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Abstract
Motivated by a question of C.-S. Cheng on optimal block designs,

this paper describes the symmetric matrices with entries 0, +1 and −1,
zero diagonal, least eigenvalue strictly greater than −2, and constant
row sum. I also describe briefly the motivation for the question.

Let A be a symmetric n× n matrix with entries 0, +1 and −1, with zero
diagonal and constant row sums, having least eigenvalue greater than −2.
The aim of this paper is to describe such matrices.

Of course, we may assume that the matrix is “connected”, that is, not

permutation-equivalent to one of the form

(
B O
O C

)
. We also note that the

constant row sum c is an eigenvalue, and so c ≥ −1.
Such a matrix is represented by a set of vectors in a spherical root sys-

tem, and hence (apart from finitely many examples represented in the ex-
ceptional root systems E6, E7 and E8) by either a tree with oriented edges,
or a unicyclic graph with edges either signed or oriented. We give a test for
recognising when such a graph represents a matrix satisying the conditions
of the question. There are many examples. All matrices occurring in the
exceptional root systems are determined.

1 Least eigenvalue −1

As a warmup, I consider the case where the least eigenvalue is −1.
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Let A be such a matrix. Then A + I is positive semi-definite, and so
is the Gram matrix of inner products of n vectors v1, . . . , vn in Euclidean
space. Thus ||vi|| = 1 and vi · vj ∈ {0, +1,−1} for all i, j. Clearly such
vectors consist of an orthonormal set of vectors and their negatives, with
each vector possibly repeated. Connectedness implies that there is just one
vector v in the set. So, if we only use the vector v, all inner products are +1,
and we have A = J − I, where J is the all-1 matrix; if we use both v and

−v, then A =

(
J − I −J
−J J − I

)
.

Note that the first type has constant row sum n− 1; the second type has
constant row sum −1 if and only if all the blocks are square, that is, v and
−v occur equally often in the vector representation. Each matrix has the
property that the entry 0 doesn’t occur. We call these the trivial examples.

2 Root systems

For the initial analysis we ignore the “constant row sum” condition, and also
for a while we only assume that the least eigenvalue is not smaller than −2.

Let A be such a matrix. Then A + 2I is positive semi-definite, so is the
matrix of inner products of a set of vectors v1, . . . , vn, where ||vi|| =

√
2 and

vi · vj ∈ {0, +1,−1} for all i 6= j. Also, the matrix A can be assumed to be
“connected”, so there is no orthogonal decomposition of the Euclidean space
so that the vectors all lie in the summands. (This means that the graph with
vertex set v1, . . . , vn, with two vertices adjacent if they are not orthogonal,
is connected.) We can assume that they span the space.

According to the results of [1], the vectors form a subset of a root system
of type An, Dn, E6, E7 or E8. Here is a brief account.

A root system is a finite set of non-zero vectors in Euclidean space Rn,
closed under reflection in the hyperplane perpendicular to each of its ele-
ments. It is indecomposable if it is not contained in the union of two non-zero
perpendicular subspaces. Indecomposable root systems arose in the classifi-
cation of simple Lie algebras; they were determined by Cartan and Killing.

We are interested in the root systems with all roots of the same length.
Here is the list in this case; there are two infinite families and three sporadic
examples. Let e1, . . . , en form an orthonormal basis for Rn.

An: The vectors of An are all ei − ej, for 1 ≤ i, j ≤ n + 1, i 6= j. (These
vectors lie in a hyperplane of Rn+1, and so span a space of dimension n.)
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Dn: The vectors of Dn are all ±ei ± ej, for 1 ≤ i < j ≤ n.

En: These are three specific sets in Rn, for n = 6, 7, 8. Several descriptions
of them can be found in [1].

So our matrix is represented by a subset of one of these root systems,
where we choose at most one out of each pair v,−v.

Now let us make the assumption that the least eigenvalue of A is strictly
greater than −2. Then A+2I is positive definite, so the representing vectors
v1, . . . , vn are linearly independent, and form a basis for Rn.

Thus, let us say that an n× n matrix A is admissible if

• A is real symmetric, having entries 0, +1, and −1 only;

• the diagonal entries are all 0;

• A is connected;

• the smallest eigenvalue of A is greater than −2.

Our problem is to determine the admissible matrices with constant row sum.
This is equivalent to choosing a connected subset of a root system whose
vectors form a vector space basis for the ambient space, and such that the
Gram matrix of the subset has constant row sums.

3 Determinant

In this section, we show:

Proposition 3.1 Let A be an admissible n×n matrix. Then det(2I +A) =
n + 1 or 4, except possibly if n = 6, 7 or 8, when det(2I + A) may be 3, 2
or 1 respectively.

This follows from the following result. The root lattice associated with a
root system is the integer span of the root system. (The term “lattice” here
means “discrete spanning subgroup of Rn”.) We refer to Humphreys [3] for
more information about root systems and root lattices.
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Proposition 3.2 Let S be a connected subset of a root system R which forms
a vector space basis for the ambient space. Then S is an integer basis for
the corresponding root lattice, except possibly if R = E7 or R = E8, in which
case S may be an integer basis for the A7, A8 or D8 root lattice.

Proof The integer span L = 〈S〉Z is a sublattice of the root lattice. Now
L ∩ R is a root system. (This requires that, for two vectors v, w in this set
with v · w = ε = ±1, we have v − εw ∈ L ∩ R; this holds since R is closed
under this operation by definition and L is a lattice.) Moreover, L ∩R ⊇ S,
so L ∩ R is connected. Thus, L ∩ R is a root system of type An, Dn or En,
contained in the given root system. Now the only inclusions among these
root systems are A7 ⊆ E7, A8 ⊆ E8 and D8 ⊆ E8.

Now the proof of Proposition 3.1 proceeds as follows. Let L be an integral
lattice in Rn (this means that the inner product of any two of its vectors is
an integer). The dual lattice L∗ consists of all vectors v ∈ Rn such that
v · w ∈ Z for all w ∈ L. Clearly L∗ is a lattice containing L, and the index
|L∗/L| is finite (this number is the connection number of the lattice). If S
is any integral basis for L, then the determinant of the Gram matrix of S is
equal to the connection number of L.

The connection numbers of An, Dn, E6, E7 and E8 are n + 1, 4, 3, 2 and
1 respectively. This finishes the proof.

Hence, if we determine the admissible matrices, we can decide which root
system contains each matrix simply by calculating its determinant. The
result also restricts the possible row sum s, since s + 2 must divide the
determinant.

4 The case An

We have a basis {v1, . . . , vn} for the root system An. We can represent it as
a directed graph on n + 1 vertices as follows: if vi = ej − ek, we represent vi

as a directed edge from ek to ej. This graph contains no circuits, since the
sum (with appropriate signs) of the vectors corresponding to the edges in a
circuit is zero. Since the vectors form a basis, the graph is a tree.

Now, given a directed tree with n edges, the matrix A is constructed as
follows. Entries on the diagonal, or corresponding to a pair of edges with
no common vertex, are zero. The entry corresponding to a pair of edges
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meeting at a vertex is −1 if the edges are “head-to-tail” there, or +1 if they
are “head-to-head” or “tail-to-tail”.

The constant row sum condition means that, for any edge, if we calculate
the entries as above for all edges meeting the given edge at a vertex and sum
them, the result is a constant c.

For any vertex v of the tree, let d(v) be the degree of v, and s(v) the
“signed degree” (the number of incoming edges minus the number of outgoing
edges). Then the sum of the row of A corresponding to the directed edge
v → w from v to w is

(−1)(s(v) + 1) + (+1)(s(w)− 1) = s(w)− s(v)− 2.

So we have the following result:

Theorem 4.1 An admissible matrix having row sums c arises from an ori-
ented tree T if and only if s(w)− s(v) = c + 2 for every directed edge v → w
of T . Reversing the orientation of every edge does not change the matrix.

We note a couple of consequences.

Corollary 4.2 Let T be an oriented tree satisying the above conditions. Sup-
pose, without loss of generality, that there is an edge directed out of a leaf x.
Then all values of s(v) are congruent to −1 mod c + 2, and if the vertices
are arranged on levels corresponding to the values of s(v), then each oriented
edge goes from a level to the next level above.

Proof We lose no generality because we may reverse all orientations. If x
is as in the statement, then s(x) = −1, and the theorem together with the
connectedness of T shows that all values of s(v) are congruent modulo c + 2.

Corollary 4.3 If c /∈ {−1, 0}, then there cannot be both a leaf with an out-
going edge and a leaf with an incoming edge.

Proof If x and y are such leaves, then s(x) = −1 and s(y) = 1.

Corollary 4.4 If c is even, then all vertices of the tree have odd degree. If
c is odd, then the parity of the degrees is even in one bipartite block and odd
in the other; in particular, all leaves lie in the same bipartite block.
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Proof For any edge v → w, we have s(w) − s(v) = c + 2, and s(v) ≡
d(v) mod 2, so d(v) + d(w) ≡ c mod 2.

If c is even, all degrees have the same parity; since there exist leaves, the
parity is odd. If c is odd, the two ends of an edge have degrees of opposite
parity, and the conclusion of the lemma follows.

Corollary 4.5 Suppose that there is a vertex v which is on an edge towards
a leaf and an edge from another leaf. Then the row sum is −1, and the degree
of v is even, with half the edges entering v and half of them leaving.

Proof Let v → x and y → v be the two given edges, where x and y are
Then s(x) = +1 and s(y) = −1, so the row sums corresponding to (v, x) and
(y, v) are respectively −s(v) − 1 and s(v) − 1. These are equal, so s(v) = 0
and the row sum is −1.

Now the examples J − I and

(
J − I −J
−J J − I

)
are realized by stars. In

the first case, direct all the edges in to the centre; in the second, let the
number of edges be even, and direct half of them in and half of them out.

There are many examples of oriented trees satisfying our conditions. Here
is the smallest one with row sums −1 which is not a star.
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Numbering the edges from left to right and from bottom to top gives the
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admissible matrix

A =



0 0 0 0 − 0 0 0 0 0
0 0 0 0 0 − 0 0 0 0
0 0 0 0 0 0 − 0 0 0
0 0 0 0 0 0 0 − 0 0
− 0 0 0 0 + 0 0 − 0
0 − 0 0 + 0 0 0 − 0
0 0 − 0 0 0 0 + 0 −
0 0 0 − 0 0 + 0 0 −
0 0 0 0 − − 0 0 0 +
0 0 0 0 0 0 − − + 0


whose least eigenvalue, according to Maple, is about −1.860805854.

Examples with other values of c are easily produced. For example, take
a star with 2c + 3 leaves all directed outwards. Identify each leaf with the
centre of a star with c + 2 leaves all directed outwards. This gives a matrix
of order (c + 3)(2c + 3) with row sums c. The case s = 0 gives a matrix of
order 9, the smallest non-trivial matrix represented in An. The picture shows
the case c = 1. Directions are not shown: all edges are oriented upwards.
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One can give constructions for new examples from old. For example,
the following is obviously true, and gives a construction for infinitely many
examples. This example only works in the case where row sums are −1.

Proposition 4.6 Let T1 and T2 be oriented trees giving rise to matrices
satisfying the conditions of the problem, and for i = 1, 2, let vi be a vertex of
Ti satisfying s(vi) = 0. Then the tree formed from the disjoint union of T1

and T2 by identifying v1 and v2 also satisfies the conditions.

Other recursive constructions are also possible. Rather than formulate
general conditions, we give an example of two trees glued along an edge.
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This also shows that the case where row sums are zero and there are initial
and terminal leaves can occur. Again, edges are oriented upwards.
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5 The case Dn

In this case, our vectors are of the form ±ei ± ej for i 6= j. Again the set
can be represented by a graph, this time with n vertices and n edges. The
graph is connected, and so is a unicyclic graph (consisting of a cycle with
trees attached at some of its vertices).

There are several kinds of edges. A vector ei − ej can be represented
by a directed edge from j to i. A vector ei + ej can be represented by an
undirected edge carrying a + sign (i.e. positive at both ends), while a vector
−ei− ej can be regarded as an undirected edge carrying a − sign. We define
s(v) similarly to before: it is the number of positive undirected or incoming
directed edges at v, minus the number of negative undirected or outgoing
edges at v. Now we have to take a little care to ensure that the vectors are
linearly independent. The result is as follows.

Theorem 5.1 Let G be a unicyclic graph with each edge signed or directed.
Then G corresponds to a matrix satisfying the conditions and having row
sums c if and only if the following hold:

(a) the cycle of G contains an odd number of undirected edges;

(b) if v → w, then s(w)− s(v) = c + 2; if {v, w} is undirected with sign ε,
then ε(s(v) + s(w)) = c + 2.

Proof Condition (a) guarantees that the edges in the cycle correspond to
linearly independent vectors. It is clear that there are no other possible
dependencies. Condition (b) is, as in the previous case, the translation of
the “row sum c” condition.
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This time, however, we have the freedom of changing the signs of the basis
vectors arbitrarily. For example, changing ei to −ei will change a directed
edge leaving i to an undirected edge with sign + (and vice versa), and a
directed edge entering i to an undirected edge with sign − (and vice versa).
We can exploit this freedom as follows:

Lemma 5.2 A connected set of vectors forming a basis for Dn can be rep-
resented by a unicyclic graph in which all edges except perhaps one are undi-
rected. If the unique cycle has odd length, then all edges are undirected; if it
has even length, then there is a directed edge contained in the cycle.

Proof Temporarily remove an edge from the cycle to leave a tree. Working
from a leaf of the tree, change signs of basis vectors so that each edge of
the tree is undirected. Now, since the vectors in the cycle are linearly inde-
pendent, it is easy to see that the remaining edge is undirected or directed
according as the cycle has odd or even length.

Note that examples do exist:

Proposition 5.3 Suppose that the graph is a cycle of length n.

(a) If n is odd, then the row sums are +2, and all the signs can be taken to
be +. If n = 2r + 1, the eigenvalues of A are 2 cos(2jπ/(2r + 1)) for
j = 0, . . . , 2r, the smallest occurring when j = r.

(b) If n is even, then n ≡ 2 mod 4, the row sums are 0, and the undirected
edges have signs (++−−++ · · ·−−+), while the directed edge points
from vertex 1 to vertex n. If n = 4r + 2, the eigenvalues of A are
±2 sin(2jπ/(2r + 1)) for j = 0, . . . , 2r.

Proof (a) Suppose that n is odd, so that all the edges are undirected.
Clearly the row sums are either 0 or 2. If they are 0, then the two edges
meeting a given edge have different signs, so the signs are (++−−++ · · ·),
which is not possible for odd n. So the row sums are 2, and all edges have
the same sign, which we can assume is +. Now the matrix A is the adjacency
matrix of the n-cycle, whose least eigenvalue is as claimed. Note that these
matrices do not contain the entry −1. For n = 5, the smallest eigenvalue is
−(
√

5 + 1)/2 = −1.618033988.
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(b) Suppose that n is even, so that there is a single directed edge, which
we may suppose is between vertices 1 and n. If the row sums are 2, then all
undirected edges have the same sign, which implies that the directed edge
has row sum 0, a contradiction. So the row sums are 0. Now, as in the
preceding paragraph, each undirected edge apart from {1, 2} and {n− 1, n}
has neighbours of opposite sign, while the neighbours of the directed edge
have the same sign. This implies that n ≡ 2 mod 4 and the signs are as
claimed.

Now a bit of rearranging shows that A can be written in the form(
O C − C>

C> − C O

)
,

where C is the matrix of a directed (2r + 1)-cycle. In this form it is not
hard to calculate the eigenvalues. For n = 6, the smallest eigenvalue is
−
√

3 = −1.732050808. In general, the smallest occurs when j is nearest to
(2r + 1)/4 or 3(2r + 1)/4.

Other examples than cycles can occur. Here is one, with least eigenvalue
−1.813606504.
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

0 − 0 0 0 0 0 0
− 0 − + 0 0 0 0
0 − 0 − + 0 0 0
0 + − 0 0 − 0 0
0 0 + 0 0 − − 0
0 0 0 − − 0 + 0
0 0 0 0 − + 0 −
0 0 0 0 0 0 − 0



Some analogues of results in the An case hold. In particular, if the row
sum s is even, then all vertex degrees have the same parity (which is even if
the graph consists of a single cycle, as in the lemma, and is odd otherwise,
since leaves will exist); and if s is odd, then the graph is bipartite (so the
unique cycle has even length), and vertices in different bipartite blocks have
degrees of opposite parity.
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6 The case En, for n = 6, 7, 8

Now we determine all admissible matrices with constant row sum of order at
most 8; this includes all matrices which generate exceptional root lattices.

The search strategy is as follows. If A is admissible with constant row
sums, then the unsigned version of A is the adjacency matrix of a connected
graph in which all vertex degrees have the same parity. Odd parity can only
arise in the case when n is even, in which case the complement of the graph
has all vertices of even parity. So we begin with a list of the Eulerian graphs
(with even parity), include also their complements if n is even, and then
select just the connected graphs from the list. The Eulerian graphs on small
numbers of vertices are available from Brendan McKay’s web page [4].

Now we take each such graph, sign the edges in all possible ways, and
test to see whether the resulting matrix is admissible and has constant row
sums. This is done with a GAP program [2]. We also test isomorphism using
the GAP package DESIGN [6].

As explained earlier, we determine the root system for any such matrix
by calculating its determinant. We find that the number of such matrices in
the exceptional root systems En are 2, 4, 12 for n = 6, 7, 8 respectively. The
output also includes the matrices in An and Dn, as a check on our earlier
results. The matrices which generate the exceptional root systems are listed
in the Appendix.

Here are counts of the admissible matrices of order n with constant row
sums for n ≤ 8, classified by the type of root lattice they generate. The

trivial types (in An) are J − I and (for n even)

(
J − I −J
−J J − I

)
. We see

that this accounts for all matrices in An for n ≤ 8; the smallest non-trivial
example has n = 9. The matrices in Dn are the cycles for n = 5, 6, 7 and
three including the example given in the preceding section for n = 8. The
matrices are given in the Appendix.

n 3 4 5 6 7 8
An 1 2 1 2 1 2
Dn 0 1 1 1 3
En 2 4 12

An alternative search strategy would be to examine all the bases for the
root systems E6, E7 and E8. Bray (personal communication) has done this;
his results agree with those reported in this paper.
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7 Which entries may be missing?

We allow the entries 0, +1 and −1 in the matrix A. What happens if not all
of these entries occur?

In this section I will ignore the exceptional root systems of type E6,
E7 and E8. In principle they can contribute at most a finite number of
counterexamples to the assertion of the following result; inspection shows
that there are none.

Proposition 7.1 Suppose that A satisfies the usual conditions, and not all

values occur. Then A = J − I, or A =

(
J − I −J
−J J − I

)
with square blocks,

or A is the adjacency matrix of an odd cycle.

Proof We divide into three cases according to the missing value.

Case −1 does not occur: In this case A is the usual adjacency matrix
of the line graph of the graph formed by the representing vectors in the root
system An or Dn. (Directions can be ignored.)

Now, if the line graph of a graph G is regular, then either G is regular, or
G is semiregular bipartite (this means that the degrees are constant within
each bipartite block).

Subcase G is a tree: One bipartite block must consist of all the leaves,
and so every edge goes from a leaf to a non-leaf. Thus G is a star, and
A = J − I.

Subcase G is unicyclic: If there are leaves, then they form a bipartite
block, which is clearly impossible. So our graph G is a cycle. But the line
graph of an even cycle has eigenvalue −2. So G is an odd cycle and is
isomorphic to its line graph.

Case 0 does not occur: In this case, the graph has the property that any
two edges meet. So it must be a star (in case An) or a 3-cycle (in case Dn).
We get the “trivial” examples of the first section.
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Case +1 does not occur: In this case, the inner products of the basis
vectors are all non-positive. For type An, an easy argument shows that the
bases are

e1 − e2, e2 − e3, . . . , en − en+1,

which gives a Gram matrix with constant row sums only in the trivial cases
n = 2 and n = 3. In the case Dn, we cannot have a cycle of length greater
than 2, since each basis vector would occur twice with opposite signs in the
representing vectors whose sum would be zero. So, without loss, we have
en−1 ± en, from which it is easy to see that the basis is

e1 − e2, e2 − e3, . . . , en−2 − en−1, en−1 − en, en−1 + en,

which never gives constant row sum for n > 2.
Note that the bases here are the standard bases for the root systems, as

used in the theory of Lie algebras etc.

8 Optimal block designs

I conclude by describing the background in optimal design theory of the
question of Cheng which motivates this research. For further details, see [5].

A block design here means a 1-design, or binary proper equireplicate block
design. Thus, there are v points; each block is a set of k points; and each
point is contained in r blocks.

The incidence matrix N of a block design D is the v × b matrix (where
b is the number of blocks) with i, j entry 1 if the ith point is contained in
the jth block, 0 otherwise. The concurrence matrix Λ = NN> is the v × v
matrix whose i, j entry is the number of blocks containing the ith and jth
points. The information matrix L is given by L = rI−Λ/k. The information
matrix has a “trivial” eigenvalue 0, corresponding to the all-1 eigenvector.

Several notions of optimality of block designs have been proposed. A
block design D is A-optimal (in the class of all block designs with given
v, k, r) if it maximizes the harmonic mean of the non-trivial eigenvalues; it is
D-optimal if it maximizes the geometric mean of the non-trivial eigenvalues;
and it is E-optimal if it maximizes the smallest non-trivial eigenvalue. (We
stress that the letters A, D, E here have no relation to the names of the root
systems).

If a balanced design (a 2-design) exists, then it is optimal in all three
senses. But if the parameters are such that no balanced design exists, the
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question of optimality is more subtle, and there may be no design which
is optimal on all criteria. Cheng’s question was motivated by a search for
E-optimal designs. The idea is that, for a balanced design, we have Λ =
(r − λ)I + λJ , where J is the all-1 matrix; so it is reasonable to search for
designs whose concurrence matrix is almost of this form, that is, of the form
(r − t)I + tJ −A, where A is a symmetric integer matrix with small entries
(say, −1, 0, 1) and constant row sums. To maximize the least eigenvalue of
L, we should make the least eigenvalue of A as large as possible (say, greater
than −2). This gives precisely the problem addressed in this paper, with
v = n.

Two questions remain. First, given a matrix A of order v, can we find a
block design with concurrence matrix (r − t)I + tJ − A? Second, is such a
design in fact E-optimal?

The first question can be readily answered by the DESIGN software. Hav-
ing chosen the block size k, we first choose r and t such that

t(v − 1)− c = r(k − 1),

k | vr,

where c is the row sum of A. Then we can calculate Λ, and use DESIGN to
find a block design with the given v, k, r and with concurrence matrix Λ. For
example, if A is one of the matrices in the root system E6 (see the appendix),
and k = 3, then we have c = −1, so 2r = 5t + 1. The smallest solution has
t = 1, r = 3; we find that there are no solutions for either matrix. However,
for t = 3, r = 8, the second matrix gives us a unique design, with block set

{123, 125, 125, 134, 136, 136, 146, 156, 234, 245, 246, 246, 256, 345, 345, 356}.

The twelve matrices in E8 all have c = −1. For k = 3, the smallest feasible
values are r = 18, t = 5, where designs exist for each of the twelve matrices.
For k = 4, the smallest feasible values r = 5, t = 2 cannot be realised, but
for the next values r = 12, t = 5, once again designs exist for each of the
twelve matrices.

I have not investigated the second question.

9 Appendix: Matrices of order at most 8

We list here the admissible matrices with constant row sums having order at
most 8.
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9.1 Matrices in An

We have only the trivial matrices J − I and (for n even)

(
J − I −J
−J J − I

)
.

9.2 Matrices in Dn, for n ≥ 4

For n ≤ 7 we have the odd cycles C5 and C7 with all signs +, and, for
n = 6, the cycle signed as described in Proposition 5.3(b), giving the matrix(

O A
A> O

)
, where

A =

 0 − +
+ 0 −
− + 0

 .

For n = 8, there are three matrices:

0 + 0 0 − 0 0 0
+ 0 0 0 − 0 0 0
0 0 0 0 0 + − 0
0 0 0 0 0 + 0 −
− − 0 0 0 0 + +
0 0 + + 0 0 − −
0 0 − 0 + − 0 +
0 0 0 − + − + 0





0 0 0 + 0 0 − −
0 0 + − 0 − 0 0
0 + 0 − − 0 0 0
+ − − 0 0 0 0 0
0 0 − 0 0 0 0 0
0 − 0 0 0 0 0 0
− 0 0 0 0 0 0 0
− 0 0 0 0 0 0 0




0 0 0 0 + − 0 −
0 0 − + 0 0 − 0
0 − 0 − 0 + 0 0
0 + − 0 − 0 0 0
+ 0 0 − 0 − 0 0
− 0 + 0 − 0 0 0
0 − 0 0 0 0 0 0
− 0 0 0 0 0 0 0


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9.3 Matrices in E6
0 − + + − −
− 0 − − + +
+ − 0 0 0 −
+ − 0 0 − 0
− + 0 − 0 0
− + − 0 0 0




0 0 − + 0 −
0 0 + − − 0
− + 0 − 0 0
+ − − 0 0 0
0 − 0 0 0 0
− 0 0 0 0 0


9.4 Matrices in E7

0 0 0 − 0 0 +
0 0 0 0 − 0 +
0 0 0 0 0 − +
− 0 0 0 + + −
0 − 0 + 0 + −
0 0 − + + 0 −
+ + + − − − 0





0 + 0 0 0 0 −
+ 0 0 0 0 0 −
0 0 0 0 − 0 +
0 0 0 0 0 − +
0 0 − 0 0 + 0
0 0 0 − + 0 0
− − + + 0 0 0




0 − 0 0 + 0 0
− 0 0 0 0 + 0
0 0 0 0 0 − +
0 0 0 0 − 0 +
+ 0 0 − 0 + −
0 + − 0 + 0 −
0 0 + + − − 0





0 − − + + 0 0
− 0 + − 0 + 0
− + 0 0 − 0 +
+ − 0 0 0 − +
+ 0 − 0 0 + −
0 + 0 − + 0 −
0 0 + + − − 0


9.5 Matrices in E8

0 − + + − − + −
− 0 − − + + − +
+ − 0 + − − 0 0
+ − + 0 − − 0 0
− + − − 0 + 0 0
− + − − + 0 0 0
+ − 0 0 0 0 0 −
− + 0 0 0 0 − 0





0 + − − + 0 − 0
+ 0 − − + − 0 0
− − 0 + − + 0 0
− − + 0 − 0 + 0
+ + − − 0 0 0 −
0 − + 0 0 0 − 0
− 0 0 + 0 − 0 0
0 0 0 0 − 0 0 0


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

0 − + − − + 0 0
− 0 − + + 0 0 −
+ − 0 − 0 0 0 0
− + − 0 0 0 0 0
− + 0 0 0 − 0 0
+ 0 0 0 − 0 − 0
0 0 0 0 0 − 0 0
0 − 0 0 0 0 0 0





0 − − + + − + −
− 0 + − 0 0 − +
− + 0 − − + 0 0
+ − − 0 0 0 0 0
+ 0 − 0 0 − 0 0
− 0 + 0 − 0 0 0
+ − 0 0 0 0 0 −
− + 0 0 0 0 − 0




0 + − − + − 0 0
+ 0 − − 0 0 0 0
− − 0 + 0 0 0 0
− − + 0 0 0 0 0
+ 0 0 0 0 − − 0
− 0 0 0 − 0 + 0
0 0 0 0 − + 0 −
0 0 0 0 0 0 − 0





0 − − + 0 0 + −
− 0 + − 0 − 0 +
− + 0 − + 0 − 0
+ − − 0 − + 0 0
0 0 + − 0 0 0 −
0 − 0 + 0 0 − 0
+ 0 − 0 0 − 0 0
− + 0 0 − 0 0 0




0 − − + + 0 0 −
− 0 + 0 − 0 0 0
− + 0 − 0 0 0 0
+ 0 − 0 0 − 0 0
+ − 0 0 0 0 − 0
0 0 0 − 0 0 0 0
0 0 0 0 − 0 0 0
− 0 0 0 0 0 0 0





0 − − 0 − + + 0
− 0 + + 0 − − 0
− + 0 0 + 0 − −
0 + 0 0 − − 0 0
− 0 + − 0 0 0 0
+ − 0 − 0 0 0 0
+ − − 0 0 0 0 0
0 0 − 0 0 0 0 0




0 − 0 0 − − + +
− 0 + + 0 0 − −
0 + 0 0 0 − 0 −
0 + 0 0 − 0 − 0
− 0 0 − 0 + 0 0
− 0 − 0 + 0 0 0
+ − 0 − 0 0 0 0
+ − − 0 0 0 0 0





0 0 + − + − 0 −
0 0 + − − + − 0
+ + 0 − 0 0 − −
− − − 0 0 0 + +
+ − 0 0 0 − 0 0
− + 0 0 − 0 0 0
0 − − + 0 0 0 0
− 0 − + 0 0 0 0


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

0 0 + − − − + 0
0 0 − + − 0 0 0
+ − 0 − 0 0 0 0
− + − 0 0 0 0 0
− − 0 0 0 + 0 0
− 0 0 0 + 0 − 0
+ 0 0 0 0 − 0 −
0 0 0 0 0 0 − 0





0 0 0 − + + − −
0 0 − 0 + − + −
0 − 0 0 − + − +
− 0 0 0 − − + +
+ + − − 0 0 0 −
+ − + − 0 0 − 0
− + − + 0 − 0 0
− − + + − 0 0 0


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