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Abstract

We show that the number of monochromatic solutions of the equation
xα1

1 xα2
2 · · ·xαr

r = g in a 2-coloring of a finite groupG, whereα1, . . . ,αr are
permutations andg∈ G, depends only on the cardinalities of the chromatic
classes but not on their distribution. We give some applications to arithmetic
Ramsey statements.

1 Introduction

A well-known theorem of Schur establishes that, forn≥ n0(k) and every coloring
of the integers in[1,n] with a finite numberk of colors, there is a monochromatic
triple (x,y,z) satisfyingx+y= z. Graham, R̈odl and Ruczinsky [3] proved that the
numberS(n) of Schur triples in a 2-coloring of[1,n] verifiesS(n)≥ n2/38+O(n)
and enquired about the value of the limitS(n)/n2 asn→ ∞. The answerS(n) =
n2/22+O(n) was given in three independent papers by Robertson and Zeilberger
[5], Schoen [4] and Datskovsky [1].

In the last reference, Datskovsky also shows the somewhat surprising fact that
the number of Schur triples in a 2-coloring ofZ/nZ depends only on the cardinal-
ities of the color classes (and not on the distribution of the colors.) The purpose
of this note is to show that such phenomenon occurs in a broader combinatorial
setting which can be applied to other Ramsey arithmetical statements.

Our main theorem is a result about 2-colorings of orthogonal arrays, stated and
proved in the next section of the paper. The result immediately specialises to a
statement about finite groups as follows:

Theorem 1.1 Let G be a finite group,α1, . . . ,αr a set of permutations of G and
g∈ G. For any2-coloring of the elements of G with color classes A and B, let A∗

and B∗ denote the sets of r-tuples(x1, . . . ,xr) satisfying the equation

xα1
1 xα2

2 · · ·xαr
r = g, (1)
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with all elements in A and B respectively. Then,

|A∗|+(−1)r+1|B∗|= 1
|G|

(|A|r +(−1)r+1|B|r).

Note that this theorem can be specialised to the equation

α1x1 +α2x2 + · · ·+αrxr = g

in an abelian groupG, whereα1, . . . ,αr are integers coprime to the order ofG.
We present applications of this result in three areas: monochromatic arithmetic

progressions, monochromatic Schur triples, and Pythagorean triples. These are
discussed in the following three sections of the paper.

2 The main theorem for orthogonal arrays and groups

A setSof r-vectors with entries in a finite setX is anorthogonal arrayof degreer,
strengthk and indexλ if, for any choice ofk columns, eachk-vector ofXk appears
exactly inλ vectors ofS.

Theorem 2.1 Let S an orthogonal array of strength k and indexλ . Given a2-
coloring of X with color classes A and B, let ui denote the number of r-vectors in
S with exactly i elements in A. Then

k

∑
j=0

(
r
j

)
(−1) jnr− j |A| j = λ (u0 +

r

∑
i=k+1

(−1)k
(

i−1
k

)
ui).

Proof Let f be a function assigning to each subsetJ⊂ {1, . . . , r} of cardinality at
mostk a subsetf (J) such thatJ∩ f (J) = /0 and|J|+ | f (J)|= k.

For each subsetJ⊂ {1, . . . , r} of cardinality j ≤ k, choose an arbitraryj-vector
(xi , i ∈ J) ∈ A j and an arbitrary(k− j)-vector(xi , i ∈ f (J)) ∈ Xk− j . SinceS is an
orthogonal array with strengthk and indexλ , each such choice determines exactly
λ r-vectors ofS. In the multiset of the obtained vectors fromS, each vector with
exactly i entries fromA is countedλ

( i
j

)
times (where

( i
j

)
= 0 if 0 < j < i and(0

0

)
= 1.) Therefore, we get the following linear system in the variablesui :(

r
j

)
nk− j |A| j = λ

r

∑
i=0

(
i
j

)
ui , j = 0,1, . . . ,k. (2)

The alternating sum of the equations in (2) gives

k

∑
j=0

(
r
j

)
(−1) jnk− j |A| j =

k

∑
j=0

(−1) j
λ

r

∑
i=0

(
i
j

)
ui

= λ

r

∑
i=0

ui

k

∑
j=0

(−1) j
(

i
j

)
= λ (u0 +

r

∑
i=k+1

(−1)k
(

i−1
k

)
ui),
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as claimed. 2

Theorem 1.1 is a direct consequence of Theorem 2.1, as the setSof solutions
of the equation

xα1
1 xα2

2 · · ·xαr
r = g,

forms an orthogonal array of degreer, strengthk = r − 1 and indexλ = 1 with
entries inG.

3 Schur triples

In a groupG, aSchur tripleis a triple(x,y,z) of group elements satisfyingxy= z.
More generally, aSchur r-tuplehas the form(x1, . . . ,xr−1,z), wherex1 · · ·xr−1 = z.

Corollary 3.1 Let G be a finite group. For any2-coloring of the elements of G
with color classes A and B, the number of Schur triples(x,y,z) is

|A|2−|A| · |B|+ |B|2.

In particular, there are at least n2/4 monochromatic Schur triples in any2-coloring
of G.

Proof This is immediate from our main theorem, on takingα1 andα2 to be the
identity permutation,α3 to be inversion, andg = 1. The last sentence follows
because the functionx2− x(n− x) + (n− x)2 = 3x2− 3nx+ n2 has its minimum
value whenx = n/2. 2

Almost exactly the same proof gives the following result:

Corollary 3.2 (Datskovsky [1] Corollary 1) Let Sr(A,B,n) denote the number of
monochromatic Schur r-tuples in a2-coloring ofZ/nZ with color classes A and B.
Then, for r odd,

Sr(A,B,n) =
1
n
(|A|r + |B|r).

Our proof is purely combinatorial. A proof can be also obtained by using
trigonometric sums as in [1].

4 Arithmetic progressions

An arithmetic progressionin a groupG is a set of elements of the form{a,ad,ad2, . . . ,adk−1}.
It is degenerateif d = 1 andnon-degenerateotherwise.

If the order ofG contains no prime factors smaller thank, then the elements
of a non-degenerate arithmetic progression are all distinct. If it contains no prime
factors smaller than 2k−1, then such a progression determinesa andd up to just
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two possibilities, the other being obtained by reading the progression backwards.
For if the first two terms are taken to beadi and ad j , with {i, j} 6= {0,1} and
{i, j} 6= {n,n−1}, then some member of the progression will have the formadl

wherel is outside the range[0,k− 1] but in the range[−(k− 1),2k− 2]; but no
such element can belong to the interval[0,k−1] if the order ofd is at least 2k−1.

Corollary 4.1 In any2-coloring of a group of order coprime to6, the number of
monochromatic3-term arithmetic progressions with no repeated elements is

1
2
(|A|2−|A| · |B|+ |B|2−n),

where A and B are the color classes. In particular, there are at least1
8n2− 1

2n such
triples.

Proof The set of 3-term arithmetic progressions in a groupG of odd order forms
an orthogonal array of degree 3, strength 2 and index 1. (To show thata andad2

determined, use the fact that every element of such a group has a unique square
root.) We remark that ifG is abelian, then this set can be expressed as in our
main theorem, but in the non-abelian case the more general result about orthogonal
arrays seems to be needed.

Now as in the proof of Corollary 3.1, there are|A|2−|A| · |B|+ |B|2 monochro-
matic ordered arithmetic progressions of length 3; we have to subtractn (the num-
ber of degenerate progressions) and divide by 2 (for the possible orderings of the
progression), since the smallest prime divisor ofG is at least 5 by assumption.2

The extension to 3-colorings is a little more complicated. We first show the
following extension of the main theorem.

Theorem 4.2 Let G be a finite group,α1,α2,α3 permutations of G and g∈ G.
For any 3-coloring of the elements of G with color classes A1, A2 and A3, let M
(Monochromatic) and R (Rainbow) denote the sets of3-tuples(x1,x2,x3) satisfying
the equation

xα1
1 xα2

2 xα3
3 = g, (3)

with all elements in the same color, and the three different colors respectively.
Then,

|M|= 1
2

(
3(|A1|2 + |A2|2 + |A3|2)−|G|2 + |R|

)
.

Proof Consider the 2-coloringG = (Ai ∪A j)∪Ak. Then

|(Ai ∪A j)∗|+ |A∗k|= (|Ai |+ |A j |)2− (|Ai |+ |A j |)|Ak|+ |Ak|2. (4)

We can write|(Ai∪A j)∗|= |A∗i |+|A∗j |+|{3-tuples using the two colorsAi andA j}|.
We write the last termXi j for short. Then

|M|= (|Ai |+ |A j |)2− (|Ai |+ |A j |)|Ak|+ |Ak|2−|Xi j | (5)

4



Adding this identity for(i, j,k) = (1,2,3),(i, j,k) and(2,3,1) we have

3|M|= 3(|A1|2 + |A2|2 + |A3|2)−|X12|− |X13|− |X23| (6)

On the other hand it is clear that

|G|2 = |M|+ |X12|+ |X13|+ |X23|+ |R|. (7)

Putting this in the formula above we obtain the theorem. 2

Corollary 4.3 Any3-coloring of a group of order n whose smallest prime divisor is
at least17has at leastn

2+15n+32
48 monochromatic arithmetic progressions of length

3.

Proof We look at 9-term arithmetic progressions in the group, noting that, by
our assumption, each unordered progression can be ordered in just two ways (the
reverses of each other).

In the table below we have marked in bold a monochromatic or rainbow arith-
metic progression in each 3-coloring of the 9-tuples. This proves that any 3-
coloring of any 9-tuple contains a non-degenerate arithmetic progression of length
3 belonging toM or R.

But the number of non-degenerate 9-tuples isn2−n and the number of non-
degenerate 3-tuples contained in a 9-tuple is exactly 16 (corresponding to positions
(1,2,3), . . . , (7,8,9), (1,3,5), . . . , (5,7,9), (1,4,7), . . . , (3,6,9), and(1,5,9)).
Then |M|+ |R| ≥ p2−p

16 + p, where the lastp counts the degenerate progressions.
We obtain the result adding the two inequalities. 2
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1 1 1∗∗∗∗∗∗
1 1 21 1 1∗∗ ∗
11 211 21∗∗
11 2 112 2 11
1 121 122 12
1 1 2 1 122 1 3
1 1 2 1 12 2 2∗
1 1 211223 ∗
1 1 2 11 2 3∗∗
11 211 31∗∗
1 1 2 11 3 2∗∗
1 121133∗∗
112121∗∗ ∗
11 212 21∗∗
1 1 2 12 2 2∗∗
1 1 2 1 22 3 1∗
1 1 2 1 223 2 1
1 121 223 22
11 2 122 3 23
1 1 212233 ∗
1 1 21 2 3∗∗ ∗
1 12 1 3∗∗∗∗
1 1 2 21 1 1∗∗
112 211 21∗
11 2 211 2 21
1 1 2 2 112 2 2
1 1 2 211223
1 1 2 2 11 2 3∗
1 122113∗∗
112 212 11∗

1 1 221212∗
1 1 2 2 12 1 3∗
112 212 21∗
1 1 2 2 12 2 2∗
1 1 2 2 122 3 1
1 122 122 32
1 1 2 212233
1 1 2 21 2 3∗∗
1 1 22 1 3∗∗∗
1 12 2 2∗∗∗∗
11223∗∗∗∗
11 2 3∗∗∗∗∗
1 21 1 1∗∗∗∗
12 112 11∗∗
1 2 112121∗
121 121 22∗
1 2 1 1 21 2 3∗
1 2 1 12 1 3∗∗
12 112 21∗∗
1 2 1 12 2 2∗∗
1 211223∗∗
1 2 11 2 3∗∗∗
12 113 11∗∗
1 2 1 13 1 2∗∗
1 2 11313 1∗
1 2 1 1 31 3 2∗
1 211 313 31
12 1 131 3 32
1 2 1 1 313 3 3
1 2 11 3 2∗∗∗

121133∗∗∗
12121∗∗∗∗
1 2 1 2 21 1 1∗
121 221 12∗
1 2 122113∗
1 212 212 11
1 2 1 221212
1 2 1 2 212 1 3
121 221 22∗
1 2 1 2 21 2 3∗
1 2 1 22 1 3∗∗
1 2 12 2 2∗∗∗
1 2 1 22 3 1∗∗
1 2 1 2 23 2 1∗
1 212 2322∗
1 2 1 2 232 3 1
1 2 1 223232
12 1 223 2 33
1 212233∗∗
1 21 2 3∗∗∗∗
12 1 3∗∗∗∗∗
1 2 21 1 1∗∗∗
12 211 21∗∗
12 2 112 2 11
1 221 122 12
1 2 2 1 122 1 3
1 2 2 1 12 2 2∗
1 2 211223∗
1 2 2 11 2 3∗∗
122113∗∗∗

12 212 11∗∗
1 221212∗∗
1 2 2 12 1 3∗∗
12 212 21∗∗
1 2 2 12 2 2∗∗
1 2 2 1 22 3 1∗
122 122 32∗
1 2 212233∗
1 2 21 2 3∗∗∗
1 22 1 3∗∗∗∗
12 2 2∗∗∗∗∗
1 22 3 1∗∗∗∗
1 2 23 2 1∗∗∗
1 2 232211∗
122 322 12∗
1 2 2 3 22 1 3∗
1 2 2 32 2 2∗∗
1 2 2 3 22 3 1∗
122 322 32∗
1 2 2 322331
1 223 223 32
1 2 2 3 223 3 3
1 2 2 32 3 1∗∗
122 3232∗∗
1 223 233 11
1 2 2 3 233 1 2
12 2 323 3 13
122 323 32∗
1 2 2 3 23 3 3∗
12233∗∗∗∗
1 2 3∗∗∗∗∗∗

Remark The result of this theorem can be improved. For example, a similar table
shows that, in any 3-colored 11-term arithmetic progression, we can find at least
two 3-term arithmetic progressions which are either monochromatic or rainbow.
This improves the factor 1/16 in the proof to 2/25, and 1/48 in the result of the
theorem to 2/75.

Computation usingGAP [2] shows that this can be further improved. The best
fraction we found to replace the constant 1/16 was 7/60, which is demonstrated
by the fact that any 3-colored 28-term arithmetic progression contains at least 32
monochromatic or rainbow 3-term progressions.

Of course, these improvements require further restrictions on the group: in the

6



last case, we have to assume that the smallest prime divisor of the group order is at
least 59.

This suggests the combinatorial problem:

What can be said about the function f(n), the least number m such
that any3-coloured m-term arithmetic progression contains at least n
monochromatic or rainbow3-term progressions?

For 4-term arithmetic progressions we have the following result:

Theorem 4.4 Any4-coloring of a group of order n whose smallest prime divisor is
at least13has at leastn

2−16n+15
40 monochromatic arithmetic progressions of length

4.

Proof The set of four-term arithmetic progressions inG (including the degener-
ate ones(a,ad,ad2,ad3) with d = 1) forms an orthogonal array of degreer = 4,
strengthk = 2 and indexλ = 1 of 4-tuples, since any element ofG has a unique
square root or cube root. By Theorem 2.1 we have

n2−4n|A|+6|A|2 = u0 +u3 +3u4, (8)

where, as in Theorem 2.1,A is one of the color classes andui is the number of
solutions with exactlyi elements fromA. By exchanging the role ofA andB we
get

n2−4n|B|+6|B|2 = u4 +u1 +3u0. (9)

By adding (8) and (9) we have

6(|A|2 + |B|2)−2n2 = 4(u0 +u4)+(u1 +u3). (10)

The identityu0 +u1 +u2 +u3 +u4 = n2 gives

u0 +u4 =
u2

3
+2(|A|2 + |B|2)−n2 ≥ u2

3
+1. (11)

Let us show that

u0 +u2 +u4 ≥
n2−n

5
+n. (12)

Note that each arithmetic progression of length 7 contains at least one arithmetic
progression counted inu0 +u2 +u4 (see the table below). On the other hand, each
4-term progression is contained in five 7-progressions, those in which it occurs in
positions(1,2,3,4), . . . , (4,5,6,7) or (1,3,5,7). Since there aren(n− 1) non-
degenerate 7-progressions andn degenerate ones, we get inequality (12). Combin-
ing (12) and (10) we obtain

u0 +u4 ≥
n2 +4n+15

20
.
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Our assumptions also show that a given 4-set which is an arithmetic progression
occurs as such in just two orders, one the reverse of the other. This gives the lower
bound(n2−16n+15)/40 for the number of monochromatic 4-progressions.2

1 1 1 1∗∗∗
1112111
1 1 12 1 1 2
1 11 2 1 2∗

11 1 2 2∗∗
1 1 21 1 1 1
1121112
1 12 1 1 2∗

11 2 1 2∗∗
1 1 2 2∗∗∗
1 21 1 1 1∗
1211121

1 2 11 1 2 2
12 1 1 2∗∗
1 2 1 2∗∗∗
1 2 2 1∗∗∗

1 22 2 1 1∗
1 2 22 1 2 1
1222122
12 2 2 2∗∗

Remark Just as for Theorem 4.2, this can be improved. We found by a similar
computation that among progressions of length 33 we can always find at least 40
four-term progressions with the patterns counted byu0 +u2 +u4; this allows us to
replace the constant 1/5 by 8/33. As before, we can formulate a combinatorial
problem here.

5 Pythagorean triples

Corollary 3.1 can be used to count the number of Pythagorean triples inZ/pZ. A
Pythagorean tripleis any 3-tuple(x2,y2,z2) satisfyingx2 + y2 = z2, and isnon-
degenerateif xyz 6= 0. For anyr 6= 0, we defineεp(r) = 1 if the equationx2 ≡ r
(modp) has solution andεp(r) = 0 otherwise. Theorem 5.1, Theorem 5.2 and
Corollary 5.3 are well known but these proofs are new.

Theorem 5.1 Let p be an odd prime. The number of Pythagorean triples inZ/pZ
is

(p+1)(p+3)
8

+ εp(−1)
p−1

4

and the number of non-degenerate Pythagorean triples inZ/pZ is

(p−1)(p−3)
8

− εp(−1)
p−1

4
.

Proof Consider the 2-coloring ofZ/pZ given byZ/pZ = S∪N with S= {x2 :
x∈ Z/pZ} the set of squares andN = (Z/pZ)\S. Denote byUi the set of Schur
triples with exactlyi elements inS, so thatU3 is the set of Pythagorean triples. By
Corollary 3.2 we have

|U0|+ |U3|=
(

p+1
2

)2

−
(

p+1
2

)(
p−1

2

)
+

(
p−1

2

)2

=
p2 +3

4
.

Let U ′
3 = {(a,b,c) ∈U3 : abc= 0}. For r a non quadratic residue modulop, the

map(a,b,c) 7→ (ra, rb, rc) is a bijection betweenU0 andU3\U ′
3. Therefore,

|U3|= |U0|+ |U ′
3|=

p2 +3
8

+
|U ′

3|
2

.
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The triples inU ′
3 are(0,0,0), {(0,x2,x2 : x ∈ S\ {0}}, {(x2,0,x2 : x ∈ S\ {0}}

and, if−1∈S, {(x2,−x2,0), x∈S}, so that|U ′
3|= p+ε(p)(p−1)/2, which gives

the result. 2

Of course it is well known for which primesp the equationx2 ≡−1 (modp)
has a solution, but we want to present it as a consequence of the next result.

Theorem 5.2 For any t 6= 0 let Rp(t) denote the set of the pairs(x2,y2) ∈ Zp\{0}
such that x2 +y2 = t. Then|Rp(t)|= p+1−2εp(−1)

4 − εp(t).

Proof There exists an obvious bijection betweenRp(t) andRp(t ′) if t, t ′ are quadratic
residues or are both non quadratic residues. Ift is a quadratic residue we have that

|{(x2,y2,z2), x2 +y2 = z2, xyz6= 0}|= ∑
r quadratic residue

|Rp(r)|= |Rp(t)|
p−1

2

and we obtain the theorem by applying the result obtained in theorem 5.1.
If t is a non quadratic residue we can write(
p−1

2

)2

= ∑
r quadratic residue

|Rp(r)|+ ∑
r non quadratic residue

|Rp(r)|+ |Rp(0)|

=
(p−1)(p−3)

8
− εp(−1)

p−1
4

+
p−1

2
|Rp(t)|+ εp(−1)

p−1
2

,

and we can compute|Rp(t)|. 2

Corollary 5.3 For any odd prime p we have(
−1
p

)
= (−1)

p−1
4 ,

(
2
p

)
= (−1)

p2−1
8

Proof To calculate
(
−1
p

)
, observe|Rp(1)| = p+1−2εp(−1)

4 −1 must be an integer.

To calculate
(

2
p

)
, notice that|Rp(2)|= p+1−2εp(−1)

4 −εp(2) is always an odd num-

ber becausex2 +y2 = y2 +x2 = 2 give two solutions except in the case 1+1 = 2.
2
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