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Abstract

We show that the number of monochromatic solutions of the equation
xflxgz---xf" =g in a 2-coloring of a finite groufs, whereay, ..., o are
permutations and € G, depends only on the cardinalities of the chromatic
classes but not on their distribution. We give some applications to arithmetic
Ramsey statements.

1 Introduction

A well-known theorem of Schur establishes that,rigr ng(k) and every coloring

of the integers i1, n] with a finite numbek of colors, there is a monochromatic
triple (x,y,z) satisfyingx+y = z. Graham, Rdl and Ruczinsky [3] proved that the
numberS(n) of Schur triples in a 2-coloring dtL, n] verifiesS(n) > n?/38+ O(n)

and enquired about the value of the lirin) /n?> asn — . The answel(n) =
n?/22+0(n) was given in three independent papers by Robertson and Zeilberger
[5], Schoen [4] and Datskovsky [1].

In the last reference, Datskovsky also shows the somewhat surprising fact that
the number of Schur triples in a 2-coloring®fnZ depends only on the cardinal-
ities of the color classes (and not on the distribution of the colors.) The purpose
of this note is to show that such phenomenon occurs in a broader combinatorial
setting which can be applied to other Ramsey arithmetical statements.

Our main theorem is a result about 2-colorings of orthogonal arrays, stated and
proved in the next section of the paper. The result immediately specialises to a
statement about finite groups as follows:

Theorem 1.1 Let G be a finite groupey, ..., 0 a set of permutations of G and
g € G. For any2-coloring of the elements of G with color classes A and B, fet A
and B* denote the sets of r-tuplés, ..., %) satisfying the equation

XPIX92 - X = g, 1)
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with all elements in A and B respectively. Then,
* r+1p* 1 r r+1p|r
AT+ (=1 B = @(IAI + (=18l
Note that this theorem can be specialised to the equation
Xy + X+ -+ X =0

in an abelian grougs, whereay, ..., o, are integers coprime to the order®f

We present applications of this result in three areas: monochromatic arithmetic
progressions, monochromatic Schur triples, and Pythagorean triples. These are
discussed in the following three sections of the paper.

2 The main theorem for orthogonal arrays and groups

A setSof r-vectors with entries in a finite s&tis anorthogonal arrayof degree,
strengthk and indexA if, for any choice ok columns, eack-vector ofXK appears
exactly inA vectors ofS.

Theorem 2.1 Let S an orthogonal array of strength k and index Given a2-
coloring of X with color classes A and B, lgtdenote the number of r-vectors in
S with exactly i elements in A. Then

Proof Let f be a function assigning to each subdet {1,...,r} of cardinality at
mostk a subsef (J) such thatiN f(J) = 0 and|J| + |f(J)| = k.

For each subseétc {1,...,r} of cardinalityj < k, choose an arbitrarjvector
(xi,i € J) € Al and an arbitraryk — j)-vector(x;,i € f(J)) € X*7I. SinceSis an
orthogonal array with strengthand indexA, each such choice determines exactly
A r-vectors ofS. In the multiset of the obtained vectors frd@neach vector with
exactlyi entries fromA is countedA (;) times (where(;) =0if 0 < j <i and

(8) = 1.) Therefore, we get the following linear system in the variabjes
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(J_)n |A| liZ)(j)u.,J 0,1,....k 2

The alternating sum of the equations in (2) gives
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as claimed. O

Theorem 1.1 is a direct consequence of Theorem 2.1, as tiso$sblutions
of the equation
XSIXg2 - X = g,

forms an orthogonal array of degregestrengthk = r — 1 and indexA = 1 with
entries inG.

3 Schur triples

In a groupG, a Schur tripleis a triple(x,y, z) of group elements satisfying/ = z
More generally, &chur r-tuplehas the form(x, ..., %_1,2), wherex; - --x,_1 =z

Corollary 3.1 Let G be a finite group. For ang-coloring of the elements of G
with color classes A and B, the number of Schur trigley, z) is

A2~ A [B] +BI*.

In particular, there are at least?y4 monochromatic Schur triples in aycoloring
of G.

Proof This is immediate from our main theorem, on takimgand o, to be the
identity permutation,o to be inversion, andj = 1. The last sentence follows
because the functior’ — x(n — x) + (n— x)2 = 3x?> — 3nx+ n? has its minimum
value wherx =n/2. O

Almost exactly the same proof gives the following result:

Corollary 3.2 (Datskovsky [1] Corollary 1) Let S(A,B,n) denote the number of
monochromatic Schur r-tuples in2acoloring of Z /nZ with color classes A and B.
Then, for r odd,

1
S(AB.) = (Al +[Bl").

Our proof is purely combinatorial. A proof can be also obtained by using
trigonometric sums as in [1].

4  Arithmetic progressions

An arithmetic progressioin a groupG is a set of elements of the forfa, ad, ad?, ..., ad“1}.
It is degeneratéf d = 1 andnon-degeneratetherwise.

If the order of G contains no prime factors smaller thianthen the elements
of a non-degenerate arithmetic progression are all distinct. If it contains no prime
factors smaller thank2— 1, then such a progression determiaesndd up to just



two possibilities, the other being obtained by reading the progression backwards.
For if the first two terms are taken to &l andad!, with {i,j} # {0,1} and
{i,j} # {n,n— 1}, then some member of the progression will have the fadn
wherel is outside the rang@®, k — 1] but in the rangd—(k— 1),2k — 2]; but no
such element can belong to the interf@k — 1] if the order ofd is at least R— 1.

Corollary 4.1 In any 2-coloring of a group of order coprime t6, the number of
monochromati@-term arithmetic progressions with no repeated elements is

1
(A=Al B+ (B —n),

where A and B are the color classes. In particular, there are at Iga$t- 2n such
triples.

Proof The set of 3-term arithmetic progressions in a gr@upf odd order forms
an orthogonal array of degree 3, strength 2 and index 1. (To shova tirad ad?
determined, use the fact that every element of such a group has a unique square
root.) We remark that ifG is abelian, then this set can be expressed as in our
main theorem, but in the non-abelian case the more general result about orthogonal
arrays seems to be needed.

Now as in the proof of Corollary 3.1, there 82 — |A| -|B| 4 |B|?> monochro-
matic ordered arithmetic progressions of length 3; we have to sulpt(dot num-
ber of degenerate progressions) and divide by 2 (for the possible orderings of the
progression), since the smallest prime divisofxaé at least 5 by assumptiond

The extension to 3-colorings is a little more complicated. We first show the
following extension of the main theorem.

Theorem 4.2 Let G be a finite groupgs, o, oz permutations of G and g G.
For any 3-coloring of the elements of G with color classes A, and A;, let M
(Monochromatic) and R (Rainbow) denote the se@tiples(xi, X2, X3) satisfying
the equation

XTIX92Xg® = g, )

with all elements in the same color, and the three different colors respectively.
Then,

1
M| =3 (3(1Acl*+A2f? +|Ag?) — |GI* +R])
Proof Consider the 2-colorin® = (A UA;j) UA. Then

(AUA) [+ IAL = (AL 1A = (AL + 1A DA+ A (4)

We can writd (A UA;)*| = |A"| + A} +[{3-tuples using the two color andA}|.
We write the last ternX;; for short. Then

M= (1A + 1A D? = (AT + 1A DA+ 1A = X (5)
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Adding this identity for(i, j, k) = (1,2,3), (i, j,k) and(2,3,1) we have
3IM[ = 3(|AL|* + [Azl? + [As|?) — [Xa2] — [Xa3] — [ Xes] (6)
On the other hand it is clear that
G| = [M]| + [X12| + |Xa3| + [Xo3| + |R. (7
Putting this in the formula above we obtain the theorem. O

Corollary 4.3 Any3—cozloring of a group of order n whose smallest prime divisor is
at leastl7 has at Ieast%‘c’g+32 monochromatic arithmetic progressions of length
3.

Proof We look at 9-term arithmetic progressions in the group, noting that, by
our assumption, each unordered progression can be ordered in just two ways (the
reverses of each other).

In the table below we have marked in bold a monochromatic or rainbow arith-
metic progression in each 3-coloring of the 9-tuples. This proves that any 3-
coloring of any 9-tuple contains a non-degenerate arithmetic progression of length
3 belonging taM or R

But the number of non-degenerate 9-tuples?s- n and the number of non-
degenerate 3-tuples contained in a 9-tuple is exactly 16 (corresponding to positions
(1,2,3), ...,(7,8,9), (1,3,5), ..., (5,7,9), (1,4,7), ..., (3,6,9), and(1,5,9)).
Then|M| + |R| > % + p, where the lasp counts the degenerate progressions.
We obtain the result adding the two inequalities. O



11 Tokoskoskook k% 11221212+« 121133% %% 1221211 %«
11211 1%x* % 11221213« 12121 %% %% 1221212x%x%
1121121 %% 11221221« 12122111« 122121 3% %
112112211 11221222« 12122112 1221221 %
112112212 11221231 12122113 1221222
112112213 112212232 121221211 1221223 1%
11211222% 112212233 121221212 12212232%
11211223 % 1122123 121221213 12212233
1121123 11221 3% *x 12122122 122123 *x
1121131%x% 11222 %% * 12122123 1221 3% %% %
1121132x 11223 %% % 121221 3% 122 2% %% % %
1121133x%x% 1123k %% 121222 % * 1223 1% %%
112121 %% % 1211 1xs%%x% 121223 1xx% 12232 1% %%
1121221 %% 1211211 %% 12122321« 12232211%
112122 2% % 12112121« 12122322 12232212
11212231« 12112122 12122231 12232213
112122321 12112123« 121223232 1223222
112122322 121121 3% 121223233 122323 1x
112122323 1211221 1212233x%x% 12232232
11212233 % 1211222 1212 3% %% x% 122322331
112123 % 1211223 %« 121 3k %% %% 122322332
1121 3% % 121123 %% 12211 1% 122322333
112211 1% 1211311 %% 1221121 % 122323 1k
11221121% 1211312 122112211 1223232
112211221 12113131% 122112212 122323311
112211222 12113132« 122112213 122323312
112211223 121131331 12211222« 122323313
11221123 121131332 12211223 12232332
1122113x% % 121131333 122112 3% % 12232333«
11221211% 121132 *x* 122113 *x* 12233 %% %%

123k %k %

Remark The result of this theorem can be improved. For example, a similar table
shows that, in any 3-colored 11-term arithmetic progression, we can find at least
two 3-term arithmetic progressions which are either monochromatic or rainbow.
This improves the factor /116 in the proof to 225, and 748 in the result of the
theorem to 275.

Computation usingAP [2] shows that this can be further improved. The best
fraction we found to replace the constantlé was 760, which is demonstrated
by the fact that any 3-colored 28-term arithmetic progression contains at least 32
monochromatic or rainbow 3-term progressions.

Of course, these improvements require further restrictions on the group: in the



last case, we have to assume that the smallest prime divisor of the group order is at
least 59.
This suggests the combinatorial problem:

What can be said about the functiorinf, the least number m such
that any3-coloured m-term arithmetic progression contains at least n
monochromatic or rainbo\8-term progressions?

For 4-term arithmetic progressions we have the following result:

Theorem 4.4 Any4—co|20ring of a group of order n whose smallest prime divisor is
at least13 has at least=12+1> monochromatic arithmetic progressions of length
4.

Proof The set of four-term arithmetic progressions@r(including the degener-
ate onega,ad,ad?,ad®) with d = 1) forms an orthogonal array of degree- 4,
strengthk = 2 and indexA = 1 of 4-tuples, since any element Gfhas a unique
square root or cube root. By Theorem 2.1 we have

n? — 4n|A| + 6|A[> = up -+ uz + 3ug, (8)

where, as in Theorem 2.3 is one of the color classes amgdis the number of
solutions with exactly elements fromA. By exchanging the role ok andB we
get

n? — 4n|B| + 6|B|? = uy + uy -+ 3up. (9)

By adding (8) and (9) we have
6(|AI” + [B[?) — 2n° = 4(Uo+ Ua) + (Ur + Ua). (10)

The identityup + Uy + U 4 U3 + Ug = n? gives

U2

u
uo+u4:§2+2(\A]2+|B|2)—n22§+1. (11)

Let us show that
n?—n

Ug—+ U + Uy > +n. (12)

Note that each arithmetic progression of length 7 contains at least one arithmetic
progression counted im + Uz + Uy (See the table below). On the other hand, each
4-term progression is contained in five 7-progressions, those in which it occurs in
positions(1,2,3,4), ..., (4,5,6,7) or (1,3,5,7). Since there ara(n— 1) non-
degenerate 7-progressions andiegenerate ones, we get inequality (12). Combin-
ing (12) and (10) we obtain

n?+4n+15

u Ug >
o+ Ug > 50



Our assumptions also show that a given 4-set which is an arithmetic progression
occurs as such in just two orders, one the reverse of the other. This gives the lower
bound(n? — 16n+ 15) /40 for the number of monochromatic 4-progressions.

111 %%xx 11122%x 11212«x 1211122 122211«
1112111 1121111 1122x**x 12112xx 1222121
1112112 1121112 121111« 1212«xxx 1222122
111212« 112112« 1211121 1221xxx 12222xx

Remark Just as for Theorem 4.2, this can be improved. We found by a similar
computation that among progressions of length 33 we can always find at least 40
four-term progressions with the patterns countedipy u, + ug; this allows us to
replace the constant/% by 8/33. As before, we can formulate a combinatorial
problem here.

5 Pythagorean triples

Corollary 3.1 can be used to count the number of Pythagorean triplesar. A
Pythagorean tripleis any 3-tuple(x?,y?,7%) satisfyingx? +y? = 72, and isnon-
degeneratef xyz# 0. For anyr # 0, we definegp(r) = 1 if the equation® = r
(modp) has solution andp(r) = 0 otherwise. Theorem 5.1, Theorem 5.2 and
Corollary 5.3 are well known but these proofs are new.

Theorem 5.1 Let p be an odd prime. The number of Pythagorean tripl€5/ipZ

is
(p+1)(p+3) p—1
#%ﬂo(—l)T

and the number of non-degenerate Pythagorean tripl&s/ipZ is

(p_l)s(p_g) —Sp(—l)p%l.

Proof Consider the 2-coloring o/ pZ given byZ/pZ = SUN with S= {x?:

X € Z/pZ} the set of squares adl= (Z/pZ) \ S. Denote byJ; the set of Schur
triples with exactlyi elements ir§5, so thatJ; is the set of Pythagorean triples. By
Corollary 3.2 we have

_(p+1\* [p+1\/p-1 p—1\> p?+3
wale = (P57) - (%57) (%) + (P2 ) =P

LetU; = {(a,b,c) € Uz : abc= 0}. Forr a non quadratic residue modupp the
map(a,b,c) — (ra,rb,rc) is a bijection betweeblg andUs \ U;. Therefore,

p?+3 U
8 2

Us| = [Uo| + |Us3| =



The triples inUj are (0,0,0), {(0,x%,x%: x € S\ {0}}, {(x%,0,x?: x € S\ {0}}
and, if—1€ S {(x3,—x2,0), x€ S}, so thatU}| = p+&(p)(p—1)/2, which gives
the result. O

Of course it is well known for which primegsthe equation® = —1  (mod p)
has a solution, but we want to present it as a consequence of the next result.

Theorem 5.2 For any t+ 0 let Ry(t) denote the set of the pai(g?,y?) € Zp\ {0}
such that X+y? =t. Then|Ry(t)| = W —ep(t).

Proof There exists an obvious bijection betwdyit) andR,(t') if t,t’ are quadratic
residues or are both non quadratic residuesidfa quadratic residue we have that

HORYR), Py =2 240 = Y[R = Relt) 2

r quadratic residue 2

and we obtain the theorem by applying the result obtained in theorem 5.1.
If t is a non quadratic residue we can write

2
(P27) =, 3 IR0l 5 RI+IRO)

r quadratic residue ratic residue
(P—1)(p—3) p-1 p-1 p—1
= 8 —&p(=1) ==+ 5~ [Rp(t)[ +&p(-1) =5~
and we can computR,(t)|. O

Corollary 5.3 For any odd prime p we have

(@)oo (-

Proof To calculate(%), observgRy(1)| = %8"(_1) —1 must be an integer.

To calculate(%) , notice thatRy(2)| = %&’(_l} —&p(2) is always an odd num-

ber becaus# +y? = y? 4 x2 = 2 give two solutions except in the case-1 = 2.
O
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