
number of red edges of some graph\oif and only if every 4-set contains
an even number of members @f. (Such a setZ is called atwo-graph
The term was introduced by G. Higman (unpublished); see Seidel [9]. Thus
two-graphs are essentially the same as switching classes of graphs.)

The unlabelled switching classes of graphs (or, equivalently, two-graphs) were
enumerated by Mallows and Sloane [7]. The number of two-graphs is the same



as the number of even graphs (that is, graphs with all valencies even) on the same
set. A conceptual proof of this appears in [2].

We define thextended switching group be the semidirect produBt« Sym(n),
whereSis the switching group and Sym) the group of all permutations of the
vertices. (Fom odd, the extended switching group is isomorphic to the Weyl
group of typeDy.) Thegroup SAut(l") of switching-automorphismsf a graph
I" is the image of the stabiliser &f in the extended switching group, under the
natural homomorphism to Sym). Equivalently, it is the group of permutatiogs
of V for which there exists a switching operatiore Swith F'g=To. It is easy
to see that graphs in the same switching class have the same group of switching-
automorphisms.

The group of switching-automorphismslotoincides with the automorphism
group of the two-graph associated withand may be 2-transitive, as many ex-
amples in Seidel [9] show. However, it cannot be 3-transitive (except for the
switching class of the complete or null graph), since it preserves a ternary relation
(the associated two-graph).

2 More than two colours; finitely many vertices

Suppose thdt is a complete graph ov, with |V | = n, whose edges are coloured
with m colours, wheren > 2. If ¢,d are colours an& a set of vertices, we define
the switching operatiow. 4 x to interchange colours andd on edges between
X and its complement, and leave all other colours on such edges and all colours
on edges within or outsid¥ unaltered. Theswitching group § is the group
generated by all such switchings; it is a permutation group on thgggtwof all
such coloured complete graphs. SitSg is normalised by the symmetric group
Sym(V), these groups generate their semidirect prodjgt = Snn > Sym(n),
theextended switching grouhe group SAUf) of switching-automorphisms is
defined in the same way as for two colours.

The main difference between the cases of two or more colours is that there is
only one switching class fan > 3:

Theorem 2.1 The switching group sy is transitive onGm if m > 3.

Proof Letc,d,ebe three colours andy two vertices. Then the commutator of
Ocdx andag ey induces the 3-cycl¢c, d, e) on the colours ofx,y}, while fixing



all other colours there and all colours on other edges. Thus, we can permute tran-
sitively the colours on any edge while fixing those on all other edges. Repeating
for each edge, we can map any edge-coloured graph to any other. O

Corollary 2.2 If m > 3, then the group of switching-automorphisms of any graph
iN Gmn is the symmetric grouym(n). O

We can describe the structure &, completely. Here Aftm) denotes the
alternating group of degree.

Theorem 2.3
Smn = Alt (m)"=D/2 5 -1,

Proof In the preceding proof, the 3-cycles generate the alternating group on the
colours on each edge. S, contains the direct product of copies of the alter-
nating group. This is also true fon = 2, since Al{2) is the trivial group. This
productN is clearly a normal subgroup & n.

There is a homomorphism fronn to S, where each generatog g x of
Snn Maps to the generatoi of S . (The image of an arbitrary elememe Snn
is ox, where the edges on which the parity of the permutation of the colours is
odd are those fronX to its complement.) The kernel of this homomorphism is
N, while the image i, which is elementary abelian of ordet2 by Seidel’s
result. The extension clearly splits. 0J

For the extended switching group, Theorem 2.1 can be strengthened as fol-
lows.

Theorem 2.4 The extended switching group, Sis primitive onGmp if m> 3.

Proof This group contains A{im) : Sym(n), where Synin) has its action on 2-
element subsets dfL,...,n}, and the wreath product has its product action.

If m> 4, the bottom group is primitive and not regular, and the top group is
transitive; so the primitivity follows from the analysis preceding the O’Nan—Scott
Theorem in Dixon and Mortimer [3], Lemma 2.7. So supposeitiat 3.

Now our group has a regular normal subgroup which is elementary abelian

of order 32). This group can be represented as the set of functions from the set
of 2-subsets to the integers mod 3. A block of imprimitivity containing the zero
element is a subgroup which is invariant under both switching (changing sign on
all edges through a vertex) and permutation of vertices.
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Suppose that is a subgroup which is so invariant, and contains a non-zero
function f. We can suppose thétis non-zero on some edge containlagwitch-
ing atx and subtracting, we obtain a non-zero functidrwhich vanishes on all
edges not containing If f({x,y}) # 0, then switching ay and subtracting, we
obtain a functionf” which is non-zero only on the edde,y}. Now the images
of f” under permutations generate the whole group. O

3 Two colours; infinitely many vertices

Switching for infinite graphs is defined exactly as for finite graphs. The switching
group is elementary abelian, and is isomorphic to the group of subsétémth

the operation of symmetric difference) modyglyV }. The main difference is that
switchings with respect to singletons do not generate the group. It is similarly true
that the group of switching-automorphisms of an infinite graph may be 2-transitive
but cannot be 3-transitive except in the case of the complete or null graph.

4 More than two colours; infinitely many vertices

Unlike in the finite case, the switching group does not act transitively on the set
of edge-coloured complete graphs on an infinite set.

We define aswitched c-cliqgu®nV to be an edge coloured complete graph on
V, such that there is a partitidh=Vy U - - - UV, with the properties

(a) any edge within a pa¥ has colourc;
(b) the colour of an edge with vertices\handV; depends only onandj.

Proposition 4.1 Letl be an m-coloured complete graph with>aB. Thenl is a
switched c-clique if and only if it can be obtained from the graph with all edges of
colour ¢ by switching.

Proof Suppose thdt is a switched-clique. Form the finite graphon{1,... k},
where the colour of the edde, j} is the same as the colour of edges frgnto
VjinT. By Theorem 2.1A can be switched into @clique. The switchings lift in
an obvious way td, and also switch it into a-clique.

Conversely, lef” be obtained from &-clique by the product;---o; of a
sequence of switchings. Then there is a partitioV ofto parts given by inter-
sections of the switching sets of, ...,o; and their complements, which clearly
satisfies (a) and (b). O



Since a switched-clique contains no infinite’-clique for any colourc’ # c,
we see that a switchedtclique cannot also be a switcheiclique forc’ # c;
hence the cliques of different colours lie in different switching classes.
Switching does not change the group of switching automorphisms; s@SAut
Sym(V) holds ifI" is a switched-clique. The converse is also true. This depends
on a preliminary lemma. Anoietyof an infinite set is an infinite subset whose
complement is also infinite.

Lemma 4.2 An infinite multicoloured graph is a switched c-clique if and only if
the vertex set can be partitioned into three moieties such that the induced subgraph
on the union of any two is a switched c-clique.

Proof The reverse implication is clear. So suppose thas the disjoint union

of Wi,W>,W;, and for each # ], there is an equivalence relatien; on W U

W, whose equivalence classes have properties (a) and (b) of the definition of a
switchedc-clique. Extends;; to an equivalence relation onin which the re-
maining set\ is a single class. Let be the meet of these three equivalence
relations.

We claim that= has properties (a) and (b). Certainly it has only finitely many
classes. Take two poinisy in the same class. Then they belong to the same set
W, sayW; without loss of generality. Since=1,Yy, the edge{x,y} has colour
c. Now letz be any point in a different equivalence class. Suppose, without loss
of generality, thaz € Wy UW,. Then the properties af, ensure tha{x, z} and
{y,z} have the same colour. O

Theorem 4.3 Letl" be an m-coloured complete graph witten®. ThenSAut(ln) =
Sym(V) if and only ifl" is a switched c-clique.

Proof Suppose that SAUT) = Sym(V). By the infinite form of Ramsey’s Theo-
rem, there is a moiety/ of V which is ac-clique for some coloue. Since Syni\V)
is transitive on moieties, and SAUt) induces a switching automorphism from
every set to its image, it follows that every moiety is a switcbheagique. Now
Lemma 4.2 gives the result. O

There are, however, other countable graphs whose switching automorphism
groups are highly transitive. One type is given by the next theorem; we will see
another in the next section. (In fact, we have no exaridier which SAu{T") is
not highly transitive.)



Theorem 4.4 Let" be an m-coloured complete graph. Suppose that there is a
finite partition V=V, U... UV, such that the colour of an edge with vertices jn V
andV, depends only oniand j. Th&SymV ) is contained irSAut(I").

Proof Itis enough to show that an arbitrary transpositiery) belongs to SAUt).
Refine the partition so thdtx} and{y} are parts. Now switch so that all edges
with ends in different parts are red. It is clear that the transpositioy) is an
automorphism of the switched graph, and so it is a switching automorphism of
the original graph. O

Perhaps the converse is true too.

A permutationg of V is almost an automorphisrof I if the set of edges
e for which e and € have different colours is finite. The set of all almost-
automorphisms of is a group, thealmost-automorphism groyplenoted by
AAut(I).

Proposition 4.5 For any infinite m-coloured complete graph withcn8, we have
AAut(I") < SAut(ln).

Proof As in the finite case, we can change the colours of any finite number of
edges arbitrarily, while fixing all other colours, by switching. O

5 Switching the random graph

The most important application of switching in the infinite case with two colours
concerns the countablndom graph Rotherwise known as thErdés—Fenyi
graph or theRado graph, see [4]. This is the unique countable graph with the
property that a random countable graph (whose edges are chosen independently
with probability%) is isomorphic taR with probability 1.

The graphR is homogeneous, and indeed is the unique countable universal
homogeneous graph, by Fs&’s Theorem [5].

Now the group SAUR) is 2-transitive, and is a transitive extension of ARit

This group features in a remarkable theorem of Thomas [11]. To state this
theorem we need some terminology. There is a natural topology on the symmetric
group of countable degree, namely the topology of pointwise convergence. With
respect to this topology, a subgroup of S¥n is closed if and only if it is the
automorphism group of a first-order structure \r(and this structure may be



taken to be purely relational). ®eductof a structuréevl onV is a closed subgroup

of Sym(V) containing AutM). For example, SAUR) is a reduct oR; it is closed
because it is the automorphism group of the associated two-graph. We refer to
Hodges [6] for further details.

An anti-automorphisnof a graphl” is an isomorphism froni to the comple-
mentary grapH, while aswitching anti-automorphisris a permutatiorg such
thatg = o for some switchingp.

Now Thomas’ theorem is as follows:

Theorem 5.1 There are just five reducts of the random graph R. ThesAargR);
the group of automorphisms and anti-automorphisms of R; the ggéwi(R); the
group of switching-automorphisms and switching anti-automorphisms of R; and
the symmetric group on the vertex set of R. O

In an analogous way, Fisg’s Theorem implies that there is a unique count-
able homogeneous-coloured complete gragRy, for any (finite or countable.
If mis finite, this is also the “randomm-coloured complete graph” (in the sense
that with probability 1 the random structure is isomorphic to it). These graphs and
their automorphism groups have been studied by Truss [12].

Now, in contrast to the case of two colours, we have the following result:

Proposition 5.2 For m> 3, the groupSAut(Ry) is highly transitive; so this group
is not a reduct of R.

Proof The group AAutRy) is highly transitive [13], and is contained in SARYy),
by Proposition 4.5. So SA(Ry) is highly transitive. Now the closure of a highly
transitive group is the symmetric group; but SAR4) is not the symmetric group,
by Theorem 4.3. O

In fact, all the reducts dRy, have been determined by Bennett [1]. We sketch
his result later in this paper.
6 Restricted switching

A variant on what we have considered is to allow only some possible switchings
of colours. We consider in detail the situation where there are three colours called
red, blue and green, and only blue-green switchings are permitted.



(This kind of switching has a geometrical interpretation. We are given a set
of lines in Euclidean space making angte® anda. Choose unit vectors along
the lines; their Gram matrix has the foim- (cosa)A, whereA is a matrix with
entries 0 andt-1. If colours red, blue, green correspond to entries-@, —1
respectively, then changing the sign of a set of vectors corresponds to blue-green
switching.)

Blue-green switching clearly leaves all red edges unchanged. It also preserves
an analogue of a two-graph, namely, the parity of the number of green edges in any
blue-green triangle. Is the converse true? Let us say that two 3-coloured complete
graphs otV areP-equivalentf they have the same red edges and each blue-green
triangle has the same parity of the number of green edgesS-aupiivalenif one
can be obtained from the other by blue-green switching.

P-equivalence does not imply S-equivalence in general. Supposk tioai-
sists of a bluen-cycle (withn > 4), all other edges red. By switching, we can
make any even number of edges in the cycle green; but any replacement of blue
by green gives a P-equivalent graph. However, the following is true.

Theorem 6.1 (a) Any3-coloured complete graph which is P-equivalent to the
countable randon3-coloured complete graphaRs S-equivalent to R

(b) Letl" be a random finit&-coloured complete graph with n vertices. Then the
probability of the event that eveBtcoloured complete graph P-equivalent
tol is S-equivalent td tends tol as n— co.

Proof (a) Suppose thdi; is the random 3-coloured complete graRh andrl

is a graph which is P-equivalent fg,. We begin with some notation. We let
ci(xy) denote the colour of the edde,y} in I'j, andRi(v), Bj(v), Gi(v) the sets

of vertices joined tor by red, blue, or green edges respectivelyinfori = 1,2.

We let BGi(v) = Bj(v) UG;j(v). In the proof we shall modify the graph, so

that various colours or sets become the same; once we know that, for example,
c1(Xy) = c2(xy), we drop the subscript. Note that we can immediately WR{te
andBG(v), by the definition of P-equivalence.

Let A(v) be the symmetric difference &h(v) andBy(v). Switchingl 2 with
respect taA(v) gives a new grapli}, such that all edges containinghave the
same colour i1 andl,. Now replacingl, by I, we may assume that this
holds forl 5.

Now the subgraphs ofv} UBG(v) are identical in"1 andlz. For letx,y €
BG(v). If c1(xy) is red, the result is clear. Otherwiseg(vx) = cz(vx) andcy (vy) =
c2(vy), and sacy (xy) = c2(xy) by P-equivalence.
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Next we claim that, for any two verticesy € R(v), the edges from andy to
BG(v) are either of the same colour in the two graphs, or differ by an interchange
of blue and green. Suppose tl@atxz) = cx(x2) is blue or green for somee
BG(v). LetZ € BG(v) be another point such thef(xZ) is blue or green; we must
show thatc; (xZ) = ca(xZ). If c(zZ) is blue or green, then this assertion follows
from P-equivalence. But sinde = Rs, the blue-green graph dG(v) N BG(x)
is connected. (The induced structure on this set is isomorplg,teo any two
vertices inBG(v) NBG(x) are joined by a blue-green path of length at most 2.) So
the claim follows.

Now R(v) = R"(v) UR (v), where, forx € R(v), the colours of edges from
X to BG(v) are the same i1 andl; if x € RT(v), and differ by a blue-green
exchange ik € R™(v). Letl™, be obtained by switchinf with respect tdR™ (v).
This switching doesn’t change the colours{ir} UBG(v), and has the result that
R~ (v) is empty in the switched graph. Replacifgby I';,, we may assume that
edges betweeR(v) andBG(v) have the same colour iry andr .

Finally, takex,y € R(v) with c1(xy) blue or green. Again, sincE; = R,
there existe € BG(v) such thatc(xz) andc(yz) are each blue or green. Then
P-equivalence ensures thafxy) = ca2(xy). Sol'1 =I,. Since we switched the
original I" 2 twice in the course of the proof, the proposition is proved.

(b) The above argument only depends on the fact that, given arfy fedt
most four vertices, there is a vertex joined to every verte® by blue or green
edges. The probability that this fails in anvertex graph is at most

4 n 2 i n—i
. 1-( =
i; (' ) <3) ’
which tends to zero as — o, so the property holds in almost all random 3-
coloured finite complete graphs. O

The theorem can be expressed in another way, following [2]. Suppose that
we consider the red graph as given. Ii&be the 2-dimensional complex whose
simplices are the vertices, edges, and triangles in the blue-green graph. Then P-
and S-equivalence classes of the colouring with no green edges are 1-cocycles and
1-coboundaries oveéf/(2); so the cohomology groug'(C,Z/(2)) measures the
extent to which P-equivalence fails to imply S-equivalence.

Proposition 6.2 For the infinite random graph, and for almost all finite random
graphs, H(C,Z/(2)) = 0 (where( is as above).
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Proof The only comment required is that we need to change the probabilities so
that a red edge has probabilityZinstead of 13. O

The most general type of restricted switching works as follows. B.bt a
group of permutations on the set of colours (a subgroup of(8yin A switching
operation has the formagx for g€ B andX C V; it applies the permutatiog
to the colours of edges betwe&nand its complement, and leaves other colours
unaltered. We refer to this operationBsestricted switchingln the same way, if
Ais any subgroup of Syfm), we define a\-restricted dualityto be the operation
of permuting the colours of all the edges according to some permutat@n in

Now we can state Bennett's classification [1] of reduct&R@f He defines a
reduct to bereducibleif there are two colours which are indistinguishable (that
is, we are colour-blind for some pair of colours). The classification of reducible
reducts thus simply becomes the classification of redud®&,of, which is done
by induction. Bennett shows that the irreducible reducts are generated (as topo-
logical groups) byB-reduced switchings anél-reduced dualities, whe is an
abelian subgroup of Syfm) andA a subgroup of its normaliser. The special case
of Theorem 6.1 foR3 corresponds to the case wh&#nterchanges colours blue
and green (fixing red) andlis the trivial subgroup.

Problem Do other reducts oRy, have analogues for finite random graphs simi-
lar to Theorem 6.1(b)? Do they have cohomological interpretations?

Remark Most of the results of this paper are taken from the second author’s
Ph.D. thesis [10].
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